
RC25499 (WAT1410-069) October 16, 2014
Mathematics

Research Division
Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

Computing Square Root Factorization for Recursively
Low-Rank Compressed Matrices

Jie Chen
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 218

Yorktown Heights, NY 10598
USA

COMPUTING SQUARE ROOT FACTORIZATION FOR
RECURSIVELY LOW-RANK COMPRESSED MATRICES

JIE CHEN∗

Abstract. We present an algorithm for computing a factorization A = GG∗ for an n × n
Hermitian positive definite matrix A, where both A and G have the same recursively low-rank
compressed structure. This factorization is a Cholesky factorization in a general sense, because
the factor G is not (block) triangular. Both time and storage costs are O(n). The factorization
can be used for sampling a multivariate normal distribution or a Gaussian process, where A is the
(compressed) covariance matrix. In this case, a Gaussian sample is the mean vector plus the matrix-
vector product of G with a random vector from the standard Gaussian. The matrix-vector product
can be formed by using an O(n) algorithm discussed in [6].

Key words. Compressed matrix, matrix square root, Cholesky factorization, Gaussian sampling

AMS subject classifications. 65F30, 65C60

1. Introduction. We consider factorizing an n × n Hermitian positive definite
matrix A in the form

A = GG∗. (1.1)

Such a factorization has several uses. Apart from solving a linear system of equations
Ax = b, where the factor G is in some special form (e.g., triangular) such that the
action of G−1 on a vector can be efficiently computed, an important application
concerned in this paper is Gaussian sampling. It is well known that a sample of a
multivariate Gaussian distribution or a Gaussian process with a mean vector µ and a
covariance matrix A can be computed as

Gy + µ, (1.2)

where the entries of the random vector y are independent standard Gaussian (mean
0 and variance 1).

Two methods for computing (1.1) are extensively used. One is the dense Cholesky
factorization, where G is lower triangular [11]. This method is limited by the O(n2)
storage and O(n3) time cost. A size n on the order 107 will quickly hit the memory
barrier on nowadays supercomputers. Another method is a sparse Cholesky factor-
ization with some use of reordering [9]. This method is O(n), loosely speaking, but it
applies to only a sparse matrix. Its efficiency heavily depends on the sparsity pattern
and the reordering scheme that controls fill in.

In this paper, we consider a class of dense matrices that can be compressedly
stored by using only O(n) memory. One example often seen in practice is a kernel
matrix generated by using a positive definite kernel function (e.g., the covariance
matrix of a Gaussian process, generated from a covariance function). Such a matrix
can be compressed by using several structures; we focus on the recursively low-rank
compressed structure studied in [6]. We propose a method for computing (1.1) in
O(n) time, where the resulting factor G has the same compressed structure as A.
Hence, a sample of the Gaussian process in the form (1.2) can be computed in O(n)
time by using the matrix-vector multiplication algorithm considered in [6]. The time

∗IBM T. J. Watson Research Center, Yorktown Heights, NY 10598. Email: chenjie@us.ibm.com

1

2 J. CHEN

for factorization in general dominates that for computing one matrix-vector product.
Hence, the proposed method is particularly favorable when a large number of samples
are needed, because the time for factorization is amortized in the repeating matrix-
vector multiplications.

Kernel matrices can be compressed in several structures. For some of them, the
factorization (1.1) has been studied: the HSS structure is considered in [17, 14] and
the HODLR structure is considered in [1]. The intricate relationship between differ-
ent structures is discussed in [6]. In particular, our recursively low-rank compressed
structure is almost equivalent to the HSS structure, except that we consider a slightly
more general compression tree. Both structures have an O(n) storage cost. However,
the factorization methods proposed in [17, 14] have an O(n2) time cost, whereas that
for ours is O(n). The HODLR structure differs from ours in that the bases are not
nested; hence, the storage and time costs are O(n logτ n), where τ are small integers.

For any compressed structure, one typical challenge is the loss of positive defi-
niteness. This issue is known when compressing the matrix [3] and when computing
the factorization [17]. Hence, some forms of compensation are used therein to ensure
robustness. Here, we consider the two problems, compression and factorization, sep-
arately. For compression, we assume that the matrix A has already been compressed
and is positive definite. Often, covariance matrices generated from kernels have tiny
eigenvalues when the matrix is large. These eigenvalues may appear negative even
when they are computed by using the most robust eigen solver, and they may also
cause a breakdown for the Cholesky factorization. Thus, adding an appropriate pos-
itive constant to the diagonal becomes imperative. Whereas such a “regularization”
approach may seem artificial, the constant is meaningful in the context of Gaussian
processes—it models the variance of measurement error [15, 16]. The constant com-
pensates the loss of positive definiteness caused by compression.

Once we have constructed a positive definite A (in a numerical sense), our task
is to compute the factorization (1.1) in a stable manner. The method proposed here
does not need any form of compensation. We demonstrate in the experiments that
the factorization error is comparable with that of the standard Cholesky factorization.
Traditionally, the error in the linear system solution is another metric for quantifying
the accuracy of a Cholesky factorization. In our case, however, the factorization is not
used for solving linear systems; thus, we do not consider such an error metric here.
One may refer to the O(n) matrix inversion algorithm proposed in [6] for solving
linear systems.

For the application of Gaussian sampling, other numerical methods exist. A class
of methods treats the problem as computing A1/2y + µ. Several iterative methods
for computing A1/2y take a “matrix-free” form [12, 7, 8]. That is, the matrix A may
not be explicitly stored, as long as matrix-vector products with A can be efficiently
computed. The methods in [12, 7, 8] all approximate A1/2y by p(A)y, where p is some
function that converges to the square root. In [12], p is a rational polynomial resulting
from a quadrature evaluation of the contour integral that expresses the square root on
the complex plane. In [7], p is the least squares polynomial given a specially designed
L2 inner product. In [8], p is the Krylov polynomial that interpolates the Ritz values;
these values converge to the eigenvalues of A in a Lanczos procedure. Each method
has several pros and cons and we do not expand the discussion of these methods in
the current paper.

We will first review the recursively low-rank compressed structure [6] in Sec-
tion 2. To be general, we lay all the discussions in the context of complex matrices,

SQUARE ROOT FACTORIZATION FOR COMPRESSED MATRICES 3

even though kernel matrices are often real. Then, we sketch the algorithm for com-
puting (1.1) in Section 3. Similar to the algorithms consdiered in [6], the algorithm
proposed here exploits the recurrence relation between two consecutive levels of the
tree. Some technical complication exists, however, in the computation that satisfies
the recurrence relation. Hence, we devote separately Sections 4 and 5 to discuss fur-
ther details. Then, the full algorithm is presented in Section 6, with cost analysis in
Section 7. We briefly discuss the generation of a positive definite matrix in Section 8.
In Section 9, we show comprehensive numerical results, including the application of
Gaussian sampling, to demonstrate the usefulness of the proposed algorithm. We
conclude in Section 10.

2. Recursively low-rank compressed matrix. The compression structure
begins with a partitioning tree.

Definition 2.1. A rooted tree T is called a partitioning tree of a set I of indices
if

1. no nodes have exactly one child;
2. the root contains I;
3. the children of a nonleaf node i constitutes a partitioning of the set of indices

i contains.
Figure 2.1(a) shows an example. A partitioning tree is almost as general as an

arbitrary rooted tree, except for the first requirement that every nonleaf node must
have more than one child. Based on this structure, a recursively low-rank compressed
matrix is defined.

1

2

5 6 7

3 4

8 9

(a) Partitioning tree T

A55 A56 A57

A65 A66 A67

A75 A76 A77

A88 A89

A98 A99

A23 A24

A32 A33 A34

A42 A43

(b) Recursively low-rank compressed matrix A

Fig. 2.1. A tree and the matrix it represents.

Definition 2.2. For every partitioning tree T of a set of indices {1, . . . , n} and
for a constant positive integer r, there defines the structure of a recursively low-rank
compressed matrix A ∈ Cn×n such that

1. for every node i, Aii is defined as A(Ii, Ii), where Ii denotes the collection of
indices i contains;

2. for every pair of siblings i and j in the tree, Aij is defined as A(Ii, Ij);
3. every such matrix block Aij admits a factorization

Aij = UiΣijV
∗
j , (2.1)

4 J. CHEN

where Σij ∈ Cr×r;
4. for every Ui in (2.1), if i has a child k, there exists Wki ∈ Cr×r such that

Ui(Ik, :) = UkWki; (2.2)

similarly, for every Vj in (2.1), if j has a child k, there exists Zkj ∈ Cr×r such that

Vj(Ik, :) = VkZkj . (2.3)

Conceptually, r is small as in “low” rank; however, we impose no constraints on
the magnitude of r. An example of the matrix corresponding to the partitioning tree
in Figure 2.1(a) is shown in (b). Hidden in the labeling are A22, which consists of the
3× 3 blocks at the top left corner, and A44, which consists of the 2× 2 blocks at the
lower right corner. Clearly, the whole matrix is A11, since node 1 is the root.

It was found [6] that for some matrix operations, it is necessary to decompose the
diagonal blocks Aii in a manner that remedies the effect of ill conditioning. Hence, we
augment Definition 2.2 with one additional requirement. Note that Definition 2.2 has
already completely defined the matrix; the augmentation only serves computational
purposes.

Definition 2.3. The structure of recursively low-rank compressed matrix is
augmented such that for every node i, there exists Bii, which has the same size as
Aii, and Σii ∈ Cr×r such that

Aii = Bii + UiΣiiV
∗
i . (2.4)

One can naively set Σii = 0 and hence Bii = Aii. Using a Σii such that Bii
is well conditioned, however, significantly boosts the numerical stability of several
matrix operations.

The matrix components in Definitions 2.2 and 2.3 are stored with the partitioning
tree in Definition 2.1.

1. For every leaf node i, Aii is stored with the node. For nonleaf nodes i, Aii
needs not be stored.

2. The Bii matrices need not be stored.
3. For every leaf node i, Ui and Vi are stored with the node. For nonleaf nodes

i, Ui and Vi need not be stored.
4. For every pair of sibling nodes i and j, Σij is stored with their parent node.
5. For every node i, Σii is stored with the node itself. It is not stored with the

parent node of i because the root does not have a parent.
6. For evert pair of parent node i and child node k, Wki and Zki are stored with

the child node.

Figure 2.2 illustrates the storage for the example matrix in Figure 2.1. In the
balanced case (when the tree is a full and complete s-ary tree and each leaf node
contains n0 indices), the number of tree nodes is O(n · s/n0) and thus storing the
matrix takes space

O(n · (r + n0 + s2r2/n0)).

The matrix operations considered in [6], including matrix-vector multiplication, ma-
trix inversion, and determinant computation, all have an O(n) time cost.

SQUARE ROOT FACTORIZATION FOR COMPRESSED MATRICES 5

A55, U5, V5

Σ55, W52, Z52

A66, U6, V6

Σ66, W62, Z62

A77, U7, V7

Σ77, W72, Z72

A88, U8, V8

Σ88, W84, Z84

A99, U9, V9

Σ99, W94, Z94

A33, U3, V3

Σ33, W31, Z31

Σ56, Σ57, Σ65

Σ67, Σ75, Σ76

Σ22, W21, Z21

Σ89, Σ98

Σ44, W41, Z41

Σ23, Σ24, Σ32

Σ34, Σ42, Σ43

Σ11

1

2 3 4

5 6 7 8 9

Fig. 2.2. Data stored in the tree of Figure 2.1.

3. Computing factorization (1.1). We are to describe an algorithm for com-
puting the square-root factorization (1.1) also in O(n) time cost. We repeat the
essential identities in Definitions 2.2 and 2.3 for a Hermitian matrix A:

Aij = UiΣijU
∗
j with Σij = Σ∗ji for sibling pair i and j, (3.1)

Aii = Bii + UiΣiiU
∗
i with Bii and Σii Hermitian, (3.2)

Ui(Ik, :) = UkWki for parent i and child k. (3.3)

The objective is to construct G such that

Gij = UiΩijV
∗
j for sibling pair i and j, (3.4)

Gii = Cii + UiΩiiV
∗
i , (3.5)

Ui(Ik, :) = UkWki and Vi(Ik, :) = VkZki for parent i and child k. (3.6)

Note that the components Ui and Wki of A are reused in G.
The strategy for constructing such a G is inductive. In the base step, we construct

the factorization Bkk = GkkG
∗
kk for all leaf nodes k. Then, suppose the factorization

Bjj = GjjG
∗
jj has been constructed for all children j of some node i, we construct

the factorization Bii = GiiG
∗
ii. Such an inductive step necessarily modifies the Gjj

blocks and fills the Gjj′ blocks for all sibling pairs j and j′. Finally in the concluding
step, we reach the root node p and construct Bpp = GppG

∗
pp. Then, we update Gpp

such that App = GppG
∗
pp, hence completing the construction.

The above algorithmic sketch immediately opens a number of technical develop-
ments for each step. The base step is simply a Cholesky factorization, but it requires
that Bkk is positive definite. If this requirement is not met, we can modify Σkk to
ensure so. See (3.2) and change the subscript notation from i to k. We can always
subtract a positive diagonal from Σkk to increase the eigenvalues of Bkk. The detail
of such a modification is presented in Section 5.

6 J. CHEN

For the inductive step, we establish recurrence relations concerning two consec-
utive levels of the tree. We write Aii in the following two forms, which naturally
equate:

Bii + UiΣiiU
∗
i and

Bjj . . .

Bj′j′

+

Uj . . .

Uj′

Λ

U
∗
j

. . .

U∗j′

 ,
where Λ is a block matrix with the (j, j′) block being Σjj′ . Then, clearly,

Bii =

Bjj . . .

Bj′j′

+

Uj . . .

Uj′

Λ

U
∗
j

. . .

U∗j′

 , (3.7)

where the block matrix Λ is defined as

(j, j′) block of Λ = Σjj′ −WjiΣiiW
∗
j′i. (3.8)

We also write Gii as

Gii =

Gjj . . .

Gj′j′

+

Uj . . .

Uj′

D
V
∗
j

. . .

V ∗j′

 , (3.9)

where D is a block matrix with the (j, j′) block being Ωjj′ . The computed Gjj in the
lower level assume the role of Cjj in (3.5).

Based on (3.7) and (3.9), one set of sufficient conditions for Bii = GiiG
∗
ii to hold

is that

GjjVj = Uj (3.10)

and

Λ = D +D∗ +DΞD∗, (3.11)

where

Ξ =

Θj

. . .

Θj′

 and Θj = V ∗j Vj for all j ∈ Ch(i). (3.12)

Changing the index j in (3.10) to i and substituting (3.9) into the changed (3.10), we
obtainGjjVjZji. . .

Gj′j′Vj′Zj′i

+

Uj . . .

Uj′

D
V
∗
j VjZji

. . .

V ∗j′Vj′Zj′i

 =

 UjWji

...
Uj′Wj′i

 .
A sufficient condition for this equality to hold is

(I +DΞ)

Zji...
Zj′i

 =

Wji

...
Wj′i

 . (3.13)

SQUARE ROOT FACTORIZATION FOR COMPRESSED MATRICES 7

Hence, we solve (3.11) for D and then use D to solve (3.13) for the stack of blocks
Zji. Then, we compute Θi through the recurrence

Θi = V ∗i Vi =
∑

j∈Ch(i)

Z∗jiV
∗
j VjZji =

∑
j∈Ch(i)

Z∗jiΘjZji,

based on the computed Zji factors and the Θj ’s. In light of (3.9), the (j, j′) blocks
of D serve as Ωjj′ , including the case j = j′. In addition, the (j, j) blocks of D are
used to update the corresponding Gjj blocks, such that they become the correct (j, j)
blocks of Gii. The method for solving (3.11) is discussed in Section 4.

In the concluding step, we have already constructed Bpp = GppG
∗
pp. We want to

update Gpp such that App = GppG
∗
pp. For this, we write

Bpp + UpΣppU
∗
p = App = (Gpp + UpDV

∗
p)(G∗pp + VpD

∗U∗p). (3.14)

Because Bpp is equal to GppG
∗
pp before the update, then in order for (3.14) to hold,

it suffices to find D that solves

Σpp = D +D∗ +DΘpD
∗.

This equation has exactly the same form as (3.11). Hence, by using the same technique
(to be presented in Section 4), we obtain D. Such D is used to update Gpp.

We have seen that all the (j, j) blocks of D are used to update the (j, j) blocks
of the intermediate Gii’s, and in the concluding step, D is used to update Gpp. For
any pair of sibling nodes k and l that are descendants of j, the update reads

(k, l) block of Gii = [(k, l) block of Gjj] + Uj(Ik, :)DjjVj(Il, :)
∗.

Let (j, j1, . . . , js) be the path connecting j and the parent js of k and l. We expand
the above formula as

(k, l) block of Gii = [(k, l) block of Gjj] + UkWkjs · · ·Wj1jDjjZ
∗
j1j · · ·Z

∗
ljsV

∗
l .

Hence, to update the block, all we need to do is to update Ωkl:

Ωkl ← Ωkl +Wkjs · · ·Wj1jDjjZ
∗
j1j · · ·Z

∗
ljs .

Performing updates in this manner is, however, expensive. For a fixed pair k, l,
this correction must be applied every time we construct Gii, for all nodes i that
are at least two levels above k, l. The repeating updates on the same block can
be consolidated to only once. To this end, we define a correction term Ekl that is
initialized as

Ekl ←WkjDjjZ
∗
lj ,

where j denotes the parent of k and l. The initialization is performed immediately
after D is computed. Then, moving up the tree levels until reaching j = root p, we
perform a one-pass cascading correction top-down. The correction term is updated
as

Ekl ← Ekl +WkjEjjZ
∗
lj .

8 J. CHEN

Assuming that Ejj has accumulated all the required corrections to Ωjj , the term Ekl
updated in this way will accumulate all the required corrections to Ωkl. Thus, we
correct Ωkl by using

Ωkl ← Ωkl + Ekl.

At the bottom level (a leaf node k with k = l), Ωkk is updated by using the same
formula. In addition,

Gkk ← Gkk + UkΩkkV
∗
k ,

which concludes all the updates.

4. Solving (3.11). In the real case, (3.11) is in the form of a continuous-time
algebraic Riccati equation (CARE). The Schur method [13, 2] is the most robust
method for solving a CARE to date. We adopt the same rationale of the method
and argue that it applies to the complex case, too. The following theorem suggests a
Hermitian solution to (3.11).

Theorem 4.1. If all the eigenvalues of I + ΞΛ are positive, then there admits a
Schur decomposition[

I Ξ
Λ −I

] [
Q11 Q12

Q21 Q22

]
=

[
Q11 Q12

Q21 Q22

] [
S11 S12

0 S22

]
, (4.1)

where the matrix containing the Qij blocks is unitary, S11 and S22 are strictly upper
triangular, the diagonal of S11 is positive, and the diagonal of S22 is negative. In this
case, (3.11) has a solution D = Q21Q

−1
11 and moreover, D is Hermitian.

Proof. Let

M =

[
I Ξ
Λ −I

]
.

Note that for any λ, det(λI−M) = det(λ2I−(I+ΞΛ)). Hence, if all the eigenvalues of
I+ΞΛ are positive, the eigenvalues of M are real. Moreover, the positive and negative
eigenvalues come in pairs. Thus, M admits a Schur decomposition MQ = QS, where
Q is unitary, S is upper triangular, and all the diagonal elements of S are real. The
diagonal can always be reordered by using unitary transformations while maintaining
the upper triangularity of S. Then, we reorder S such that the positive eigenvalues
appear in the first part of the diagonal. Such a reordering result is (4.1).

We consider the part of (4.1) that corresponds to the invariant subspace associated
with S11: [

I Ξ
Λ −I

] [
Q11

Q21

]
=

[
Q11

Q21

]
S11.

We multiply a common factor to the left and obtain

[
Q∗11 Q∗21

] [−I
I

] [
I Ξ
Λ −I

] [
Q11

Q21

]
=
[
Q∗11 Q∗21

] [−I
I

] [
Q11

Q21

]
S11.

Since the left-hand side of the above equation is Hermitian, so must be the right-hand
side, which is simplified to (Q∗11Q21 − Q∗21Q11)S11. Because S11 is upper triangular

SQUARE ROOT FACTORIZATION FOR COMPRESSED MATRICES 9

with diagonal elements having the same sign, and because Q∗11Q21 −Q∗21Q11 is skew
Hermitian, we can verify entry-by-entry that

Q∗11Q21 −Q∗21Q11 = 0. (4.2)

Then, by the unitarity of the matrix consisting of the Qij blocks (i.e., Q∗11Q12 +
Q∗21Q22 = 0), we obtain

−Q12Q
−1
22 = Q21Q

−1
11 . (4.3)

Combining (4.2) and (4.3), we have

Q21Q
−1
11 = (Q21Q

−1
11)∗. (4.4)

On the other hand, multiplying common factors to both sides of (4.1), we obtain

[
0 −Q−∗22

] [Q∗11 Q∗21
Q∗12 Q∗22

] [
I Ξ
Λ −I

] [
Q11 Q12

Q21 Q22

] [
Q−111

0

]
=
[
0 −Q−∗22

] [S11 S12

0 S22

] [
Q−111

0

]
.

Simplifying the equation yields

[
−Q−∗22 Q∗12 −I

] [I Ξ
Λ −I

] [
I

Q21Q
−1
11

]
= 0.

Thus, by letting

D = −Q−∗22 Q∗12 = (Q21Q
−1
11)∗,

we have [
D −I

] [I Ξ
Λ −I

] [
I
D∗

]
= 0,

which is exactly the equation (3.11). Clearly, D is Hermitian in light of (4.4).
One must pay special attention to the Schur decomposition when implementing

different cases. In the real case, we use the real Schur decomposition (LAPACK
routine DGEES) so that the unitary matrix is real. In the complex case, we use the
usual Schur decomposition (LAPACK routine ZGEES). Both resulting Schur forms are
upper triangular with a real diagonal, as guaranteed by Theorem 4.1.

The remaining question is how to ensure that the condition of Theorem 4.1 holds.
Recall that at the beginning of Section 3, we mention that for all leaf nodes k, Bkk
may need to be modified to attain positive definiteness. In fact, the modification must
be applied on all tree nodes.

Theorem 4.2. The eigenvalues of I+ΞΛ are positive if and only if Bii is positive
definite.

Proof. Based on (3.8) and (3.12), we expand I + ΞΛ as

I +

V
∗
j Vj

. . .

V ∗j′Vj′

Λ−

V
∗
j Vj

. . .

V ∗j′Vj′


Wji

...
Wj′i

Σii
[
W ∗ji · · · W ∗j′i

]
.

Let EIG(·) denote the set of eigenvalues of a matrix. We will invoke a well known
result, which states that EIG(I+XY) is either a superset or a subset of EIG(I+Y X),

10 J. CHEN

and the set difference between the two consists of element(s) 1. Hence, the eigenvalues
of I + ΞΛ are positive if and only if the Hermitian matrix

I +

Vj . . .

Vj′

Λ

V
∗
j

. . .

V ∗j′

−
VjWji

...
VjWj′i

Σii
[
W ∗jiV

∗
j · · · W ∗j′iV

∗
j′
]

(4.5)

is positive definite. Because the Gjj ’s are square and nonsingular, we can multiply
the block diagonal matrix diag[Gjj] to the left of (4.5) and multiply diag[G∗jj] to the
right; then, the result will not change the definiteness. By noting that GjjVj = Uj ,
the multiplication result isGjjG

∗
jj

. . .

Gj′j′G
∗
j′j′

+

Uj . . .

Uj′

Λ

U
∗
j

. . .

U∗j′

− UiΣiiU∗i .
This result is simply Bii, hence concluding the proof.

As a result, it suffices to modify Bii to ensure that the condition of Theorem 4.1
holds. Because both Bii and Λ are determined by Σii, equivalently, we can modify Λ
to achieve the same effect.

The Schur method suggested by Theorem 4.1 for solving (3.11) is generally not
the most economic—a price paid for robustness. Other methods exist based on fac-
torizations of smaller matrices. For example, because Ξ is positive semidefinite, we
may write Ξ = RR∗ for some R. Then, (3.11) leads to

I +R∗ΛR = (I +R∗DR)(I +R∗DR)∗.

Hence, writing I + R∗ΛR = SS∗, we obtain a solution D = R−∗(S − I)R−1. The
factorizations of Ξ and I+R∗ΛR can be derived from Cholesky, eigen-decomposition,
or even QR factorization, each of which results in a slightly different cost for finally
obtaining D. When Ξ is singular, it suffices to replace the inverse in D by pseu-
doinverse with a careful examination of the null space. The disadvantage of these
methods, however, is that they are generally not as robust as the Schur method. A
similar discussion is held in [2].

5. Modifying Σii. We have seen in both Sections 3 and 4 that Bii must be
modified to ensure positive definiteness for all nodes i, if it was not so originally.
The modification is achieved by subtracting a positive constant diagonal from the
corresponding Σii; that is, new Σii ← Σii − tI, t > 0. This section presents methods
for computing a reasonable t. The cases for Sections 3 and 4 are separate.

Section 3 concerns leaf nodes i. The goal is to find a positive value t such that

new Bii ← Aii − Ui(Σii − tI)U∗i

is positive definite. Let λ be the smallest eigenvalue of the matrix pencil

(Aii − UiΣiiU∗i , UiU∗i),

and assume that λ is nonpositive (otherwise, the original Bii is already positive def-
inite). Clearly, all t greater than −λ will make the new Bii positive definite. Hence,
a straightforward approach is to let t = −cλ for some c > 1. Numerical experiments
suggest that setting c close 1, e.g., 1.5, is often sufficient.

SQUARE ROOT FACTORIZATION FOR COMPRESSED MATRICES 11

A more sophisticated approach that concerns numerical stability is to recall that
the Cholesky factor Gii of Bii is used to compute Vi = G−1ii Ui. Thus, we want the
new Bii to be as well conditioned as possible. This requirement leads to

t = argmin
t>−λ

f(t) where f(t) = cond(Aii − Ui(Σii − tI)U∗i). (5.1)

When t > −λ, the matrix Aii−Ui(Σii− tI)U∗i is always positive definite. Hence, the
singular values coincide with the eigenvalues. Then, by the continuity of the extreme
eigenvalues, the condition number of the matrix is continuous. In this case, several
optimization algorithms are applicable for solving (5.1), including the interior point
algorithm and the sequential quadratic programming algorithm [4]. A drawback of
this approach is that solving (5.1) requires repeatedly computing condition numbers,
which may be very expensive.

Section 4 concerns nonleaf nodes i. Because Σii directly affects Λ (cf. (3.8)) and
because Λ is the only modifiable component in I + ΞΛ, we modify Λ to attain the
positive definiteness of Bii (cf. Theorem 4.2). To be specific, we find a positive value
t and renew Λ as Λ + tWW ∗ such that the eigenvalues of

I + Ξ(Λ + tWW ∗)

are all positive, where

W =

Wji

...
Wj′i

 .
Let λ be the smallest eigenvalue of the matrix pencil

(I + ΞΛ, ΞWW ∗), (5.2)

and assume that λ is nonpositive. Clearly, any t > −λ will ensure that the eigenvalues
of I + Ξ(Λ + tWW ∗) are positive.

As in the preceding discussion, we may simply set t = −cλ for some c > 1.
Alternatively, we may impose a requirement that improves numerical behavior. For
example, we would like a t that minimizes the conditioning of the Riccati equa-
tion (3.11). Unfortunately, such a requirement does not seem practically addressable.
It was pointed out that “several proposed condition numbers . . . are compared and
all are shown to have deficiencies for some classes of problems” [2]. In light of this
difficulty, we elect an artificial requirement similar to (5.1):

t = argmin
t>−λ

f(t), f(t) = cond(I + Ξ(Λ + tWW ∗)). (5.3)

Such a requirement has the same drawback as (5.1) does: The optimization of the
condition number is costly.

A numerical issue for computing the smallest eigenvalue λ of the matrix pen-
cil (5.2) is that both matrices in the pencil are nonHermitian. Hence, reliably com-
puting the eigenvalues is sometimes difficult. A more robust approach is to prepro-
cess the pencil by symmetrization. For this, we let Ξ = Y Y ∗. Then, the eigenvalues
of (5.2) are the same as those of the pencil

(I + Y ∗ΛY, Y ∗WW ∗Y). (5.4)

12 J. CHEN

The computed eigenvalues of (5.4) are more reliable.
It is worth noting that if the Σii’s are all zero, then the Bii’s are positive definite

(because Bii = Aii) and thus we do not need to modify any of them. In other
words, the computations of the smallest eigenvalues are waived. Experimental results,
however, generally favor the approach of maintaining the nonzero definitions of Σii
and modifying Σii to ensure positive definiteness.

6. Formal algorithm. We summarize the overall calculation (Sections 3 to 5)
in Algorithm 1. For implementation, we first need to augment the tree data structure
discussed in Section 2 for storing intermediate results:

1. Θi ∈ Cr×r, for all nodes i, and
2. Ejj′ ∈ Cr×r, for all sibling pairs j, j′, including j = j′.

Naturally, Θi is stored with the node i. For the Ejj′ ’s, in order to be consistent with
the storage of the Ωjj′ ’s, Ejj′ is stored with the parent node of j and j′ when j 6= j′,
but is otherwise stored with the node j itself when j = j′. Because the storage added
to each node is constant, and because the number of tree nodes is O(n), clearly the
augmented data structure maintains the O(n) complexity.

Algorithm 1 comprises two parts, an upward pass and a downward pass. The up-
ward pass is a postorder tree traversal, where components Ωjj′ and Zji are computed
at the child level and the calculation moves up to the parent level. At the beginning
of the pass, the components Vk for all leaf nodes k are computed and the components
Gkk are initialized. During the pass, the correction terms Ekl are also initialized.

The downward pass is a preorder tree traversal, where the correction terms Ejj′

and the components Ωjj′ are updated at the parent level and the calculation moves
down to the child level. At the end of the pass, the components Gkk for all leaf nodes
k are also updated. This concludes the calculation.

The resulting matrix G carries over the components Ui and Wki from A.
In the two passes, the subroutine SolveRiccati solves the Riccati equation (Sec-

tion 4) and the subroutines Modify1 and Modify2 modify the Σii’s (Section 5).
Modify1 is responsible for the case when i is a leaf, and Modify2 is responsible for
the other case.

7. Cost analysis. We base the analysis on the context of a balanced partitioning
tree, where the tree is a full and complete s-ary tree and each leaf node contains n0
indices. The time cost of the overall algorithm is thus O(n), because the work at each
tree node is constant and there are O(n) nodes.

We perform a deeper analysis and calculate the prefactor hidden in the O(n)
notation. First, we consider the cost of three subroutines. Modify1 works on a
matrix Aii that has a size n0×n0; thus, the cost is O(n30). Similarly, Modify2 works
on a matrix Λ that has a size sr × sr and thus the cost is O((sr)3). The subroutine
SolveRiccati clearly has a cost O((2sr)3).

Then, we break the work of the overall algorithm in two parts—that for the leaf
nodes and that for the nonleaf nodes. The work for leaf nodes contains the first “if”
clause in both subroutines Upward and Downward. Not counting the work for
Modify1, the cost per leaf node is O(n30 + n20r + n0r

2). Then, including Modify1,
the total work for all leaf nodes is

O(n/n0 · (n30 + n20r + n0r
2)), (7.1)

because there are n/n0 leaf nodes.
The work for nonleaf nodes include the rest of Upward below line 12 and the

rest of Downward below line 33. The work is dominated by the calculations with

SQUARE ROOT FACTORIZATION FOR COMPRESSED MATRICES 13

Algorithm 1 Factorizing A = GG∗ for a Hermitian positive definite A

1: Copy all components Ui and Wki to G

2: Upward(root)

3: Downward(root)

4: subroutine Upward(i)

5: if i is leaf then

6: Modify Σii by using subroutine Modify1(Aii, Ui, Σii)

7: Factorize Aii − UiΣiiU∗i = GiiG
∗
ii; Vi ← G−1ii Ui; Θi ← V ∗i Vi; return

8: end if

9: for all children j of i do

10: Upward(j)

11: end for

12: Build the block matrix Λ and the diagonal-block matrix Ξ where

(j, j′) block of Λ = Σjj′ −WjiΣiiW
∗
j′i,

(j, j) block of Ξ = Θj .

13: Modify Σii by using subroutine Modify2(Λ, Ξ, Wji, ∀j ∈ Ch(i))

14: Recompute Λ by using the modified Σii
15: Solve the equation Λ = D +D∗ +DΞD∗ for D by SolveRiccati(Λ, Ξ)

16: for all children j, j′ of i (including j = j′) do Ωjj′ ← Djj′ end for

17: for all children j of i do

18: Ekl ←WkjΩjjZ
∗
lj for all children k, l of j (including k = l)

19: end for

20: Compute Zji...

Zj′i

← (I +DΞ)−1

Wji

...

Wj′i

 .
21: Compute Θi ←

∑
j∈Ch(i) Z

∗
jiΘjZji

22: if i is root then

23: Perform the calculation in line 15, where Λ = Σii and Ξ = Θi

24: Ωii ← D

25: Ejj′ ←WjiΩiiZ
∗
j′i for all children j, j′ of i (including j = j′)

26: Eii ← 0

27: end if

28: end subroutine

Continued in Algorithm 2...

matrices of size sr × sr. Then, the cost per nonleaf node is O((sr)3). Considering
that the number of nonleaf nodes is O(n/n0) and that subroutines Modify2 and

14 J. CHEN

Algorithm 2 Factorizing A = GG∗, continued from Algorithm 1

29: subroutine Downward(i)

30: if i is leaf then

31: Gii ← Gii + UiΩiiV
∗
i

32: else

33: for all children j, j′ of i (including j = j′) do

34: Ejj′ ← Ejj′ +WjiEiiZ
∗
j′i

35: Ωjj′ ← Ωjj′ + Ejj′

36: end for

37: for all children j of i do Downward(j) end for

38: end if

39: end subroutine

40: subroutine Modify1(Aii, Ui, Σii)

41: Compute the smallest eigenvalue λ of (Aii − UiΣiiU∗i , UiU∗i)

42: if λ > 0 then

43: set t← 0

44: else

45: Set t← −cλ for some c > 1 . more efficient

or set t← argmint>−λ cond(Aii − Ui(Σii − tI)U∗i) . better conditioned

46: end if

47: return Σii ← Σii − tI
48: end subroutine

Continued in Algorithm 3...

SolveRiccati are called, we have the total work for all nonleaf nodes

O(n/n0 · s3r3). (7.2)

Summing (7.1) and (7.2), the time cost of the overall algorithm is

O(n · (n20 + n0r + r2 + s3r3/n0)).

8. Generation of compressed matrix. In this section, we consider two set-
tings for generating a recursively low-rank compressed matrix A that is Hermitian
positive definite.

A random matrix is useful for numerically verifying the correctness of the pro-
posed algorithm. Following the method in Appendix A of [6], we first construct a
random tree. With certain probability, a node can span a number of children, where
the number randomly falls in a prescribed range. Then, we instantiate the random
components of the matrix in the tree. In order for the matrix to be Hermitian, the
Uk components must be the same as Vk, Wki be the same as Zki, and Σij be the same
as Σ∗ji, including the case i = j.

Positive definiteness requires additional efforts. For a nonleaf node i, recall

Aii =

Bjj . . .

Bj′j′

+

Uj . . .

Uj′

Λ

U
∗
j

. . .

U∗j′

 , (8.1)

SQUARE ROOT FACTORIZATION FOR COMPRESSED MATRICES 15

Algorithm 3 Factorizing A = GG∗, continued from Algorithm 2

49: subroutine Modify2(Λ, Ξ, Wji, ∀j ∈ Ch(i))

50: Let the vertical stacking of Wji be W

51: Perform factorization Ξ = Y Y ∗

52: Compute the smallest eigenvalue λ of (I + Y ∗ΛY, Y ∗WW ∗Y)

53: if λ > 0 then

54: set t← 0

55: else

56: Set t← −cλ for some c > 1 . more efficient

or set t← argmint>−λ cond(I + Ξ(Λ + tWW ∗)) . better conditioned

57: end if

58: return Σii ← Σii − tI
59: end subroutine

60: subroutine SolveRiccati(Λ, Ξ)

61: Perform Schur decomposition with reordering of eigenvalues[
I Ξ

Λ −I

] [
Q11 Q12

Q21 Q22

]
=

[
Q11 Q12

Q21 Q22

] [
S11 S12

0 S22

]
,

such that S11 is strictly upper triangular and its diagonal is positive.

62: return D ← Q21Q
−1
11

63: end subroutine

where Λ is a block matrix with the (j, j′) block being Σjj′ . Hence, for A to be positive
definite, it suffices to let all such Λ be positive definite, and in addition, let Bkk be
positive definite for all leaf nodes k. View (8.1) in a recursive manner and assume that
j is a leaf. In the leaf level, Bjj is initially instantiated as a random positive definite
matrix. Then, in the parent level i, a Hermitian positive definite term UjΣjj′U

∗
j is

added to Bjj . Moving up along the tree, in every level a Hermitian positive definite
term will be added to Bjj . After the accumulation of the terms in all levels, Bjj
becomes the final Ajj . The recursive accumulation can be done in a manner similar
to the calculation of the correction terms in the factorization algorithm, which makes
the matrix generation process O(n).

Another setting for generating A is the compression of a kernel matrix Φ. We
follow Appendix B of [6] to perform such a compression. The basic idea is a k-d tree
partitioning of the point set with a Chebyshev interpolation of the kernel [5, 10]. As
explained in Section 1, a regularization term δ is always present in the kernel. Such
a term ensures the positive definiteness of A.

9. Numerical experiments. In this section, we show a comprehensive set of
experiments to demonstrate the numerical behavior and the computational cost of
the proposed algorithm. We also display results of a sampling application. The pro-
gram is written in C++, where the basic matrix operations are called from BLAS
and LAPACK provided by Intel MKL. The modifications of Σii are all done by set-
ting t = −1.5λ without performing optimization. The results for using optimizations
are similar, but the time cost is substantially higher. We add a subscript to G to
distinguish the factorization results from different methods: “Chol” means the stan-

16 J. CHEN

dard Cholesky factor, and “Alg1” means the square-root factor computed by using
Algorithm 1. The machine precision eps = 2.2e-16.

9.1. Random complex matrix. We first experiment with a random complex
matrix of size approximately 2, 000. The parameters for generating this matrix are
given in the caption of Table 9.1. The matrix is ill-conditioned, with a 2-norm condi-
tion number 1.4e+09.

Table 9.1
Computation results for a random matrix. n = 1, 996. Parameters: budgeted number of leaves

= 50, probability p = 0.5, range of number of children [3, 5], range of leaf size [30, 50], rank r = 10.

cond2(A) 1.4e+09 ‖A−GCholG
∗
Chol‖F /

√
n 3.2e-10

‖A−GAlg1G
∗
Alg1‖F /

√
n 9.4e-08

abs[b∗Ab− ‖G∗Cholb‖22] 2.8e-10

abs[b∗Ab− ‖G∗Alg1b‖22] 1.3e-10

By construction, the Bii’s are all positive definite, hence we see that no Σii is
modified. The solutions to the Riccati equation (3.11) all attain a 2-norm residual on
the order of 1.0e-13.

We use two error metrics to evaluate the accuracy of the factorization. One is the
Frobenius norm of A − GG∗ normalized by

√
n; the other is the absolute difference

between b∗Ab and ‖G∗b‖22, where b is a normalized random vector from the standard
Gaussian. Both values are bounded by the 2-norm of A − GG∗; they are cheaper to
compute than the 2-norm. The second metric is ad hoc but it can be computed in
O(n) time. It is the only metric affordable to compute when n is large.

Table 9.1 shows the errors. For the first metric, the error produced by the pro-
posed algorithm is moderately close to that produced by the Cholesky factorization.
For the second metric, the errors are on the same order, with the one of the proposed
algorithm slightly better.

9.2. Kernel matrices. We experiment with three positive definite kernels. Re-
call that δ denotes the variance of measurement error in the context of Gaussian
processes. The Matérn kernel is defined as

φ(x,y) = Mν(x̂− ŷ) + δ(x̂, ŷ), (9.1)

where

Mν(r) =
‖r‖ν2Kν(‖r‖2)

2ν−1Γ(ν)
, x̂ =

[
x1
`1
, . . . ,

xd
`d

]
, δ(x,y) =

{
δ, x = y

0, x 6= y,

and Kν is the modified Bessel function of second kind of order ν. The hat notation on
top of a d-dimensional point x means scaling by the range parameters `1, `2, . . . , `d
along each coordinate. Hence, the kernel is anisotropic if the `i’s are different. Using
the same scaling notation, the Gaussian kernel is

φ(x,y) = G(x̂− ŷ) + δ(x̂, ŷ), where G(r) = exp(−‖r‖22/2). (9.2)

The Gaussian kernel is a Matérn kernel with order ν = ∞. The periodic Gaussian
kernel is defined as

φ(x,y) = P(x− y) + δ(x,y), where P(r) = `1 exp

(
− 1

`2

d∑
i=1

(sinπri)
2

)
. (9.3)

SQUARE ROOT FACTORIZATION FOR COMPRESSED MATRICES 17

This kernel is isotropic and it has a periodicity 1 along each dimension.
The computation results are summarized in Tables 9.2 to 9.4. Recall that Φ is

the kernel matrix and A is its recursively low-rank compression. The detailed settings
are given in the captions of the tables. The parameter k is the Chebyshev order in the
low-rank compression. Hence, the “rank” r is equal to (k + 1)d for a d-dimensional
kernel. The kernels are instantiated in one or two dimensions, the size of the matrices
ranges from 1,000 to 10,000, the regularization δ ranges from 10−4 to 10−2, and the
order of condition numbers ranges from 1.0e+05 to 1.0e+07. One of the compressions
(two-dimensional Gaussian) is highly accurate, whereas the other two are moderate.
The factorization errors under both metrics are comparable with those of the Cholesky
factorization.

Table 9.2
Computation results for a kernel matrix. 1D Matérn kernel (9.1). Points uniform on [0, 1].

Parameters: ν = 1, ` = 1, δ = 10−4, n = 1, 000, n0 = 60, k = 15.

‖A− Φ‖F
‖Φ‖F

5.0e-08
‖A−GCholG

∗
Chol‖F /

√
n 7.3e-15

‖A−GAlg1G
∗
Alg1‖F /

√
n 1.0e-11

cond2(Φ) 8.4e+06 abs[b∗Ab− ‖G∗Cholb‖22] 4.9e-15

cond2(A) 9.4e+06 abs[b∗Ab− ‖G∗Alg1b‖22] 3.7e-13

Table 9.3
Computation results for a kernel matrix. 2D Gaussian kernel (9.2). Points uniform on [0, 1]2.

Parameters: ` = [1; 2], δ = 10−4, n = 4, 000, n0 = 200, k = 15.

‖A− Φ‖F
‖Φ‖F

1.1e-14
‖A−GCholG

∗
Chol‖F /

√
n 1.0e-14

‖A−GAlg1G
∗
Alg1‖F /

√
n 6.3e-11

cond2(Φ) 3.6e+07 abs[b∗Ab− ‖G∗Cholb‖22] 3.1e-15

cond2(A) 3.6e+07 abs[b∗Ab− ‖G∗Alg1b‖22] 1.8e-13

Table 9.4
Computation results for a kernel matrix. 2D periodic Gaussian kernel (9.3). Points uniform

on [0, 1]2. Parameters: ` = [1; 2], δ = 10−2, n = 10, 000, n0 = 200, k = 15.

‖A− Φ‖F
‖Φ‖F

7.1e-07
‖A−GCholG

∗
Chol‖F /

√
n 1.4e-14

‖A−GAlg1G
∗
Alg1‖F /

√
n 9.7e-13

cond2(Φ) 6.3e+05 abs[b∗Ab− ‖G∗Cholb‖22] 1.8e-14

cond2(A) 6.9e+05 abs[b∗Ab− ‖G∗Alg1b‖22] 1.5e-14

9.3. Scaling. We use the two-dimensional periodic Gaussian kernel (9.3) to per-
form a scaling test by varying n from one thousand to one million. The loss in com-
pression becomes more and more severe when n grows, hence we use a sufficiently
large regularization (δ = 102) to ensure that the compressed matrix A is positive def-
inite for the largest n. The computations are serial (no multithreading). The timings
are plotted in Figure 9.1, with the settings given in the figure caption. We include
the matrix operations considered in [6] for comparison. Clearly, all matrix operations,

18 J. CHEN

including the square root factorization proposed in this paper, nicely follow the O(n)
trend. We see that performing square root factorization is more time consuming than
inverting the matrix and other operations. The factorization errors corresponding to
the six diamond dots from left to right, are 7.1e-14, 9.1e-12, 6.7e-12, 1.3e-11,
5.3e-12, and 2.5e-12, respectively. The error corresponds to the second metric
abs[b∗Ab− ‖G∗b‖22].

10
4

10
5

10
6

10
−2

10
0

10
2

10
4

Matrix size n

T
im

e
in

 s
ec

on
ds

A=GG*
inv(A)
Ab
tr(inv(A))
det(A)

Fig. 9.1. Running time versus matrix dimension n. 2D periodic Gaussian kernel (9.3). Points
uniform on [0, 1]2. Parameters: ` = [1; 2], δ = 102, n0 = 128, k = 10. Dashed lines indicate linear
scaling.

9.4. Application: Gaussian sampling. We sample a zero-mean Gaussian pro-
cess on [0, 1]2 with the two-dimensional periodic kernel (9.3). Although algorithms
for compressed matrices are generally intended for scattered points, for visualization
purpose, we sample an m×m regular grid. The coordinates of the grid points along
each dimension are 0, 1/m, 2/m, . . . , (m−1)/m. The two plots on the top row of Fig-
ure 9.2 are two examples, where m = 256 (hence n = 65, 536). Here, the measurement
error has a variance δ = 10−2.

How do we know that the computed results are what supposed to look like? We
examine three aspects. First, the factorization error (by using the second metric) is
1.2e-14, an indication of high accuracy. Second, the parallel sides of a square sample
match each other, indicating that periodicity is obeyed. Third, we use a different
method to generate samples and compare. Because of the periodicity of the kernel
and the regular grid structure, the uncompressed covariance matrix Φ is multilevel
circulant. Hence, we can use multidimensional FFT to diagonalize Φ and thus obtain
Φ1/2. Using this method, a Gaussian sample is generated, as shown in plot (c).
Because this method essentially computes a different factorization, it is practically
impossible to generate samples that match (a) or (b). Hence, the comparison focuses
on the pattern of randomness but not the numerical values. We see that plot (c) shares
many characteristics with (a) and (b): all plots have bulging peaks and valleys, and
they appear to be filled with the same level of salt-and-pepper noise. The “noise”
is caused by δ, which governs the variance of error. We make δ = 0 and use the
FFT method to regenerate the sample (see plot (d)). The contrast between (c) and
(d) clearly confirm the noise effect of δ. These three aspects together show that
the sampling results (a) and (b) computed by the proposed algorithm are reliable.

SQUARE ROOT FACTORIZATION FOR COMPRESSED MATRICES 19

Moreover, the presence of δ causes noise in the sample, which would have been a
smooth surface were δ = 0.

−1

−0.5

0

0.5

1

1.5

(a) Sample generated by Algorithm 1

−1.5

−1

−0.5

0

0.5

1

(b) Another sample generated by Algorithm 1

−2

−1.5

−1

−0.5

0

0.5

(c) Sample generated by FFT

−2

−1.5

−1

−0.5

0

0.5

(d) Sample generated by FFT, δ = 0

Fig. 9.2. Gaussian samples of the 2D periodic Gaussian kernel (9.3). Resolution 256 × 256.
Grid on [0, 1]2. Parameters: ` = [1; 2]. If δ 6= 0, then δ = 10−2.

10. Concluding remarks. We have developed an O(n) algorithm for factoriz-
ing a Hermitian positive definite matrix A into a square root form GG∗. The algo-
rithm is based on the recursively low-rank compressed data structure defined in [6]
and it returns a factor G with the same structure. The proposed algorithm carries
the same signature of all the algorithms in [6]: two tree traversals (first postorder,
then preorder) and local data dependence. Experimental results with both random
matrices and kernel matrices show that the accuracy of the factorization is compa-
rable with that of the standard Cholesky factorization, where the matrix is treated
fully dense. The proposed factorization can be used for generating samples from a
multivariate normal distribution or a Gaussian process, resulting in an overall O(n)
cost for sampling.

Challenges remain to ensure the positive definiteness of A in the compression
of a kernel matrix Φ. In this paper, the compression is done by using Chebyshev
interpolation [5, 10]. When the matrix size increases, the off-diagonal blocks gradually
lose accuracy when moving up along the tree levels. Because in the Fourier domain,
the tail of a positive definite kernel approaches zero, this means that Φ tends to
have tiny eigenvalues when the size increases. As a result, the compression may
cause loss of positive definiteness. In some applications, e.g., Gaussian processes, a
regularization term naturally appears in the model, hence positive definiteness may

20 J. CHEN

still be maintained. However, if the regularization is small (e.g., when data is close
to noise-free), the loss of positive definiteness becomes a roadblock. An immediate
future work is to design compression methods that better preserve the spectrum of
kernel matrices.

REFERENCES

[1] S. Ambikasaran and M. O’Neil, Fast symmetric factorization of hierarchical matrices with
applications. arXiv preprint arXiv:1405.0223, 2014.

[2] W. Arnold and A. J. Laub, Generalized eigenproblem algorithms and software for algebraic
Riccati equations, Proceedings of the IEEE, 72 (1984), pp. 1746–1754.

[3] M. Bebendorf and W. Hackbusch, Stabilized rounded addition of hierarchical matrices, Nu-
mer. Lin. Alg. Appl., 4 (2007), pp. 407–423.

[4] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, 2nd ed., 1999.
[5] S. Chandrasekaran, M. Gu, and T. Pals, A fast ULV decomposition solver for hierarchically

semiseparable representations, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 603–622.
[6] J. Chen, Data structure and algorithms for recursively low-rank compressed matrices, Tech.

Rep. ANL/MCS-P5112-0314, Argonne National Laboratory, 2014.
[7] J. Chen, M. Anitescu, and Y. Saad, Computing f(A)b via least squares polynomial approx-

imations, SIAM J. Sci. Comput., 33 (2011), pp. 195–222.
[8] E. Chow and Y. Saad, Preconditioned Krylov subspace methods for sampling multivariate

Gaussian distributions, SIAM J. Sci. Comput., 2 (2014), pp. A588–A608.
[9] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.

[10] W. Fong and E. Darve, The black-box fast multipole method, J. Comput. Phys., 228 (2009),
pp. 8712–8725.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
1996.

[12] N. Hale, N. J. Higham, and L. N. Trefethen, Computing Aα, log(A), and related matrix
functions by contour integrals, SIAM J. Numer. Anal., 46 (2008), pp. 2505–2523.

[13] A. J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Transcation on
Automatic Control, AC-24 (1979), pp. 913–921.

[14] S. Li, M. Gu, C. Wu, and J. Xia, New efficient and robust HSS Cholesky factorization of
SPD matrices, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 886–904.

[15] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.
[16] M. L. Stein, J. Chen, and M. Anitescu, Stochastic approximation of score functions for

Gaussian processes, Annals of Applied Statistics, 7 (2013), pp. 1162–1191.
[17] J. Xia and M. Gu, Robust approximate Cholesky factorization of rank-structured symmetric

positive definite matrices, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2899–2920.

