
A Sequential Set Generation Method for Predicting Set-Valued Outputs

Tian Gao, Jie Chen, Vijil Chenthamarakshan, Michael Witbrock
IBM Research

Thomas J. Watson Research Center, Yorktown Heights, NY
{tgao, chenjie, ecvijil, witbroc}@us.ibm.com

Abstract

Consider a general machine learning setting where the output
is a set of labels or sequences. This output set is unordered
and its size varies with the input. Whereas multi-label clas-
sification methods seem a natural first resort, they are not
readily applicable to set-valued outputs because of the growth
rate of the output space; and because conventional sequence
generation doesn’t reflect sets’ order-free nature. In this pa-
per, we propose a unified framework—sequential set gener-
ation (SSG)—that can handle output sets of labels and se-
quences. SSG is a meta-algorithm that leverages any proba-
bilistic learning method for label or sequence prediction, but
employs a proper regularization such that a new label or se-
quence is generated repeatedly until the full set is produced.
Though SSG is sequential in nature, it does not penalize the
ordering of the appearance of the set elements and can be
applied to a variety of set output problems, such as a set of
classification labels or sequences. We perform experiments
with both benchmark and synthetic data sets and demonstrate
SSG’s strong performance over baseline methods.

Introduction
Recent advances in machine learning, particularly deep
learning models and training algorithms, have resulted in
significant breakthroughs in a variety of AI areas, including
computer vision, natural language processing, and speech
recognition. Most of these applications have been formu-
lated as classification problems: a label is predicted for a
given input. The output label could be the category of an
image, the word uttered in an audio signal, or the topic of
a news paragraph. For sequence generation problems, an or-
dered list of tokens is generated sequentially, with the output
of each token being essentially a label prediction. In this pa-
per, we pursue the capability to predict sets, the size of which
may vary, and for which the order of the elements is irrele-
vant. We call this problem set prediction. The challenge lies
in the fact that the output space, or the universe of set ele-
ments, may be enormously large or even infinite, especially
for sets of sequences. Thus, treating the general problem as
multi-label classification is inefficient or effectively impos-
sible. Examples of set prediction problems include learning

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to enumerate relevant rules and possible bindings of a logic-
based inference system, producing all descriptions of a pic-
ture, and generating relevant images for a given query.

A major goal of our lab is to work toward unifying the
capabilities of deep learning approaches with the AI capa-
bilities supported by symbolic computation, and a major
thread of such work concerns logical inference, including
mathematical theorem proving. In theorem proving appli-
cations (Irving et al. 2016), one needs to produce sets of
complex structures representing a search state and its pos-
sible extension, and then reduction, as a solution is con-
structed. For example, one needs to select a set of mathe-
matical statements relevant to finding solutions for a given
conjecture, say A(x, Volume6), such as {y 7→ Volume6}/
{A(x, y) ← B(x) ∧ C(y, x) ∧ D(y), A(x, y) ← F (y) ∧
E(x, y)}. One also needs to find, and then apply, a set of
bindings that satisfy at least one of the possible solution
paths, such as x 7→ {5, 8, 1} supposing that F (Volume6)
and D(Volume6) hold, and so do E(1, Volume6), B(5),
B(8), C(Volume6, 5) and C(Volume6, 8). Note that in both
these cases —finding relevant conjectures, and finding bind-
ings that satisfy those conjectures— what is being manipu-
lated is a set of complex sequences representing logical for-
mulas.

While it is conceivable for an algorithm to be trained to
produce a sequence representing the relevant output set, do-
ing so often requires the introduction of some artificial order
over the elements, which is quite unnatural. Moreover, the
complexity of choosing a particular ”good” list order may
be prohibitive, and finding this ”best” order during infer-
ence may be simultaneously challenging and pointless. Re-
cent work has shown that choosing such a ”right” order is
crucial for prediction performance (Vinyals et al. 2016).

In this work, we aim at predicting an output set (of sym-
bols or sequences) that has bounded (but varying) size and
is order-free. We propose a meta-algorithm, called Sequen-
tial Set Generation (SSG), that predicts output elements one
by one until the full set is produced. SSG handles sets of la-
bels as in the standard classification setting, as well as sets
of sequences needed for rule induction, inference, or image
generation. We demonstrate these two capabilities with syn-
thetic data sets and show the empirical success of the pro-
posed algorithm.

Related Work
There are two main areas of work related to the set-valued
output problem. The first is Sequence-to-Sequence models,
which have found widespread application in areas includ-
ing machine translation (Bahdanau et al. 2014; Cho et al.
2014), image captioning (Vinyals et al. 2014), and speech
recognition (Hinton et al. 2012). In these applications, ex-
plicit orderings of input and output sequences are assumed.
However, the choice of a particular ordering affects the accu-
racy of the algorithm. For example, Sutskever et al. (2014a)
report a 5 BLEU point improvement in translation from En-
glish to French, if the order of each English sentence is re-
versed. Moreover, Vinyals et al. (2016) conduct extensive
experiments and demonstrate that the input/output order sig-
nificantly affects performance on a variety of learning tasks,
including language modeling and parsing. They also suggest
ways to handle set inputs (using an attention mechanism and
memory) and set outputs (searching over possible output or-
derings), which can quickly become intractable.

Another related area comprises the multi-label
(Tsoumakas et al. 2009; Zhang and Zhou 2014),
multi-task (Xue et al. 2007; Argyriou et al. 2007;
2008), and structured prediction (Taskar et al. 2005) prob-
lems. Each of these problems produces multiple outputs,
usually in the form of classification results. They can lever-
age information from other labels and share information
to improve the learning of all outputs jointly, and have
been widely used in many machine learning applications.
While these learning methods perform very well in many
applications, they have to explicitly model each output in
large scale classification problems, which quickly becomes
infeasible. In this work, we propose an alternative formu-
lation that makes the problem of set prediction tractable.
More importantly, our formulation is very general, not
limited to classification, and can handle multiple forms of
sets, including sets of sequences.

Recently learning methods for set-valued input problems
have also been investigated (Zaheer et al. 2017), showing
that there is increasing interest in this broadly-applicable
class of problems.

Problem Statement
Let Rd be the input space and S be the label space, which
could possibly be countably infinite. Given N data samples
Xi ∈ Rd, i = 1, . . . , N and corresponding outputs Yi ∈
P (S), where P (S) denotes the power set of S, the objective
is to learn a function f : Rd → P (S) that (approximately)
obeys the constraints inherent in the given data f(Xi) =
Yi. We assume that every output set Yi is finite. Here is an
example:

Example: Let f(X) = {integer Y : Y > X and Y ≤
10}. Given training samples X1 = 1.01, Y1 =
{2, 3, 4, 5, 6, 7, 8, 9, 10}; X2 = 5, Y2 = {6, 7, 8, 9, 10};
and X3 = 9.5, Y3 = {10}, predict the output Y4 when
X4 = 8.7.

This simple example can be extended to many real-life
applications (e.g., semantic matching, graph traversal, and
question answering), where multiple outputs are required to

P(Y|X)

F

XInput

Model

Prob.

λY

Y1:n−1

Y
n

Label

Figure 1: System Overview for SSG. Given an input X , SSG uses
the trained probability to learn λ via a optimizer, which sequen-
tially generates one element of output Yn at a time, given previous
outputs Y1:n−1, until generating the set of all output Y .

fully answer a question.

Base Framework: Sequential Set Generation
To handle the variable sizes of the output sets, we split each
output Yj into individual elements and reformulate the train-
ing data as D = {(X̂i, Ŷi) | i = 1, . . . ,

∑
j |Yj |}, where

each X̂i is an original Xj and Ŷi is an element of Yj . For
testing, the trained classifier should produce the entire set
Yk given a test sample Xk.

If one directly fits a model between the X̂i’s and Ŷi’s, by
using, e.g., logistic regression or neural networks, the loss
for the same X̂i = Xj should be similar between the dif-
ferent Ŷi ∈ Yj , indicating an equal probability for obtaining
one of the correct class labels. These models, however, pro-
duce at most one label (subject to any tie breaking mecha-
nism) but not the entire set. Rather than developing a new
model for our problem, we propose a general framework,
called Sequential Set Generation (SSG), that produces a set
of labels through leveraging any existing classification mod-
els with an additional regularization. The overview of the
system is shown in Figure 1.

The proposed framework is suitable for any machine
learning classifier and can deal with many different set pre-
diction problems. The framework is versatile, and general-
izes beyond standard label predictions to, e.g., sequence pre-
dictions, where each output Ŷi (an element of the output set
Yj), is by itself a sequence. We will discuss the applications
of SSG and its generalization to sequence learning.

The algorithm proceeds as follows. SSG produces set el-
ements sequentially. At each step, we want to find the most
plausible answer that has not appeared before, for which we
use a memory Z to keep track of. Hence, the predictive out-

Algorithm 1 SSG Algorithm Testing Procedure

Input: Testing data X̂ , parameters θ and λ
Z← ∅;Ans← ∅;
N ← number of testing samples X̂
for i = 1 to N do
Y ∗ ← arg minŶ fθ(X̂i, Ŷ)
while Y ∗ is not in Z do
Z← Z ∪ Y ∗

Y ∗ ← Compute Equation (1)
end while
Ans{i} ← Z

end for
Return: Ans

put is computed as:

Y ∗ = arg min
Ŷ

fθ(X̂, Ŷ)

s.t. Ŷ 6∈ Z,

where θ consists of the learned parameters of a model f , and
Z is the set of answers produced so far. To ease computation,
we move the constraint to the objective function through La-
grange relaxation:

Y ∗ = arg min
Ŷ

fθ(X̂, Ŷ) + λIX̂(Ŷ ,Z), (1)

where λ is the coefficient for the memory penalty, and I is
an indicator function that penalizes a potential label of X̂
that has already appeared in the memory Z. One can use
the Hamming loss, for example, to compute I: IX̂(Ŷ ,Z) =∑
i IX̂(Ŷ = Zi).
In essence, SSG utilizes the memory Z to store existing

outputs and repeatedly generates plausible answers to form
the output set, until a new answer repeats itself. SSG incor-
porates the memory penalty term to realize such a sequential
process.

Training and Test for SSG
In what follows, we first consider how SSG works in testing
and then state the method for training.

During Testing: Given a query sample X̂ and a set Z
(which can be either empty or not), Equation (1) produces
the next most plausible label. We repeatedly use (1) until a
stopping criterion is reached. To ensure all the correct out-
put labels are produced, we use the following criterion: if
Y ∗ in (1) exists in Z, SSG terminates and outputs all the el-
ements in Z. Otherwise, SSG stores Y ∗ into Z and compute
another Y ∗. It repeats the procedure to generate correct la-
bels while ensuring the incorrect answers are not produced.
In the end, the stored memory Z should contain the entire
output set. This testing procedure is summarized in Algo-
rithm 1. Note that in order to generate the first element of
the set, we use the first term of (1).

This formulation can also answer questions such as “what
else would be a good class label given data and existing la-
bels.”

During Training: To facilitate the application of different
machine learning models, we would like a general training
procedure that is widely applicable to different loss func-
tions. We have the following training objective:

θ∗, λ∗ = arg min
θ,λ

L(X̂, Ŷ ; θ) + g(λ), (2)

where L(X̂, Ŷ ; θ) denotes the loss function of a machine
learning model, given training data X̂ = {X̂i} and Ŷ =

{Ŷi}, and g is a loss that corresponds to the memory penalty
in (1), which we will elaborate. The function L may be any
loss (e.g., negative log likelihood) that is associated with the
predictive model fθ.

We observe that the training of the two parameters in (2)
can be separated, as the parameter θ for the model f and
the memory penalty parameter λ resides on different terms.
Hence, we first train the first term, equivalent to training
any classifier using their specialized procedures (e.g., ran-
dom forests, SVM, or neural networks).

Then, we compute the memory penalty coefficient λ from
g(λ). We would like the memory term to penalize wrong
predictions while promoting correct ones. While there ex-
ist many choices satisfying this requirement, we use the
max-margin principle; i.e., maximizing the gap between the
stored labels and other correct labels, as well as those be-
tween the stored labels and incorrect labels. We propose the
following training objective for robust estimation of λ:

λ∗ = arg min
λ

N∑
i

[P (Ŷi|X̂i)− P̂i − λ]2

s.t. P (Ŷi|X̂i)− λ ≥ L−
max,X̂i

, ∀i

P (Ŷi|X̂i)− λ ≤ L+

min,X̂i
, ∀i

where P (Ŷi|X̂i) denotes the posterior probability resulting
from the trained model,L−

max,X̂i
(resp.L+

min,X̂i
) is the max-

imal (resp. minimal) posterior probability of the set of neg-
ative (resp. positive) labels for X̂i, and P̂i is the average be-
tween them; i.e., P̂i = (L−

max,X̂i
+ L+

min,X̂i
)/2.

The above equation can be solved by using Lagrangian
relaxation, leading to:

λ∗ = arg min
λ

N∑
i

||P (Ŷi|X̂i)− P̂i − λ||22

− λ+[P (Ŷi|X̂i)− λ− L−
max,X̂i

]

+ λ−[P (Ŷi|X̂i)− λ− L+

min,X̂i
] (3)

where λ+ and λ− are the Lagrangian multipliers of the two
constraints. They can be set to large values to ensure satis-
faction of constraints.

The analytical solution of Equation 3 is that λ∗ is either
on the boundary

min
i

{
P (Ŷi|X̂i)− L−

max,X̂i

}
,

max
i

{
P (Ŷi|X̂i)− L+

min,X̂i

}
,

Algorithm 2 SSG Algorithm Training Procedure

Input: Training data X̂ , training labels Ŷ
θ∗ ← arg minθ L(X̂, Ŷ ; θ);

for each unique X̂i in X̂ do
Y + ← Ŷ [X̂i]
Compute L+

min,X̂i
using Y +

Y − ← Ŷ \Y +

Compute L−
max,X̂i

using Y −

P̂i ← (L−
max,X̂i

+ L+

min,X̂i
)/2

Compute P (Ŷi|X̂i)− P̂i
end for
Choose λ∗ from unconstrained minimizer or boundary
Return: θ∗, λ∗

or is equal to the unconstrained minimizer∑N
i P (Ŷi|X̂i)− P̂i

N

if it is feasible, whichever achieves a lower objective value.
See Algorithm 2.

After training the model parameter θ, we find the posi-
tive label set Y + and negative label set Y − for each training
data X̂i. We compute the posterior probabilities for each el-
ement of Y + and Y −. To follow the max-margin principle,
we compute the loss gap for each X̂i and set the feasible re-
gion to be the intersection of all gaps. Finally, λ is chosen
among the boundary of the feasible region and the uncon-
strained minimizer, whichever is feasible and achieves min-
imum.

In testing, for each xi, we first compute the first term of
the classification loss, obtaining one label yij . We then pe-
nalize the loss of yij by computing Equation (2) and attempt
to obtain another answer yik, if yik has not appeared in the
answers. Repeated application of Equation (2) until replica-
tion in the answers gives the full set of elements.

Stopping Criterion
The while-loop in Algorithm 1 effectively states that if the
computed label is not in the memory Z, then one should
continue producing more. This hard criterion may encounter
problems in practice with noisy data. Here, we propose a
more robust stopping criterion, which does not affect the be-
havior of Algorithm 1 under ideal conditions.

In addition to the memory Z, we maintain a counter Ci
indicating the number of times a label yi is produced. Hence,
the predictive function (1) now becomes:

Y ∗ = arg min
Ŷ

fθ(X̂, Ŷ)+
∑
i

Ci ·λIX̂(Ŷ = Zi). (4)

Let C be the vector of the same dimension as Z. If C
is a vector of all ones, Equation (4) is equivalent to (1).
When the elements of C are greater than 1, the new cri-
terion does not immediately terminate the loop; rather, the
loop continues until a certain percentage of the labels have

What Did You Eat <?> Some Pie Too

<?> I Ate Banana

<?> I Ate Apple

Some Pie Too

I Ate Banana

I Ate Apple

Ans 1:

Ans 2:

Ans 3: <EOS>

<EOS>

λ

<EOS>

Figure 2: System Overview for SSG-S. Compared with SSG, SSG-
S specifically uses a model that can model sequence inputs (such
as encoder-decoder networks) to learn the relationships and use a
optimizer or classifier to learn many different λ’s.

appeared in the memory more than once. In other words, if∑
i Ci ≥ (1 + ρ)|Z|, where ρ is a predefined value with

0 ≤ ρ < 1, Algorithm 1 stops. In a well-trained system,
the new stopping criterion will always yield at least one of
the true positive labels with a lower objective value than the
negative labels. With a judicious choice of ρ, the system be-
comes more robust against noise.

Sequential Set Generation for Sequences
The preceding section proposes a method when the output is
a set, such as a set of class labels. In many applications, es-
pecially natural language problems, however, the elements
of the output set are sequences (e.g., sentences), which by
themselves are ordered lists comprising sub-elements (e.g.,
words). In this case, the SSG algorithm proposed so far can-
not directly handle sequences, because sequence generation
methods (e.g., sequence-to-sequence models (Bahdanau et
al. 2014; Cho et al. 2014)) are iterative and there is no loss
associated with the entire sequence. Penalizing the entire se-
quence with a single λ is not sensible.

We would like to extend SSG to outputs that are sets of
sequences. The proposed extension is called SSG-S, and
its overall architecture is shown in Figure 2. The key idea
is to penalize each sub-element, instead of the entire se-
quence, from repeating itself at each location of the output.
To achieve so, we need a separate λi for each output loca-
tion. Let ~Y be one sequence output and let ~Yi be an element
within the sequence. Given previously generated elements

~Y1:i−1, we generate the next element ~Yi as

~Y ∗
i = arg min

~Yi

fθ(X̂, ~Yi|~Y1:i−1) + λiI(~Yi,Zi), (5)

where Zi contains all the i-th elements of the stored out-
puts. The first term of (5) is a typical sequence-to-sequence
(seq2seq) model, which must be conditioned on the past out-
puts ~Y1:i−1. At each step, it produces a new element given
the already produced partial sequence. The second term pe-
nalizes the elements that have appeared in the stored output.
For each location of the sequence, the penalty is different.

Similar to the preceding section, the model parameter θ
and the penalty parameters Λ = {λi} are trained by using
the objective

θ∗,Λ∗ = arg min
θ,Λ

L(X̂, Ŷ ; θ) + g(Λ),

where (X̂, Ŷ) denotes the training data and L is any loss
in a seq2seq model that comes with the predictive function
fθ in (5). The training of θ is standard. The second term
g(Λ) is used to train the penalty parameters Λ = {λi}. For
each location i in the output sequence, λi is trained by using,
again, the max-margin principle through

λ∗i = arg min
λi

N∑
j

[P (~Yj,i|X̂j , ~Yj,1:i−1)− P̂j,i − λi]2

s.t. P (~Yj,i|X̂j , ~Yj,1:i−1)− λi ≥ L−
max,X̂j ,i

, ∀j

P (~Yj,i|X̂j , ~Yj,1:i−1)− λi ≤ L+

min,X̂j ,i
, ∀j.

The solution is similar to that in the preceding section, for
each i.

The training and testing algorithms are shown in Algo-
rithms 3 and 4, respectively. The training of SSG-G is sim-
ilar to SSG, and the only difference is that the λ’s are com-
puted for each token level in a sequence, resulting in a total
of max |~Y | number of λ. The notation max |~Y | represents
the maximal allowable sequence length in any of the out-
puts.

SSG-S has noticeable differences in testing from SSG.
Specifically, SSG-S does not generate one sequence in its
entirety before generating the next one. On the contrary,
it generates all possible answers for each position in a se-
quence. This approach allows efficient data structures if de-
sired, such as a Trie-tree, to keep track of all the sequences
in the set, although it is also capable of sequentially pro-
ducing one sequence at a time. For each input xi and at each
output position j, SSG-S monitors the generated setA of se-
quences so far (each with a length j− 1). For each sequence
Ak in A, SSG-S generates all possible tokens ~Yj at position
j by repeatedly finding the most probable solution and pe-
nalizing it. In other words, the testing procedure is similar to
that of SSG, except for the explicit consideration of all the
partial sequence Ak. Then, SSG-S appends each token in ~Yj
to the corresponding Ak, producing new sequences Ak with
length j. Note that the previously generated answers in Ak
are used as context in the overall generation process. It can

Algorithm 3 SSG-S Algorithm Training Procedure

Input: Training data X̂ , training sequences Ŷ
θ∗ ← arg minθ L(X̂, Ŷ ; θ);

for each unique X̂i in X̂ do
Y + ← Ŷ [X̂i]

Y − ← Ŷ \Y +

for j = 1 to max |~Y | do
Compute L+

min,X̂i,j
using Y +

Compute L−
max,X̂i,j

using Y −

P̂i,j ← (L−
max,X̂i,j

+ L+

min,X̂i,j
)/2

Compute P (Ŷi,j |X̂i, ~Yi,1:j−1)− P̂i,j
end for

end for
for j = 1 to max |~Y | do

Choose λ∗j from unconstrained minimizer or boundary
end for
Return: θ∗, {λ∗j}

be achieved by feeding Ak into the decoder as input for the
next token, a procedure similar to “teacher forcing” in train-
ing seq2seq. With this gradual expansion of the answer set
A, SSG-S produces all the feasible sequences.

Deep Sequential Set Generation
While SSG-S handles short sequences quite well, in prac-
tice data can be unbalanced and have increasing complexity
for long sequences and large vocabulary. The loss for dif-
ferent correct outputs in a set can hence substantially differ,
depending on the label frequencies at each position of the se-
quence. This phenomenon could lead to a problem that one
single λ, or even a fixed set of λ’s, cannot distinguish the
positive and negative sets in different contexts. To remedy
this difficulty, we introduce a deep learning-based approach
to distinguish the positive classes from the negative ones at
each position j in the sequence, replacing the learning of
all λ’s as discussed in the preceding section. In essence, we
use a neural network to classify positive and negative tokens
in the sequence. Specifically, we still train a seq2seq model
as discussed previously. However, now we feed the loss se-
quence in the final output layer into another neural network,
which we call the λ-network. λ-network classifies each pos-
sible label from the original network into either positive or
negative class at that token value. During training, the λ-
network is learned by taking the loss from the decoder logits
as inputs, and produces a binary label (indicating whether
each label is a positive class) at position j. We consider both
recurrent neural networks (RNN) and convolutional neural
networks (CNN) as the classifier. Their structures are shown
in Figure 3.

For the RNN λ-optimizer, we use another seq2seq model.
We feed the decoder logits and the position ID of the desired
target sequence as an input to the encoder part of the RNN,
and then use the binary labels on each logit as training target
for the decoder. For the CNN λ-optimizer, we feed decoder

P1

P2

Pk... <?> ...

...

y0

y1

yk

y0

y1

Encoder Decoder

RNN Optimizer

a)

Conv1D

MaxPool

Dense

Dense

Sigmoid

CNN Optimizer

b)

[ID, k, , , . . .]P1 P2 Pk

yk

ID

Figure 3: Architectures of RNN and CNN λ-Optimizer, as a part of SSG-S. Instead of learning λ’s directly, a neural-network-based classifier
is used. Subfigure (a) shows the RNN architecture, and (b) shows the CNN architecture used in the experiments.

logits and the position ID j as well as the logit ID k, and
use one 1D-convolution and max pooling layers, multiple
densely connected layers, and one sigmoid layer. The output
of CNN is the binary label of k-th element of the logit. Note
that the λ-network only replaces the learning of λ in Algo-
rithm 3 and Equation (5) of Algorithm 4. The rest of the
training and testing algorithms remain unchanged. We call
the methods respectively SSG-RNN and SSG-CNN. Note
that SSG-S along with SSG-RNN and SSG-CNN can both
be used for the singleton sets, which can be considered as
sequences of length 1.

Experiments
We conduct experiments to evaluate the proposed algorithms
on various applications, comparing against existing base-
lines if possible.

Benchmark Dataset
While it is not the intended application of the proposed se-
quential set generation algorithms, SSG can be applied to
multi-label problems. We compare SSG with standard multi-
label techniques on the YEAST and SCENE dataset, both of
which are publicly available. YEAST is in the domain of bi-
ology. It contains over 2000 data samples and has the feature
size of 103. The unique label number is 14, and the average
cardinality is 4.2. The SCENE data has 2407 samples, 294
features, and 6 unique labels.

We compare with the standard sigmoid network (Grodz-
icki et al. 2008), where each possible label is considered as
a binary classification problem. For fair comparison, we use
the same base architecture for both the sigmoid network and
deep SSG models, and take the sigmoid output as the input
to λ-optimizer in SSG. Since the baseline consists of deep
models, we only compare deep versions of SSG. We do a
train-test split of 70 − 30, and use the standard F1 score to
measure the accuracy performance of different methods. We
then take the mean, mF1, as the accuracy score to compare
the ground truth label set and the learned set. The higher the
mF1 score, the better.

Table 1: Mean F1 Accuracy Result on Benchmark Dataset of Vari-
ous Algorithms. SSG-CNN shows the best performance.

Multi-Label SSG-RNN SSG-CNN
YEAST 0.430 0.402 0.658
SCENE 0.455 0.378 0.605

As one can see from Table 1, SSG substantially outper-
forms the simple sigmoid network for multi-label classifi-
cation. Although one might use different or more complex
architectures than the sigmoid network, we believe the rel-
ative improvement would be consistent (which supported in
the following more complex tasks).

Table 2: Experiment Accuracy Results of Various Algorithms on Two Complex Reasoning Tasks involving Set Output and Set of Sequences.
Mean F1 score (mF1) and mean Edit Distance (mED) are Used.

Metric Multi-Label SSG-S SSG-RNN SSG-CNN
Task 1 mF1, the higher the better 0.64 0.19 0.42 0.70
Task 2 mED, the lower the better N/A 8.10 3.75 2.00

Algorithm 4 SSG-S Algorithm Testing Procedure

Input: Testing data X̂ , parameter θ and Λ = {λj}
Ans← ∅;
N ← number of testing samples X̂
for i = 1 to N do
A← ∅;
for j = 1 to max |~Y | do
Z← ∅;
for each element Ak in A do
~Yj = ∅
while ~Yj is not in Z do
~Yj ← Compute Equation (5)

end while
Ak ← Append each element ~Y to Ak

end for
end for
Ans{i} ← Z

end for
Return: Ans

Synthetic Datasets
We conduct two experiments to compare the proposed meth-
ods: a number problem that predicts sets, and another prob-
lem that predicts a set of sequences. We first describe each
problem, with the aim of tackling complex reasoning tasks
that traditional machine learning methods cannot handle.
Task 1: Predicting Sets. In this task, the input is a positive
integer read as a string of digits. Let the leading digit be
m. The output is the set of m leading digits of the input
string, with duplicates counted only once. For example, if
X = 33874, then Y = {3, 8}. We call this Task-1. We again
use mF1 as the accuracy score to compare the ground truth
label set and the learned set.
Task 2: Predicting Set of Sequences. In the second task,
the input is a digit string of length 20. Let the string be
evenly split into two halves. The first 10 digits are grouped
into five pairs: (s1, e1), . . . , (s5, e5); and the last 10 digits
constitute a string a. The output set consists of (at most)
5 subsequences of a: a[s1, e1), . . . , a[s5, e5). Whenever
si ≥ ei for some i, the substring is empty and hence it
does not count as an element of the output set. Similar to
the first data set, duplicate strings are removed. For exam-
ple, ifX = 00490000349172105519, then Y = {2, 10551}.
The elements of Y are substrings a[4, 9) and a[3, 4), where
a = 9172105519. Note that 0-based indexing is used here.
Treated as a multi-label classification problem, the number
of classes is 1010, which is impossible to handle. We call

this Task-2. We use mean edit distance, mED, as the ac-
curacy score to compare the ground truth set of sequences
and the learned set of sequences. For ground truth set and
learned set, we compute ED distance between every pair
of sequences and divided by the total number of pairs. The
lower the score mED, the better.
System Architecture: Since both tasks have sequence in-
puts, we use an encoder-decoder architecture (Sutskever et
al. 2014b). We use a one layer LSTM with 60 encoder hid-
den units and 120 decoder hidden units. An embedding layer
of size 60 is used for appropriate discrete inputs and outputs.
We use Adam optimizer (Kingma and Ba 2014) with a batch
size of 15, and cross entropy as loss function. We generate
1000 samples and randomly split 70% as training and the
rest as testing.

We compare three methods SSG-S, SSG-RNN, and SSG-
CNN with the baseline multi-label sigmoid network for
these two tasks. Table 2 shows the results. In both tasks, we
can see that SSG-CNN is the best method, outperforming
the second best SSG-RNN by a large margin (28% mF1
and 1.75 mED). Moreover, the neural-network-based SSG-
CNN and -RNN outperform SSG-S, showing that it is very
important to consider the complexity of reasoning tasks.
Note that we did not tune or search for the best hyper-
parameters and it is reasonable to assume that these perfor-
mance figures can be further improved. SSG-CNN also out-
performs the multi-label method on Task 1, and the multi-
label method is not applicable to Task 2 due to the extreme
modeling complexity.

Conclusion

We proposed a general framework, SSG, along with three
variants, designed to solve set-valued output problems. We
developed a sequential generation approach that can effi-
ciently learn set relationships from data, as demonstrated on
benchmark and reasoning tasks. Experiments show that the
sequential generation procedure can improve performance
on traditional multi-label tasks and can handle more com-
plex sets such as set of sequences, where traditional methods
are not readily applicable.

Further work will include theoretical analysis on the rela-
tionships between the set size and the learning performance,
investigation on better training methods for SSG, and testing
on a wider variety of set components, including sets of sets.
We believe set-valued outputs have many applications such
as theorem proving in AI and are foundational for systems
that perform reasoning in particular, making their general
treatment an important research direction to address.

References
Andreas Argyriou, Theodoros Evgeniou, and Massimiliano
Pontil. Multi-task feature learning. In Advances in neural
information processing systems, pages 41–48, 2007.
Andreas Argyriou, Theodoros Evgeniou, and Massimiliano
Pontil. Convex multi-task feature learning. Machine Learn-
ing, 73(3):243–272, 2008.
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural machine translation by jointly learning to align and
translate. CoRR, abs/1409.0473, 2014.
Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using RNN encoder-
decoder for statistical machine translation. CoRR,
abs/1406.1078, 2014.
Rafał Grodzicki, Jacek Mańdziuk, and Lipo Wang. Im-
proved multilabel classification with neural networks. In
International Conference on Parallel Problem Solving from
Nature, pages 409–416. Springer, 2008.
Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent
Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian Kings-
bury. Deep neural networks for acoustic modeling in speech
recognition. Signal Processing Magazine, 2012.
Geoffrey Irving, Christian Szegedy, Alexander A Alemi,
Niklas Eén, François Chollet, and Josef Urban. Deepmath-
deep sequence models for premise selection. In Advances in
Neural Information Processing Systems, pages 2235–2243,
2016.
Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.
Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Se-
quence to sequence learning with neural networks. CoRR,
abs/1409.3215, 2014.
Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence
to sequence learning with neural networks. In Advances in
neural information processing systems, pages 3104–3112,
2014.
Ben Taskar, Vassil Chatalbashev, Daphne Koller, and Car-
los Guestrin. Learning structured prediction models: A
large margin approach. In Proceedings of the 22nd inter-
national conference on Machine learning, pages 896–903.
ACM, 2005.
Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vla-
havas. Mining multi-label data. In Data mining and knowl-
edge discovery handbook, pages 667–685. Springer, 2009.
Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. Show and tell: A neural image caption gen-
erator. CoRR, abs/1411.4555, 2014.
Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Or-
der matters: Sequence to sequence for sets. In International
Conference on Learning Representations (ICLR), 2016.
Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krish-
napuram. Multi-task learning for classification with dirich-

let process priors. Journal of Machine Learning Research,
8(Jan):35–63, 2007.
Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Ruslan R Salakhutdinov, and Alexander J
Smola. Deep sets. In Advances in Neural Information Pro-
cessing Systems, pages 3394–3404, 2017.
Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-
label learning algorithms. IEEE transactions on knowledge
and data engineering, 26(8):1819–1837, 2014.

