
ACCELERATING TRAINING AND INFERENCE OF GRAPH NEURAL
NETWORKS WITH FAST SAMPLING AND PIPELINING

Tim Kaler * 1 2 Nickolas Stathas * 1 2 Anne Ouyang * 1 2 3 Alexandros-Stavros Iliopoulos 1 2 Tao B. Schardl 1 2

Charles E. Leiserson 1 2 Jie Chen 2 3

ABSTRACT
Improving the training and inference performance of graph neural networks (GNNs) is faced with a challenge
uncommon in general neural networks: creating mini-batches requires a lot of computation and data movement
due to the exponential growth of multi-hop graph neighborhoods along network layers. Such a unique challenge
gives rise to a diverse set of system design choices. We argue in favor of performing mini-batch training with
neighborhood sampling in a distributed multi-GPU environment, under which we identify major performance
bottlenecks hitherto under-explored by developers: mini-batch preparation and transfer. We present a sequence
of improvements to mitigate these bottlenecks, including a performance-engineered neighborhood sampler, a
shared-memory parallelization strategy, and the pipelining of batch transfer with GPU computation. We also
conduct an empirical analysis that supports the use of sampling for inference, showing that test accuracies are not
materially compromised. Such an observation unifies training and inference, simplifying model implementation.
We report comprehensive experimental results with several benchmark data sets and GNN architectures, including
a demonstration that, for the ogbn-papers100M data set, our system SALIENT achieves a speedup of 3× over a
standard PyTorch-Geometric implementation with a single GPU and a further 8× parallel speedup with 16 GPUs.
Therein, training a 3-layer GraphSAGE model with sampling fanout (15, 10, 5) takes 2.0 seconds per epoch and
inference with fanout (20, 20, 20) takes 2.4 seconds, attaining test accuracy 64.58%.

1 INTRODUCTION

Graph neural networks (GNNs) have emerged as an im-
portant class of methods for leveraging graph structures in
machine learning (Li et al., 2016; Kipf & Welling, 2017;
Hamilton et al., 2017; Veličković et al., 2018; Xu et al.,
2019; Morris et al., 2019). The graph structure encodes
dependencies in data representations across layers of the
GNN, injecting an effective relational inductive bias into the
neural network design. GNNs have been shown to be suc-
cessful in (semi-)supervised, unsupervised, self-supervised,
and reinforcement learning (Kipf & Welling, 2017; Hu et al.,
2020b; Ma & Chen, 2021; Mirhoseini et al., 2021) and have
been applied in a number of domains including commerce,
finance, traffic, energy, and pharmacology (Gilmer et al.,
2017; Li et al., 2018; Ying et al., 2018; Weber et al., 2019;
Shang et al., 2021). As graph sizes continue to grow rapidly,
there is a pressing need for efficient training and inference
to facilitate further study and deployment of GNNs.

*Equal contribution 1MIT CSAIL 2MIT-IBM Watson AI
Lab 3IBM Research. Correspondence to: Jie Chen <chen-
jie@us.ibm.com>.

Proceedings of the 5 th MLSys Conference, Santa Clara, CA, USA,
2022. Copyright 2022 by the author(s).

One unique challenge to GNNs is the exponential increase
of neighborhood size with respect to the number of network
layers (i.e., hops along the input graph) (Chen et al., 2018).
In a typical neural-network training scenario with stochastic
gradient descent methods, e.g., Adam (Kingma & Ba, 2015),
computations are organized around mini-batches: a mini-
batch of training data is fed to the network to calculate
the corresponding loss and gradient, which is then used to
update the model parameters. Similarly, for inference, input
data are processed in successive mini-batches. In GNNs,
where the representation of a data point (i.e., graph node)
depends on those of its neighbors, processing a mini-batch
may lead to a prohibitively large expanded neighborhood.
Apart from the computational cost this incurs, the features
and intermediate representations of nodes in the expanded
neighborhood also consume substantial memory. When
using accelerators such as GPUs, the neighborhood data
size can in fact exceed the accelerator memory capacity.
To mitigate this issue, neighborhood sampling is a popular
remedy, sometimes even a necessary rescue (Hamilton et al.,
2017; Chen et al., 2018; Ying et al., 2018; Zou et al., 2019;
Zeng et al., 2020; Ramezani et al., 2020; Dong et al., 2021).

In this work, we focus on GNNs with neighborhood sam-
pling on GPUs and identify batch preparation and transfer

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

as major bottlenecks in commonly used GNN frameworks,
e.g., PyTorch-Geometric (PyG) (Fey & Lenssen, 2019) and
the Deep Graph Library (DGL) (Wang et al., 2019). Batch
preparation entails expanding the sampled neighborhood
for a mini-batch of nodes and slicing out the feature vec-
tors of all involved nodes. The corresponding subgraph and
feature vectors must then be transferred to the GPUs, since
the entire graph and feature data are often too large to fit in
GPU memory. Somewhat surprisingly, batch preparation
and transfer take substantially longer than the core GNN
training operations (loss, gradient, and model parameter
computation). The latter are computed in the GPU and ben-
efit from highly optimized libraries (e.g., BLAS (Lawson
et al., 1979) and autograd (Paszke et al., 2017)). To fully
reap their benefits and maintain high GPU utilization, the
throughput of batch preparation and transfer needs to be
increased substantially. Scaling up to use multiple GPUs
makes the need for improvement even greater.

To resolve this challenge, this work presents three perfor-
mance optimizations which are broadly applicable to cur-
rent GNN architectures and frameworks. The first is a fast
neighborhood sampler. We show a principled approach to
exploring the space of applicable optimizations and identify
settings which perform well across CPU architectures. The
second is shared-memory parallelization for batch prepara-
tion to circumvent CPU utilization and memory bandwidth
bottlenecks present in PyG and DGL. The third is pipelined
batch transfer and computation to increase GPU utilization.

The effect of these optimizations is shown in Figure 1, which
illustrates the timeline of mini-batch computations across
CPU and GPU resources for a standard PyTorch workflow
with and without the optimizations. The three optimizations
respectively improve the CPU throughput of neighborhood
sampling and expansion (green boxes in Figure 1); reduce
slicing overhead (yellow boxes); and enable overlapped
GPU transfers and computations (red and blue boxes). With
a reasonably high CPU-to-GPU ratio, as is often the case
in modern computing clusters, these optimizations almost
eliminate GPU idle time, enabling fast training at a speed
commensurate with that of the core training operations.

Additionally, this work studies inference. Although trade-
offs among accuracy, speed, and memory requirements have
been studied extensively for training, they are relatively
under-studied for inference. We conduct an empirical analy-
sis that indicates that neighborhood sampling in inference
sacrifices prediction accuracy only marginally. This sug-
gests that mini-batch inference with neighborhood sampling
is a viable alternative to layer-wise inference with full neigh-
borhoods, yielding accuracy comparable to the latter but
with a much lower memory footprint. As an added ad-
vantage, model architecture code can be reused between
training and inference, simplifying development.

Our system, SALIENT, addresses and alleviates bottlenecks
in SAmpling, sLIcing, and data movemENT. SALIENT’s
optimizations are all done over standard GNN code written
in PyG, retaining the neural network module, the optimizer,
and the distributed data-parallel (DDP) framework for train-
ing on multiple machines. This implementation minimizes
adoption barriers for developers, who can persist with their
familiar deep learning frameworks and focus on modeling
and applications (e.g., experimenting with neural architec-
tures), without being distracted by new modules and APIs.

We highlight the following contributions:

1. A careful analysis of GNN training codes operating on
large graphs, identifying performance bottlenecks unique
to GNNs in batch preparation and data transfer.

2. Design of an efficient batch preparation system called
SALIENT that alleviates GNN training bottlenecks with
broadly applicable optimizations to neighborhood sam-
pling and GPU training workflows. We show that these
improvements lead to near-optimal GPU utilization.

3. An implementation of SALIENT, whose compatibil-
ity with standard PyG code facilitates use by GNN re-
searchers, developers, and practitioners.

4. An empirical study that suggests neighborhood sampling
in inference need not sacrifice accuracy, while reducing
memory usage and simplifying code development.

5. An evaluation of the end-to-end training performance of
SALIENT on three benchmark data sets and four GNN
architectures in both single- and multi-GPU settings. For
the largest data set, ogbn-papers100M, with a 3-layer
GraphSAGE model and sampling fanout (15, 10, 5), we
show a training speedup of 3× over a standard PyG im-
plementation run on one GPU and a further 8× speedup
on 16 GPUs. Therein, training takes 2.0 seconds per
epoch and inference with sampling fanout (20, 20, 20)
takes 2.4 seconds, attaining test accuracy 64.58%.

2 BACKGROUND

2.1 Graph neural networks

The class of message passing neural networks (MPNNs)
(Gilmer et al., 2017) encompasses a large number of GNNs.
Let G = (V,E) be a graph with node set V and edge set
E. Let X ∈ Rn×f be the feature matrix whose rows are
node feature vectors (denoted by xv ∈ Rf for node v).
Let ` = 1, . . . , L denote the layer index and N (v) = {u |
(u, v) ∈ E} denote the one-hop neighborhood of v. MPNNs
are based on the following update rule:

h`
v = UPD`

(
h`−1
v , AGG`

(
{h`−1

u | u ∈ N (v)}
))

, (1)

where h`
v is the layer-` representation of v, AGG` is a set

aggregation function, and UPD` is the update function. Ini-

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

B1

B1

B3

B3

B5

B5

B2 B3 B5

B2

B2

B4

B4

B6

B6

B1 B4 B6CPU worker 1

CPU worker 2

CPU main proc A

GPU A data bus

GPU A compute

GPU B data bus

GPU B compute

B1 B3 B5

……

……

……

……

……

……

CPU main proc B B2 B4 B6 ……

……

(a) Standard PyTorch workflow.

B1

B1

B3

B3

B5

B5

B7

B3

B2

B6

B4

B9

B8

B2

B2

B4

B4

B6

B6

B8

B1 B5 B7CPU worker 1

CPU worker 2

CPU worker 3

GPU A data bus

GPU A compute

GPU B data bus

GPU B compute

……

……

……

……

……

……

……

sampling

slicing & pinning

host-to-device
transfer

training &
communication

(b) Our system SALIENT.

Figure 1. Illustration of mini-batch
progress per training epoch: com-
parison between a standard Py-
Torch workflow and SALIENT,
the optimized system detailed in
this paper. The x-axis represents
elapsed time. The “Bi” blocks re-
fer to operations with the i-th mini-
batch; different operations with
the same batch are distinguished
by color. In modern computing
clusters, the number of available
CPU cores is often much greater
than the number of GPUs, hence
CPU workers may prepare batches
in parallel to try and saturate the
GPUs. With respect to Listing 1,
green boxes correspond to lines 1–
2, yellow boxes to lines 3–4, or-
ange boxes to lines 5, and blue
boxes to lines 6–8.

tially, h0
v = xv. After L layers of updates, hL

v becomes the
final representation. Overall, v’s layer-` representation h`

v

depends on the previous-layer representations of v and its
neighbors.

GNNs differ in their design of the two functions in (1). For
example, in GraphSAGE (Hamilton et al., 2017), AGG` is a
mean, LSTM, or pooling operator, and UPD` concatenates
the two arguments and applies a linear layer. In GIN (Xu
et al., 2019), AGG` is the sum of {h`−1

u } and UPD` is the sum
of its arguments followed by an MLP. In GAT (Veličković
et al., 2018), AGG` is the identity and UPD` computes h`

v as
a weighted combination of W `−1h`−1

u for all u ∈ {v}∪Nv ,
where the weights are attention coefficients and W `−1 is
the parameter matrix of the layer.

2.2 Neighborhood sampling

From (1), one sees that computing v’s representation re-
quires recursively inquiring neighbors, which may incur
a prohibitively large L-hop neighborhood; similarly for a
mini-batch of nodes. Restricting the neighborhood size
via sampling proves to be an effective training strategy for
improving memory and time efficiency. Current sampling
approaches generally fall under three categories: node-wise
sampling, layer-wise sampling, and subgraph sampling.

Node-wise sampling approaches, including Graph-
SAGE (Hamilton et al., 2017) and PinSage (Ying et al.,
2018), modify the neighborhood N (v) in (1) by taking a
random subset containing at most d neighbors, sampled
without replacement. It is typical to specify a different
sample size (called fanout), d`, for each layer `. The fanout

parameters serve as an upper bound on the effective degree
during neighborhood expansion.

Layer-wise sampling approaches collect the neighbors of
all nodes in a mini-batch and then sample the entire neigh-
borhood for the batch. Sampling proceeds recursively layer
by layer. Representative methods are FastGCN (Chen et al.,
2018) and LADIES (Zou et al., 2019). These approaches
impose a nontrivial sampling distribution over the neigh-
borhood and rescale the neighbor representations through
dividing them by their respective sampling probability, to
preserve unbiasedness before activation. Nonlinear activa-
tion functions will destroy unbiasedness anyway, but train-
ing convergence results can still be established based on
asymptotic consistency (Chen & Luss, 2018).

Subgraph sampling approaches, such as Cluster-GCN (Chi-
ang et al., 2019) and GraphSAINT (Zeng et al., 2020), sam-
ple a connected subgraph and compute mini-batch loss re-
stricted to this subgraph.

There exist other types of sampling-related approaches as
well. Authors of LazyGCN (Ramezani et al., 2020) study
the promise of lowering sampling frequency and propose a
“lazy” sampling schedule that is applicable to all of the above
categories. Inspired by LazyGCN, authors of GNS (Dong
et al., 2021) further propose caching a random but suffi-
ciently large subgraph, from which node-wise sampling is
performed for each training epoch.

2.3 GNN training systems

At the system level, due to the unique characteristics of
GNNs, many efforts have been made to develop training

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

systems scalable to large graphs, based on either mainstream
deep learning frameworks or more specialized systems.

Roc (Jia et al., 2020) and DeepGalois (Hoang et al., 2021)
are examples of the latter, both of which perform full-batch
training as opposed to mini-batch. Also perform full-batch
training are NeuGraph (Ma et al., 2019), which is based on
TensorFlow (Abadi et al., 2015); and FlexGraph (Wang et al.,
2021a), Seastar (Wu et al., 2021), and GNNAdvisor (Wang
et al., 2021b), which are based on PyTorch (Paszke et al.,
2019). On the other hand, DistDGL (Zheng et al., 2020),
Zero-Copy (Min et al., 2021), GNS (Dong et al., 2021), and
P 3 (Gandhi & Iyer, 2021) are based on PyTorch and the
DGL module and all perform mini-batch training. In the
referenced publications, the authors report results on multi-
ple machines (CPUs only), single machines with multiple
GPUs, or single machines with a single GPU. Our system,
SALIENT, is based on PyTorch and the PyG module and
performs mini-batch training. We demonstrate results on
a single machine with a single GPU as well as multiple
machines with multiple GPUs each.

3 PERFORMANCE CHARACTERISTICS OF
NEIGHBORHOOD SAMPLING IN GNNS

This section summarizes our investigation into the perfor-
mance bottlenecks in standard implementations of GNNs in
PyTorch. Our findings underscore the gap between hardware
capabilities and actualized performance and motivate the
optimizations in SALIENT, which are detailed in Section 4.

For this performance study, we use as reference a standard
3-layer GraphSAGE architecture implemented in PyG, run-
ning on a 20-core Intel Xeon Gold 6248 CPU and a single
NVIDIA Volta V100 GPU. At a high level, the baseline
implementation for our study includes the following opera-
tions, with corresponding pseudocode in Listing 1:

1. Batch preparation: Sample a multi-hop neighbor-
hood for a given mini-batch, and slice features and
label tensors to obtain subtensors for nodes in the sam-
pled neighborhood. (Lines 1–4)

2. Data transfer: Transfer the prepared batch (a sampled
neighborhood and sliced tensors) to the GPU. (Line 5)

3. GPU training: Perform model evaluation, back prop-
agation, and model update on the GPU. (Lines 6–8)

The baseline PyG code was written to be a good representa-
tion of a performance-tuned code using standard libraries. It
includes the following conventional optimizations: (i) row–
major representation of the feature matrix to improve CPU
cache efficiency in slicing operations; (ii) CPU-to-GPU
transfers via pinned memory to enable asynchronous trans-
fer with direct memory access; and (iii) half-precision float-
ing point for feature vectors in host memory to reduce band-
width pressure in slicing and CPU-to-GPU data transfers

1 ns = NeighborSampler(G, fanouts, batch_sz)
2 for Gs, ids in ns: # A sampled subgraph Gs
3 xs, ys = x[ids],y[ids[:batch_sz]] # Slice
4 batch = (xs, ys, Gs)
5 batch = batch.to(GPU) # Transfer to GPU
6 optimizer.zero_grad() # Train on GPU
7 loss_fn(model(batch), ys).backward()
8 optimizer.step()

Listing 1. Reference pseudocode for a standard PyTorch imple-
mentation of GNN training with neighbor sampling on graph G
with node features x and labels y.

Table 1. Per-operation performance breakdown of the baseline PyG
training code. Reported runtimes correspond to blocking or non-
overlapped computations among the steps outlined in Listing 1.
GNN: 3-layer GraphSAGE with fanouts (15,10,5), hidden-layer
feature dimensionality 256, and mini-batch size 1024. Data sets
are introduced in Section 6.

Data Set Epoch Batch Prep. Transfer Train (GPU)

time time % time % time %

arxiv 1.7s 1.0s 58% 0.3s 15% 0.5s 27%
products 8.6s 4.0s 46% 2.2s 26% 2.4s 28%
papers 50.4s 18.6s 37% 17.9s 35% 13.9s 28%

Table 2. Breakdown of an ogbn-products epoch batch preparation
time for PyG and SALIENT with P threads on 20 cores. Note that
for PyG Both column, sampling and slicing occur asynchronously,
each using P threads (thus 2P in total). SALIENT uses only P
threads.

P PyG SALIENT

Sampling Slicing Both Sampling Slicing Both

1 71.1s 7.6s 72.7s 28.3s 7.3s 35.6s
10 11.4s 1.6s 11.5s 3.3s 0.8s 4.1s
20 7.2s 1.2s 7.3s 1.9s 0.6s 2.5s

(GPU training computations are still done in single pre-
cision). In our experiments, these optimizations yield a
roughly 2× speedup per epoch over a naive PyG imple-
mentation of Listing 1 or about 1.5× over a reference DGL
benchmark.1 The resulting code, hereafter referred to sim-
ply as “PyG,” serves as the baseline for our performance
evaluations and the starting point for SALIENT.

3.1 Observed per-operation performance

We benchmarked the per-epoch runtime of the baseline PyG
code by recording the time required to execute each opera-
tion summarized in Listing 1. Our benchmarks show that
batch preparation and CPU-to-GPU data transfers severely
bottleneck training performance. Table 1 provides a per-

1GitHub repo: dglai/dgl-0.5-benchmark.

https://github.com/dglai/dgl-0.5-benchmark

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

formance breakdown on three publicly available data sets:
ogbn-arxiv, ogbn-products, and ogbn-papers100M (see Sec-
tion 6 for details). The reported runtime for each operation
is the amount of time spent on it from the perspective of the
main thread executing the Python code. In other words, we
report the blocking time for each operation, which is lower
than its individual runtime due to computation overlap (see
Figure 1(a)). Across all three data sets, only about 28% of
the time is spent on GPU training. Most of the time is spent
preparing batches and transferring data to the GPU.

3.2 Performance analysis of batch preparation

Batch preparation comprises two steps: (a) neighborhood
sampling to obtain the mini-batch induced subgraph, and
(b) slicing the feature and label tensors to extract the parts
that correspond to the sampled subgraph. Both steps are
parallelized: sampling uses a PyTorch DataLoader and mul-
tiprocessing, and slicing uses multiple OpenMP threads in a
single process. The relative performance of sampling and
slicing is not easily obtained from per-line measurements,
as sampling is performed asynchronously with the main
execution thread. As such, we investigate the performance
of sampling and slicing using separate targeted benchmarks.

Table 2 breaks down the performance of sampling and slic-
ing on ogbn-products for PyG. Batch preparation time is
dominated by the neighborhood sampling time, requiring
7.2 seconds with 20 worker processes. Slicing, by com-
parison, takes just 1.2 seconds when parallelized with 20
OpenMP threads using PyTorch’s parallel slicing code.

Even a conservative analysis of the performance breakdown
in Tables 1 and 2 implies that neighborhood sampling is a
substantial bottleneck in GNNs. For PyG to perform sam-
pling at a pace that can keep a single GPU busy and hide
sampling latency on ogbn-products, sampling throughput
must be improved by at least 3×. When using multiple
GPUs per machine, the required speedup is higher. Sections
4.1 and 4.2 discuss how SALIENT improves the perfor-
mance of sampling and slicing to alleviate this bottleneck
and achieve substantially higher batch preparation through-
put, as previewed in the SALIENT columns of Table 2.

3.3 Data transfer performance

Data transfer from CPU to GPU is another bottleneck, ac-
counting for 15–35% of the epoch time in the benchmarks
of Table 1. Data transfer generally takes longer as expanded
neighborhoods get larger, as seen with ogbn-papers100M,
or as feature dimensionality increases.

There is potential to improve transfer time without also re-
ducing the amount of transferred data any further. During
a typical epoch with ogbn-papers100M, a total of 164GB
are transferred from CPU to GPU. The peak DMA CPU-to-

GPU transfer rate on our machine is 12.3GB/s. Per Table 1,
the baseline implementation attains an effective data trans-
fer rate of 9.2GB/s or about 75% of peak. One can achieve
near-optimal data transfer rates with pipelining and the elim-
ination of redundant round-trip communications. These
optimizations are discussed in Section 4.3.

4 SALIENT
We propose SALIENT, a system for fast distributed data-
parallel GNN training (and inference; see Section 5) using
neighborhood sampling. SALIENT combines the following
features to achieve high performance:

a) an optimized implementation of neighborhood sam-
pling and expansion;

b) an efficient parallel batch preparation scheme;

c) CPU-to-GPU data transfer optimizations that hide la-
tency and saturate data bus bandwidth; and

d) seamless compatibility with PyTorch’s DDP module to
scale across multiple GPUs and machines.

Notably, SALIENT achieves the above without requiring
disruptive changes to user-facing APIs. SALIENT provides
a drop-in replacement for the NeighborSampler and slicing
code presently used in PyG.

4.1 Fast neighborhood sampling

The base algorithm for node-wise sampling, implemented in
the NeighborSampler module of PyG, is as follows. We are
given an input graph G, a set of nodes Vb = {v1, . . . , vk}
which define a mini-batch, and a fanout d. For each node
vi ∈ Vb, we sample d of its neighbors without replacement
to get the sampled neighborhood Nd(vi). The sampled
neighborhoods are typically organized into a bipartite graph
with source nodes

⋃
iNd(vi) and destination nodes Vb. For

multi-hop neighborhoods, the process is repeated for each
source node, yielding a sequence of bipartite graphs. To-
gether, these comprise a message-flow graph (MFG) for the
mini-batch of nodes in Vb.

This simple algorithm for neighborhood sampling admits a
variety of design and implementation choices, which may
have a dramatic impact on performance. Among the most
impactful ones are: a data structure for global-to-local node
ID mapping between the input graph and sampled MFG;
a set data structure to support neighbor sampling without
replacement; and fusing the operations of sampling and
MFG construction. Overall, the space of possible design
choices and optimizations is too large to explore manually.
We designed a parameterized implementation of sampled
MFG generation to systematically explore this optimization
space and identify the ones that yield high performance
across compute architectures.

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

1

1.5

2

2.5

3

1 1.
5

2 2.
5

3

Po
w

er
PC

Sp
ee

du
p

x86 Speedup

Sampler Impl
Original PyG

SALIENT Sampler

Figure 2. Exhaustive exploration of optimization parameters.

This exploration was done using a microbenchmark which
executed the parameterized code on a reference hop-by-hop
trace of the nodes which made up a sampled MFG for a mini-
batch of nodes in ogbn-products. To mitigate sampling vari-
ability, we benchmark each individual hop of the reference
trace instead of an end-to-end execution. Figure 2 shows
the performance, relative to the PyG NeighborSampler im-
plementation, of 96 instantiations of the parameterized code
on two CPU architectures (x86 and PowerPC).

Analyzing the results shows that the most impactful changes,
relative to the baseline PyG code, are related to data struc-
tures. Changing the C++ STL hash map and hash set to
a flat swiss-table implementation (Benzaquen et al., 2018)
yields a 2× speedup. Using an array instead of a hash table
for the set provides a further 17% improvement. Despite its
linear search complexity, the array set benefits from cache
locality. As Table 2 shows, the SALIENT implementation
of neighborhood sampling is 2.5× faster than that of PyG.

4.2 Shared-memory parallel batch preparation

SALIENT parallelizes batch preparation through the use
of shared-memory multithreading. Shared-memory paral-
lelization has several key advantages over PyTorch’s multi-
processing, including lower synchronization overheads and,
critically, the ability to perform zero-copy communication
with the main training process.

To parallelize batch preparation across mini-batches,
SALIENT uses C++ threads which prepare batches end-
to-end, each performing sampling and slicing sequentially.
Since these threads run C++ code, they are not affected by
Python’s global interpreter lock. By using a serial tensor-
slicing code, which is otherwise parallelized in PyTorch by
default, SALIENT improves cache locality and avoids con-
tention between threads. Threads balance load dynamically
via a lock-free input queue that contains the destination
nodes for each mini-batch. We find that dynamic load bal-
ancing generally performs better than static partitioning
schemes such as those in the PyTorch DataLoader due to
the variation in final neighborhood size across mini-batches.

A particularly impactful optimization enabled by shared-

Table 3. Impact of SALIENT optimizations on per-epoch runtime.

Optimization Per-Epoch Runtime

arxiv products papers

None (PyG) 1.7s 8.6s 50.4s
+ Fast sampling 0.7s 5.3s 34.6s
+ Shared-memory batch prep. 0.6s 4.2s 27.8s
+ Pipelined data transfers 0.5s 2.8s 16.5s

memory parallelization is the ability to perform slicing while
the main process is blocked on GPU training. A batch
preparation thread writes sliced tensors directly into pinned
memory accessible by the main process. By comparison,
slicing in PyTorch multiprocessing workers would require
copying the sliced data from the worker process to the main
process via POSIX shared memory, effectively halving the
observed memory bandwidth and inhibiting parallel scaling.

4.3 Data transfer pipelining

Data transfers account for 15–35% of per-epoch time as
shown in Table 1. To mitigate this bottleneck, SALIENT
employs two optimizations to minimize data transfer latency
and overlap data transfer with GPU computation.

As discussed in Section 3.3, data transfers for PyG on ogbn-
papers100M are only 75% efficient. Detailed profiling re-
veals redundant CPU-GPU round trips which create idle
time between data transfers of the MFG edges. These round
trips are attributed to assertions in PyG’s sparse tensor li-
brary that check the validity of the sparse adjacency matrix
after it is transferred. These blocking assertions are unnec-
essary for data transfers, since they have already been per-
formed when the sparse tensor was constructed on the CPU.
Adding an option to skip assertions in such circumstances
allows us to achieve 99% of peak data transfer throughput.

SALIENT further increases GPU utilization by overlapping
data transfers with GPU training computations. Specifically,
SALIENT uses separate GPU streams for computation and
data transfer, synchronizing those streams to ensure a train-
ing iteration begins after the necessary data is transferred.
With SALIENT’s optimizations to improve the throughput
of batch preparation and transfer, these operations generally
take less time than the GPU training computations. Con-
sequently, overlapping transfers with GPU computations
nearly eliminates latency outside the GPU computations.

4.4 Summary

Our design decisions in SALIENT are informed by a careful
analysis of existing bottlenecks in standard workflows. We
find that it is possible to get a highly efficient system with
targeted optimizations in neighborhood sampling, shared-
memory parallelization for slicing directly into pinned mem-

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

100 101 102 103 104
0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
cc

ur
ac

y

Node Degree

All
20
10

5
Degree pdf

Figure 3. Test accuracy and node count versus node degree. Data
set: ogbn-products; GNN: GraphSAGE. Legend: “all” indicates
full neighborhood (non-sampling); number indicates sampling
fanout for each layer.

ory, and pipelining data transfer and GPU computations.
Figure 1(b) illustrates the timeline of GNN training with
SALIENT and contrasts it to that of a standard PyTorch
workflow (Figure 1(a)). Table 3 quantifies this comparison,
listing the incremental impact of each optimization category.
These optimizations do not require fundamental changes
to the basic workflow structure and are orthogonal to other
improvements in the training process itself.

5 INFERENCE WITH SAMPLING

While neighborhood sampling is extensively used for train-
ing, it is unclear if this approach compromises prediction
accuracy in inference. Note that these two phases are rather
different in nature. The goal of training is to optimize a loss
function and identify model parameters, whereas the goal
of inference is to predict labels for the test-set nodes. In
deep learning, de facto choices of optimizers are stochastic
gradient methods, where the loss function and the prediction
need not be accurately evaluated in every gradient step to
achieve convergence; e.g., the mini-batch gradient is only
an estimator of, but is not exactly, the loss gradient. As long
as sampling is done sufficiently many times, the average
will converge to the probability expectation. Sampling in
inference. however, is one-shot and the sample average may
be rather different from the mean. Will sampling produce
predictions as accurate as the case of non-sampling?

Theoretical analysis is beyond our scope, but we investigate
empirical data. As a typical example, Figure 3 shows the
degree distribution of the test set of ogbn-products overlaid
with the prediction accuracy distribution obtained by using
a 3-layer GraphSAGE architecture. One observes that when
the full neighborhood is used, high-degree nodes tend to be
predicted less accurately, but such nodes are few in the test
set. In other words, it suffices to maintain the prediction
quality of the low-degree nodes to achieve a comparable
overall accuracy. Moreover, the figure clearly shows that a
small sampling fanout already approximates well the left
half of the accuracy distribution. As the fanout increases,
the right half is approximated increasingly well, too.

Table 4. Summary of data sets.

Data Set #Nodes #Edges #Feat. Train. / Val. / Test

arxiv 169K 1.2M 128 91K / 30K / 48K
products 2.4M 62M 100 197K / 39K / 2.2M
papers 111M 1.6B 128 1.2M / 125K / 214K

For this reason, we apply neighborhood sampling to infer-
ence as well. It enjoys several advantages. First, it allows
reusing the model architecture code and a majority of the
mini-batch training code. Second, it reduces memory con-
sumption. Because of the explosive size of multi-hop neigh-
borhoods, a mini-batch is unlikely to fit in GPU memory
without sampling. Then, inference must be conducted al-
ternatively by evaluating the network layer by layer and
storing layer-wise results in host memory. For some model
architectures (e.g., dense connections), all layer results must
be stored, demanding multiple times more storage. Finally,
as opposed to the layer-by-layer approach, mini-batch infer-
ence can trivially be run on a select subset of nodes and can
be executed in a distributed data parallel context.

6 EVALUATION

We conduct a comprehensive set of experiments to evaluate
the performance of SALIENT and demonstrate substantial
improvement over a baseline performance-engineered PyG
implementation. All experiments are conducted on a cluster
of compute nodes in a 10GigE network, each equipped with
two 20-core Intel Xeon Gold 6248 CPUs, 384GB DRAM,
and two NVIDIA V100 GPUs (32GB RAM). The bench-
marking is based on PyTorch 1.8.1 and PyG 1.7.0. The C++
code for batch preparation is compiled with GCC 7.5.0 and
optimization flags -O3 -march=native.

Data sets. We evaluate on three standard benchmark data
sets: ogbn-arxiv, ogbn-products, and ogbn-papers100M (Hu
et al., 2020a). The graph and training set in these data sets
vary in size, with ogbn-papers100M being one of the largest
open benchmarks at the time of this work. See Table 4 for
detailed information. All graphs were made undirected (if
originally not) as is common practice.

GNN architectures. We experiment with a variety of archi-
tectures to demonstrate the wide applicability of SALIENT:
GraphSAGE (Hamilton et al., 2017), GAT (Veličković et al.,
2018), GIN (Xu et al., 2019), and GraphSAGE-RI. The lat-
ter adds residual connections to GraphSAGE and employs
an Inception-like structure for final prediction.2 Details for
each GNN atchitecture are given in the appendix. Table 5
lists key hyperparameters that impact training time and accu-
racy. All experimental results for ogbn-papers100M, except

2This architecture is similar to that in the GitHub repo
mengyangniu/ogbn-papers100m-sage.

https://github.com/mengyangniu/ogbn-papers100m-sage

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

Table 5. GNN hyperparameters for our experiments. Fanout is for
training. For inference fanout, see Table 6. Batch size is per GPU.

Data Set GNN #Layers Hidden Fanout Batch

arxiv SAGE 3 256 (15, 10, 5) 1024
products SAGE 3 256 (15, 10, 5) 1024
papers SAGE 3 256 (15, 10, 5) 1024
papers GAT 3 256 (15, 10, 5) 1024
papers GIN 3 256 (20, 20, 20) 1024
papers SAGE-RI 3 1024 (12, 12, 12) 1024

0

0.4

0.8

1.2

1.6

SALIENT PyG
0

2

4

6

8

SALIENT PyG

0

15

30

45

SALIENT PyG

E
po

ch
Ti

m
e

(s
)

arxiv

Train
Sampling + Slicing

Data transfer

E
po

ch
Ti

m
e

(s
)

products

E
po

ch
Ti

m
e

(s
)

papers

Figure 4. Performance improvement of SALIENT over standard
PyG workflow. Timing measurements on one machine with one
GPU. GNN: GraphSAGE with fanout (15, 10, 5).

for Figure 6, are obtained with GraphSAGE.

Single-GPU improvement over PyG. We first compare
the performance of SALIENT and PyG on a single GPU.
Figure 4 suggests a 3× to 3.4× speedup across data sets,
owing to the diminishing percentage of time blocked on
sampling and data transfer. SALIENT’s optimizations im-
prove the overall efficiency of these stages, and its pipelined
design results in the overall per-epoch runtime being nearly
equal to the GPU compute time for training.

Multi-GPU scaling. We now scale the training to multiple
GPUs. A maximum of 16 GPUs are used, spanning eight
machines. The effective batch size is proportional to the
number of GPUs. SALIENT straightforwardly applies the
PyTorch DDP module and performs distributed communi-
cations with the NCCL backend. Figure 5 shows generally
good scaling in the distributed setting. Larger data sets, such
as ogbn-papers100M, tend to see greater parallel speedup
due to having higher computational density and larger train-
ing sets. As such, bigger graphs amortize the latency of
starting an epoch (e.g., the time to prepare the first sets of
mini-batches) over a greater amount of work per GPU. The
sampled neighborhoods of batches also tend to be larger
for bigger and well-connected graphs, which increases the
amount of GPU computations per mini-batch and better

Table 6. Test accuracy under various neighborhood fanouts for
inference. GNN: GraphSAGE with training fanout (15, 10, 5). For
ogbn-papers100M, the “fanout: all” case runs out of memory and
we report the result with fanout (100, 100, 100) instead.

Data Set Accuracy

fanout: all (20, 20, 20) (10, 10, 10) (5, 5, 5)

arxiv .7074±.005 .7054±.005 .6980±.005 .6849±.004
products .7749±.004 .7755±.003 .7708±.003 .7558±.003
papers .6491±.005∗ .6458±.004 .6379±.004 .6163±.005

shadows communication and synchronization overheads.
With 16 GPUs, the speedup ranges from 4.45× to 8.05×.

Neighborhood sampling for inference. We investigate the
effectiveness of applying neighborhood sampling for infer-
ence. Table 6 lists the test accuracies for all data sets either
using either full or sampled neighborhoods. Each accuracy
result is obtained through five repetitions of training and in-
ference. Full-neighborhood inference uses layer-wise com-
putation and stores intermediate layer results in host mem-
ory. One observes that for the ogbn-arxiv and ogbn-products
data sets, a fanout of 20 for each layer is sufficient to match
full-neighborhood accuracy. For ogbn-papers100M, layer-
wise inference with full neighborhood runs out of memory.
Hence, we report the accuracy with fanout 100 instead. We
see that the accuracy has been saturated and conclude that
fanout 20 is sufficient for this data set as well.

Performance of varying GNNs. A feature of SALIENT is
that the GNN architecture implementation is independent of
performance engineering in batch preparation and transfer.
Hence, a PyG developer can keep using exactly the same
API to design and tune GNNs. This feature brings in the
benefit of fast prototyping for an application. We experiment
with a number of architectures and report the training time
(with 16 GPUs) and test accuracy for the largest data set
ogbn-papers100M in Figure 6.

Several observations follow. First, the training time for dif-
ferent architectures varies significantly, affected by multiple
factors such as the complexity of the architecture and the
choice of hyperparameters. Second, speedup over PyG also
varies significantly. Computation density (relative to data
transfer and communication) is highest for GraphSAGE-RI,
medium for GAT and GIN, and lowest for GraphSAGE.
GraphSAGE enjoys the greatest improvement (approxi-
mately 2.3×) due to our performance engineering on sam-
pling and transfer, while GraphSAGE-RI and GAT have the
least improvement, which however is still over 1.4×. Third,
architectures achieve different accuracies. With only moder-
ate tuning, GraphSAGE-RI performs noticeably better than
the other three. These accuracy numbers are on par with
those appearing in the literature or public GitHub repos.

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

0
0.1
0.2
0.3
0.4
0.5
0.6

1 2 4 8 16
0

0.5
1

1.5
2

2.5
3

1 2 4 8 16
0
3
6
9

12
15

1 2 4 8 16

R
un

tim
e

(s
)

Num GPUs

arxiv

R
un

tim
e

(s
)

Num GPUs

products

R
un

tim
e

(s
)

Num GPUs

papers

Figure 5. Epoch time when scaling to multiple GPUs with proportionately scaled batch size using the SAGE architecture from Table 5.

0

5

10

15

20

25

30

35

40

SAGE GIN GAT SAGE-RI
0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

Pe
rE

po
ch

Ti
m

e
(s

)

A
cc

ur
ac

y

SALIENT time
Test accuracy

PyG time

Figure 6. Per epoch training time and test accuracy after 25 epochs
for ogbn-papers100M on several GNN models, trained by using 16
GPUs. Test inference fanouts were (20, 20, 20) for SAGE, GIN,
and GAT, and (100, 100, 100) for SAGE-RI.

7 COMPARISON WITH EXISTING SYSTEMS

It is important to put the results in Section 6 in perspec-
tive. Table 7 summarizes the reported performance of sev-
eral representative systems. On the largest data set, ogbn-
papers100M, our 2.0s per-epoch training time is orders of
magnitude faster than that of the listed systems. This record,
however, is achieved in an incomparable environment (dif-
fering in hardware, software framework, model architecture,
or batching scheme) from those of existing systems. Since
most referenced systems are not publicly available or readily
usable, we note a few differentiating points.

We adopt mini-batch training, as opposed to full-batch train-
ing appearing in several prior systems. One reason is that the
former converges faster and generalizes better (Bottou et al.,
2018). On the system level, these two batching schemes
have drastically different computation patterns and may suf-
fer different bottlenecks.

SALIENT is built on PyTorch and PyG, a framework less
used in system-oriented publications. We consider that PyG
enjoys a large user base3 and it benefits from a demonstra-
tion of improvement that encourages widespread attraction.

3At the time of this writing, pyg-team/pytorch geometric has
12.8K stars and 2.2K forks on GitHub, while dmlc/dgl has 8.2K
stars and 1.8K forks and alibaba/euler has 2.7K stars and 534 forks.

Meanwhile, it should be noted that SALIENT’s optimiza-
tions are general and can be applied to other frameworks.

We demonstrate experiments in a multi-machine, multi-GPU
environment, with attractive speedup, using PyTorch’s DDP
module for distributed training. Most of the systems summa-
rized in Table 7 demonstrate no such experiments and/or are
not readily extensible to such an environment. The only ex-
ception, adopting mini-batch training, is P 3 (Gandhi & Iyer,
2021). This system addresses a different bottleneck than we
do—the communication cost and partitioning overhead. The
techniques proposed therein are independent of SALIENT
and can be incorporated into our sampling pipeline for a
further efficient system.

8 CONCLUSIONS AND FUTURE WORK

In this work, we identify major bottlenecks in GNN train-
ing and inference—batch preparation and transfer—and
propose three complementary improvements, namely op-
timized neighborhood sampling, shared-memory parallel
sampling and slicing, and pipelined data transfers. We also
find that neighborhood sampling impacts inference accuracy
only minimally. We build our system SALIENT based on
PyTorch and PyG and showcase that changing the GNN
architecture can be easily done as usual, without interfering
with the training/inference code.

We demonstrate that SALIENT achieves near-perfect over-
lap of batch preparation, transfer, and training computations.
That is, the end-to-end training time per epoch is nearly
equal to the time for the slowest of these components in
isolation. The limiting factor for batch preparation is the
number of CPU cores or the DRAM bandwidth; for data
transfer it is the peak CPU-to-GPU memory bandwidth. As
feature vector size increases, or with higher fanout, memory
bandwidth may become insufficient. Then, one must avail
of additional techniques such as GPU-based slicing (Min
et al., 2021) or caching data on the GPU (Dong et al., 2021)
to reduce the slicing or data transfer volume.

An additional avenue of future work is distributing the graph
and node data in a distributed computing environment to
accommodate processing even larger graphs. Graph parti-

https://github.com/pyg-team/pytorch_geometric
https://github.com/dmlc/dgl
https://github.com/alibaba/euler

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

Table 7. Representative GNN training systems and their performance on either ogbn-papers100M or the largest graph reported, whichever
is larger, for each system.

System Framework Batching GNN Machines Data Set Speed
(s/epoch)

Acc.
(%)

NeuGraph TensorFlow full-batch GCN,
L = 2

1 machine with
28 Intel cores,
512GB DRAM,
8 P100 GPUs

amazon:
|V | = 8.6M,
|E| = 231.6M,
f = 96
(McAuley et al., 2015)

0.655 a N/A

Roc FlexFlow,
Lux

full-batch GCN 4 machines, each has
20 x86 cores,
256GB DRAM,
4 P100 GPUs;
100Gbps InfiniBand

amazon:
|V | = 9.4M,
|E| = 231.6M,
f = 300
(He & McAuley, 2016)

0.526 b N/A

DistDGL PyTorch,
DGL,
METIS

mini-batch,
size 2000,
d`=(15, 10, 5)

GraphSAGE,
L = 3,
fhidden = 256

16 EC2 instances, each
has 96 vCPUs,
384GB DRAM;
100Gbps network

ogbn-papers100M:
|V | = 111M,
|E| = 1.6B,
f = 128
(Hu et al., 2020a)

13 c N/A

DeepGalois Galois,
GuSP,
Gluon

full-batch GraphSAGE,
L = 2,
fhidden = 16

32 machines, each has
48 x86 cores,
192GB DRAM;
100Gbps Omni-Path

same as above 70 d N/A

Zero-Copy PyTorch,
DGL

mini-batch GraphSAGE 1 machine with
24 AMD cores,
256GB DRAM,
2 RTX3090 GPUs

same as above 648 e N/A

GNS PyTorch,
DGL

mini-batch,
size 1000,
d`=(cache, 15, 10)

GraphSAGE,
L = 3,
fhidden = 256

1 EC2 instance with
32 CPU cores,
256GB DRAM,
1 T4 GPU

same as above 98.5 f 63.31 f

P 3 PyTorch,
DGL

mini-batch,
size 1000,
d`=(25, 10)

GraphSAGE,
L = 2,
fhidden = 32

4 machines, each has
1×12-core Intel CPUs,
441GB DRAM,
4 P100 GPUs;
10Gbps Ethernet

same as above 3.107 g N/A

SALIENT PyTorch,
PyG,
DDP

mini-batch,
size 1024,
d`train =(15, 10, 5),
d`infer =(20, 20, 20)

GraphSAGE,
L = 3,
fhidden = 256

8 machines, each has
2×20-core Intel CPUs,
384GB DRAM,
2 V100 GPUs;
10GigE network

same as above Train: 2.0

Infer: 2.4s
on test set

64.58
±0.40

a Estimated as 6.55/10, where 6.55 comes from the TF-SAGA section of Table 2 and 10 is estimated from Figure 17 of Ma et al. (2019).
b Estimated as 1/1.9, where 1.9 is estimated from Figure 5 of Jia et al. (2020).
c Reported in Figure 8 of Zheng et al. (2020).
d Estimated from Figure 4 of Hoang et al. (2021). Note that the referenced article demonstrates that under the same full-batch setting,

DeepGalois may be several times faster than DistDGL.
e Estimated from Figure 11 of Min et al. (2021).
f Reported in Table 3 of Dong et al. (2021).
g Reported in Table 4 of Gandhi & Iyer (2021).

tioning (Karypis & Kumar, 1999) will likely be invoked, but
the objective may consider not only edge cut and load bal-
ance but also the cost of multi-hop neighborhood sampling.
Sampling approaches will need to be re-investigated in a
distributed environment, to minimize communication. Par-

titioning along the feature dimension is another promising
technique for long feature vectors (Gandhi & Iyer, 2021).

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

ACKNOWLEDGEMENTS

This work was conducted on the SuperCloud com-
puting cluster https://supercloud.mit.edu and
the Satori computing cluster https://mit-satori.
github.io. This research was sponsored by MIT-IBM
Watson AI Lab and in part by the United States Air Force Re-
search Laboratory and the United States Air Force Artificial
Intelligence Accelerator and was accomplished under Coop-
erative Agreement Number FA8750-19-2-1000. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the United
States Air Force or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation herein.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
https://www.tensorflow.org/.

Benzaquen, S., Evlogimenos, A., Kulkunidis, M.,
and Pereplitsa, R. Swiss tables and absl::hash,
Sep 2018. URL https://abseil.io/blog/
20180927-swisstables.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Rev., 60
(2):223–311, 2018.

Chen, J. and Luss, R. Stochastic gradient descent with
biased but consistent gradient estimators. Preprint
arXiv:1807.11880, 2018.

Chen, J., Ma, T., and Xiao, C. FastGCN: Fast learning with
graph convolutional networks via importance sampling.
In ICLR, 2018.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh,
C.-J. Cluster-GCN: An efficient algorithm for training
deep and large graph convolutional networks. In KDD,
2019.

Dong, J., Zheng, D., Yang, L. F., and Karypis, G. Global
neighbor sampling for mixed CPU-GPU training on giant
graphs. In KDD, 2021.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR Workshop on Repre-
sentation Learning on Graphs and Manifolds, 2019.

Gandhi, S. and Iyer, A. P. P3: Distributed deep graph
learning at scale. In OSDI, 2021.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, 2017.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In NIPS, 2017.

He, R. and McAuley, J. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative
filtering. In WWW, 2016.

Hoang, L., Chen, X., Lee, H., Dathathri, R., Gill, G., and
Pingali, K. Efficient distribution for deep learning on
large graphs,. In GNNSys, 2021.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu,
B., Catasta, M., and Leskovec, J. Open graph bench-
mark: Datasets for machine learning on graphs. Preprint
arXiv:2005.00687, 2020a.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks. In ICLR, 2020b.

Jia, Z., Lin, S., Gao, M., Zaharia, M., and Aiken, A. Improv-
ing the accuracy, scalability, and performance of graph
neural networks with Roc. In MLSys, 2020.

Karypis, G. and Kumar, V. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal
on Scientific Computing, 20(1):359–392, 1999.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Lawson, C. L., Hanson, R. J., Kincaid, D., , and Krogh, F. T.
Basic linear algebra subprograms for FORTRAN usage.
ACM Trans. Math. Soft., 5:308–323, 1979.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. Gated
graph sequence neural networks. In ICLR, 2016.

Li, Y., Yu, R., Shahabi, C., and Liu, Y. Diffusion con-
volutional recurrent neural network: Data-driven traffic
forecasting. In ICLR, 2018.

Ma, L., Yang, Z., Miao, Y., Xue, J., Wu, M., Zhou, L.,
and Dai, Y. NeuGraph: Parallel deep neural network
computation on large graphs. In USENIX ATC, 2019.

https://supercloud.mit.edu
https://mit-satori.github.io
https://mit-satori.github.io
https://abseil.io/blog/20180927-swisstables
https://abseil.io/blog/20180927-swisstables

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

Ma, T. and Chen, J. Unsupervised learning of graph hier-
archical abstractions with differentiable coarsening and
optimal transport. In AAAI, 2021.

McAuley, J., Targett, C., Shi, Q., and van den Hengel, A.
Image-based recommendations on styles and substitutes.
In SIGIR, 2015.

Min, S. W., Wu, K., Huang, S., Hidayetoğlu, M., Xiong, J.,
Ebrahimi, E., Chen, D., and mei Hwu, W. Large graph
convolutional network training with GPU-oriented data
communication architecture. Preprint arXiv:2103.03330,
2021.

Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J. W.,
Songhori, E., Wang, S., Lee, Y.-J., Johnson, E., Pathak,
O., Nazi, A., Pak, J., Tong, A., Srinivasa, K., Hang, W.,
Tuncer, E., Le, Q. V., Laudon, J., Ho, R., Carpenter, R.,
and Dean, J. A graph placement methodology for fast
chip design. Nature, 594:207–212, 2021.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman
go neural: Higher-order graph neural networks. In AAAI,
2019.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in PyTorch. In NIPS 2017
Autodiff Workshop, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., and Chintala, S. PyTorch: An imperative style,
high-performance deep learning library. In NIPS, 2019.

Ramezani, M., Cong, W., Mahdavi, M., Sivasubramaniam,
A., and Kandemir, M. GCN meets GPU: Decoupling
“when to sample” from “how to sample”. In NeurIPS,
2020.

Shang, C., Chen, J., and Bi, J. Discrete graph structure
learning for forecasting multiple time series. In ICLR,
2021.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Wang, L., Yin, Q., Tian, C., Yang, J., Chen, R., Yu, W.,
Yao, Z., and Zhou, J. FlexGraph: a flexible and efficient
distributed framework for GNN training. In EuroSys,
2021a.

Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X.,
Zhou, J., Ma, C., Yu, L., Gai, Y., Xiao, T., He, T., Karypis,

G., Li, J., and Zhang, Z. Deep graph library: A graph-
centric, highly-performant package for graph neural net-
works. Preprint arXiv:1909.01315, 2019.

Wang, Y., Feng, B., Li, G., Li, S., Deng, L., Xie, Y., and
Ding, Y. GNNAdvisor: An adaptive and efficient runtime
system for GNN acceleration on GPUs. In OSDI, 2021b.

Weber, M., Domeniconi, G., Chen, J., Weidele, D. K. I.,
Bellei, C., Robinson, T., and Leiserson, C. E. Anti-money
laundering in Bitcoin: Experimenting with graph convolu-
tional networks for financial forensics. In KDD Workshop
on Anomaly Detection in Finance, 2019.

Wu, Y., Ma, K., Cai, Z., Jin, T., Li, B., Zheng, C., Cheng, J.,
and Yu, F. Seastar: vertex-centric programming for graph
neural networks. In EuroSys, 2021.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton,
W. L., and Leskovec, J. Graph convolutional neural net-
works for web-scale recommender systems. In KDD,
2018.

Zeng, H., Zhou, H., Srivastava, A., Kannan, R., and
Prasanna, V. GraphSAINT: Graph sampling based in-
ductive learning method. In ICLR, 2020.

Zheng, D., Ma, C., Wang, M., Zhou, J., Su, Q., Song, X.,
Gan, Q., Zhang, Z., and Karypis, G. DistDGL: Dis-
tributed graph neural network training for billion-scale
graphs. In IA3, 2020.

Zou, D., Hu, Z., Wang, Y., Jiang, S., Sun, Y., and Gu, Q.
Layer-dependent importance sampling for training deep
and large graph convolutional networks. In NeurIPS,
2019.

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

A ARTIFACT APPENDIX

A.1 Abstract

This section describes the software artifacts associated
with this paper for the purpose of replicating the pre-
sented experimental results. The code is distributed via
GitHub at https://github.com/MITIBMxGraph/
SALIENT_artifact and can be used to perform the
experiments presented in the paper. To streamline the
process of exercising the software to reproduce key
experimental results, we have provided scripts in the
experiments directory of the repository to run: (a)
single GPU experiments that produce data for Table 1
and Figure 4; and, (b) distributed multi-GPU exper-
iments that produce data for Figure 5 and Figure 6.
Detailed instructions for running these scripts are pro-
vided in a dedicated readme file for artifact evaluation
located at https://github.com/MITIBMxGraph/
SALIENT_artifact/blob/main/README.md.

A.2 Artifact check-list (meta-information)

• Algorithm: PyG and SALIENT training algorithms for
GNNs with node-wise sampling.

• Program: PyTorch, CUDA

• Compilation: gcc/g++ version 7 or greater; nvcc ver-
sion 11.

• Data set: Node classification benchmark data sets from
OGB.

• Run-time environment: Ubuntu 18.04 (or modern linux
distribution) with NVIDIA drivers installed.

• Hardware: NVIDIA GPU with sufficient memory. Dis-
tributed experiments require SLURM cluster with GPU
nodes.

• Experiments: Single GPU performance comparisons,
and distributed multi-GPU experiments

• How much disk space required (approximately)?: 100
GB for all experiments, 10 GB for a subset thereof.

• How much time is needed to prepare workflow (ap-
proximately)?: 1–2 hours with prior experience and ac-
cess to hardware/clusters.

• How much time is needed to complete experiments
(approximately)?: 1 hour for single GPU experiments
and 4–12 hours for full set of distributed experiments.

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache License
2.0

• Data licenses (if publicly available)?: Amazon license
and ODC-BY.

• Archived (provide DOI)?: https://doi.org/10.
5281/zenodo.6332979

A.3 Description

A.3.1 How delivered

The code may be obtained from GitHub at
https://github.com/MITIBMxGraph/
SALIENT_artifact. Within the repository, scripts
for streamlining the process of exercising the artifact are
provided in the experiments directory. A dedicated
readme file that documents the use of these scripts is pro-
vided at https://github.com/MITIBMxGraph/
SALIENT_artifact/blob/main/README.md.

A.3.2 Hardware dependencies

The minimum requirements for exercising the software arti-
fact are as follows. The single GPU experiments require one
NVIDIA GPU with sufficient memory, and one multi-core
CPU that uses either the x86 or PowerPC architecture. We
recommend using x86 CPUs as we have tested the installa-
tion process more thoroughly for them.

The distributed multi-GPU experiments require a SLURM
cluster with GPU nodes. Such a cluster may be obtained
through cloud services and accompanying software pack-
ages. For example, on Amazon Web Services one can use
the ParallelCluster software to launch a SLURM cluster.

Depending on the used hardware and available disk space,
certain experiments may not be feasible. We have made an
effort to reduce the disk space and memory requirements
needed for running experiments on the largest data set, and
we expect that GPUs with 16GB of memory and machines
with 128GB of main memory will be able to run all or
almost all of the experiments. For the distributed multi-
GPU experiments, the PyG implementation often requires
more than 128GB of memory when running on the ogbn-
papers100M data set. Exercising the distributed experiments
for PyG on this graph may require compute nodes with
256GB or more main memory.

A.3.3 Software dependencies

Reasonably up-to-date NVIDIA drivers must be installed
on the machine. For the distributed experiments, a SLURM
cluster is required. The remaining software dependencies
can be resolved using the conda package manager or by
using the provided Dockerfile. If using docker, one must
have nvidia-docker installed for GPU support within
the container.

https://github.com/MITIBMxGraph/SALIENT_artifact
https://github.com/MITIBMxGraph/SALIENT_artifact
https://github.com/MITIBMxGraph/SALIENT_artifact/blob/main/README.md
https://github.com/MITIBMxGraph/SALIENT_artifact/blob/main/README.md
https://doi.org/10.5281/zenodo.6332979
https://doi.org/10.5281/zenodo.6332979
https://github.com/MITIBMxGraph/SALIENT_artifact
https://github.com/MITIBMxGraph/SALIENT_artifact
https://github.com/MITIBMxGraph/SALIENT_artifact/blob/main/README.md
https://github.com/MITIBMxGraph/SALIENT_artifact/blob/main/README.md

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

A.3.4 Data sets

Graph data sets for node property prediction are taken from
Open Graph Benchmark (OGB). To decrease the time and
minimum hardware resources required for experiments, we
have provided, as an option, the ability to download pre-
processed versions of the graph data. If not electing to
download the preprocessed graphs, the first execution of
the code on a new graph will download it from OGB and
perform preprocessing locally.

A.4 Installation

We recommend referring to the installation instructions pro-
vided at https://github.com/MITIBMxGraph/
SALIENT_artifact/blob/main/README.md. We
summarize the installation process here.

Installation using Docker: We provide a docker container
that can be used for running experiments on a single ma-
chine. Although the container could also be used to run
distributed experiments, we have not tested this option. To
use the docker container with NVIDIA GPUs, one should
install docker and the NVIDIA Container Toolkit.

Pull the container
docker pull nistath/salient:cuda-11.1.1

Clone the code repository outside of the container
git clone \

git@github.com:MITIBMxGraph/SALIENT_artifact.git

Run docker container with host code folder mounted
docker run --ipc=host --gpus all -it \

-v ‘pwd‘/SALIENT_artifact:/salient \
nistath/salient:cuda-11.1.1

Install fast sampler
cd /salient/fast_sampler && python setup.py develop

Installation in Python environment: We provide
instructions to install the artifact in a Python envi-
ronment. Such installation can be used for both the
single GPU and distributed multi-GPU experiments
(assuming access to a SLURM cluster). The instruc-
tions for installing in a conda environment are pro-
vided at https://github.com/MITIBMxGraph/
SALIENT_artifact/blob/main/INSTALL.md
and are summarized below.

Install miniconda
wget https://repo.anaconda.com/miniconda/\

Miniconda3-py38_4.10.3-Linux-x86_64.sh
bash Miniconda3-py38_4.10.3-Linux-x86_64.sh

Create a conda environment for experiments
conda create -n salient python=3.8 -y
conda activate salient

Install Pytorch, PyG, OGB, prettytable
conda install pytorch torchvision \

torchaudio cudatoolkit=11.3 -c pytorch
conda install pyg -c pyg -c conda-forge
pip install ogb
conda install prettytable -c conda-forge

Install patched PyTorch-Sparse
pip uninstall torch_sparse
FORCE_CUDA=1
pip install \

git+git://github.com/rusty1s/pytorch_sparse.git@master

Install fast_sampler
cd fast_sampler
python setup.py install
cd ..

A.5 Experiment workflow

We recommend referring to the documentation for
performing artifact evaluation located in the repos-
itory at https://github.com/MITIBMxGraph/
SALIENT_artifact/blob/main/README.md. We
summarize the experimental workflow here. Unless other-
wise noted, all file paths are relative to the experiments
directory in the repository.

Initial setup: The script initial setup.sh can be ex-
ecuted to configure the number of sampling workers based
on the hardware, and determine what data sets to download
based on the available disk space. It will then, by default,
download the appropriate preprocessed data sets.

Single GPU experiments: We provide the script
run all single gpu experiments.sh to run all
single GPU experiments and display the final table of re-
sults. Additional scripts, documented in the artifact eval-
uation guide in the repository, are provided to run these
experiments manually and regenerate the summary table of
results.

Distributed multi-GPU experiments: These experi-
ments require the use of a SLURM cluster. The file
all dist benchmarks.sh must be modified to ac-
count for the configuration of the cluster at hand. Additional
instructions and guidance are provided in the artifact evalu-
ation guide in the repository. The final table of results can
be generated with the command:

python helper_scripts/parse_times.py \
distributed_job_output/

A.6 Evaluation and expected result

Upon completion of the single GPU experiments, a table
will be produced that provides a performance breakdown of
per-epoch runtime that reproduces the breakdowns provided
in Table 1 and Figure 4 of the paper.

Upon completion of the distributed multi-GPU experiments,
a table will be produced that provides the data needed to
reproduce Figure 6. Specifically, the table includes the per-
epoch runtime and test accuracy for SALIENT and PyG
across four GNN architectures shown in Figure 6. The
scripts may be modified to run on a different number of
GPUs to reproduce the scalability experiment shown in
Figure 5.

https://github.com/MITIBMxGraph/SALIENT_artifact/blob/main/README.md
https://github.com/MITIBMxGraph/SALIENT_artifact/blob/main/README.md
https://github.com/MITIBMxGraph/SALIENT_artifact/blob/main/INSTALL.md
https://github.com/MITIBMxGraph/SALIENT_artifact/blob/main/INSTALL.md
https://github.com/MITIBMxGraph/SALIENT_artifact/blob/main/README.md
https://github.com/MITIBMxGraph/SALIENT_artifact/blob/main/README.md

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

A.7 Experiment customization

The following experiment customizations are possible.
The software may be directly exercised without the
use of the dedicated artifact evaluation scripts. The
scripts for single GPU experiments may be modified
to use different GNN architectures, sampling fanouts,
and hidden feature sizes by modifying the parameters
in performance breakdown config.cfg. The dis-
tributed multi-GPU experiments may be modified to run
on different data sets and different numbers of GPUs. The
fast sampler extension can be integrated to other codes.

B CODE REPOSITORY

In addition to the artifact repository that focuses on
benchmarking and reproducibility, an implementation of
SALIENT for general-purpose usage is available at https:
//github.com/MITIBMxGraph/SALIENT.

C ARCHITECTURES FOR EXPERIMENTS

See listings 1, 2, 3, and 4 for the model definitions written
in PyG.

https://github.com/MITIBMxGraph/SALIENT
https://github.com/MITIBMxGraph/SALIENT

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

1 def __init__(self, in_channels, hidden_channels, out_channels, num_layers):
2 kwargs = dict(bias = False)
3 conv_layer = SAGEConv
4 super().__init__()
5 self.num_layers = num_layers
6 self.convs = torch.nn.ModuleList()
7 self.hidden_channels = hidden_channels
8

9 self.convs.append(conv_layer(in_channels, hidden_channels, **kwargs))
10 for _ in range(num_layers - 2):
11 self.convs.append(conv_layer(hidden_channels, hidden_channels, **kwargs))
12 self.convs.append(conv_layer(hidden_channels, hidden_channels, **kwargs))
13 self.reset_parameters()
14

15 def forward(self, x, adjs):
16 end_size = adjs[-1][-1][1]
17 for i, (edge_index, _, size) in enumerate(adjs):
18 x_target = x[:size[1]]
19 x = self.convs[i]((x, x_target), edge_index)
20 if i != self.num_layers - 1:
21 x = F.relu(x)
22 x = F.dropout(x, p=0.5, training=self.training)
23 return torch.log_softmax(x, dim=-1)

Listing 1. GraphSAGE model definition.

1 def __init__(self, in_channels, hidden_channels, out_channels, num_layers):
2 kwargs = dict(bias = False, heads = 1)
3 conv_layer = GATConv
4 super().__init__()
5 self.num_layers = num_layers
6 self.convs = torch.nn.ModuleList()
7 self.hidden_channels = hidden_channels
8

9 self.convs.append(conv_layer(in_channels, hidden_channels, **kwargs))
10 for _ in range(num_layers - 2):
11 self.convs.append(conv_layer(hidden_channels, hidden_channels, **kwargs))
12 self.convs.append(conv_layer(hidden_channels, out_channels, **kwargs))
13 self.reset_parameters()
14

15 def forward(self, x, adjs):
16 for i, (edge_index, _, size) in enumerate(adjs):
17 x_target = x[:size[1]]
18 x = self.convs[i]((x, x_target), edge_index)
19 if i != self.num_layers - 1:
20 x = F.relu(x)
21 x = F.dropout(x, p=0.5, training=self.training)
22 return torch.log_softmax(x, dim=-1)

Listing 2. GAT model definition.

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

1 def __init__(self, in_channels, hidden_channels, out_channels, num_layers):
2 kwargs = dict()
3 conv_layer = GINConv
4 super().__init__()
5 self.num_layers = num_layers
6 self.convs = torch.nn.ModuleList()
7 self.hidden_channels = hidden_channels
8

9 self.convs.append(GINConv(Sequential(Linear(in_channels, hidden_channels),
10 BatchNorm1d(hidden_channels), ReLU(),
11 Linear(hidden_channels, hidden_channels), ReLU())))
12 for _ in range(num_layers - 2):
13 self.convs.append(GINConv(Sequential(Linear(hidden_channels, hidden_channels),
14 BatchNorm1d(hidden_channels), ReLU(),
15 Linear(hidden_channels, hidden_channels), ReLU())))
16 self.convs.append(GINConv(Sequential(Linear(hidden_channels, hidden_channels),
17 BatchNorm1d(hidden_channels), ReLU(),
18 Linear(hidden_channels, hidden_channels), ReLU())))
19 self.lin1 = Linear(hidden_channels, hidden_channels)
20 self.lin2 = Linear(hidden_channels, out_channels)
21 self.reset_parameters()
22

23 def forward(self, x, adjs):
24 end_size = adjs[-1][-1][1]
25 for i, (edge_index, _, size) in enumerate(adjs):
26 x_target = x[:size[1]]
27 x = self.convs[i]((x, x_target), edge_index)
28 x = self.lin1(x).relu()
29 x = F.dropout(x, p=0.5, training=self.training)
30 x = self.lin2(x)
31 return torch.log_softmax(x, dim=-1)

Listing 3. GIN model definition.

Accelerating Training and Inference of Graph Neural Networks with Fast Sampling and Pipelining

1 def __init__(self, in_channels, hidden_channels, out_channels, num_layers):
2 conv_layer = SAGEConv
3 kwargs = dict(bias = False)
4 super().__init__()
5 self.num_layers = num_layers
6 self.convs = torch.nn.ModuleList()
7 self.bns = torch.nn.ModuleList()
8 self.res_linears = torch.nn.ModuleList()
9 self.hidden_channels = hidden_channels

10

11 self.convs.append(conv_layer(in_channels, hidden_channels, **kwargs))
12 self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
13 self.res_linears.append(torch.nn.Linear(in_channels, hidden_channels))
14 for _ in range(num_layers - 2):
15 self.convs.append(conv_layer(hidden_channels, hidden_channels, **kwargs))
16 self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
17 self.res_linears.append(torch.nn.Identity())
18 self.convs.append(conv_layer(hidden_channels, hidden_channels, **kwargs))
19 self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
20 self.res_linears.append(torch.nn.Identity())
21

22 def forward(self, _x, adjs):
23 collect = []
24 end_size = adjs[-1][-1][1]
25 x = F.dropout(_x, p=0.1, training=self.training)
26 collect.append(x[:end_size])
27 for i, (edge_index, _, size) in enumerate(adjs):
28 x_target = x[:size[1]]
29 x = self.convs[i]((F.dropout(x,p=0.1,training=self.training),
30 F.dropout(x_target, p=0.1, training=self.training)), edge_index)
31 x = self.bns[i](x)
32 x = F.leaky_relu(x)
33 x = F.dropout(x, p=0.1, training=self.training)
34 collect.append(x[:end_size])
35 x += self.res_linears[i](x_target)
36 return torch.log_softmax(self.mlp(torch.cat(collect, -1)), dim=-1)

Listing 4. GragSAGE-RI model definition.

