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Abstract
Anti-Money Laundering (AML) involves the identification of money
laundering crimes in financial activities, such as cryptocurrency
transactions. Recent studies advanced AML through the lens of
graph-based machine learning, modeling the web of financial trans-
actions as a graph and developing graph methods to identify sus-
picious activities. For instance, a recent effort on opensourcing
datasets and benchmarks, Elliptic2, treats a set of Bitcoin addresses,
considered to be controlled by the same entity, as a graph node and
transactions among entities as graph edges. This modeling reveals
the “shape” of a money laundering scheme—a subgraph on the
blockchain, such as a peeling chain or a nested service. Despite the
attractive subgraph classification results benchmarked by the paper,
competitive methods remain expensive to apply due to the massive
size of the graph; moreover, existing methods require candidate
subgraphs as inputs which may not be available in practice.

In this work, we introduce RevTrack, a graph-based framework
that enables large-scale AML analysis with a lower cost and a higher
accuracy. The key idea is to track the initial senders and the final
receivers of funds; these entities offer a strong indication of the
nature (licit vs. suspicious) of their respective subgraph. Based on
this framework, we propose RevClassify, which is a neural net-
work model for subgraph classification. Additionally, we address
the practical problem where subgraph candidates are not given,
by proposing RevFilter. This method identifies new suspicious sub-
graphs by iteratively filtering licit transactions, using RevClassify.
Benchmarking these methods on Elliptic2, a new standard for AML,
we show that RevClassify outperforms state-of-the-art subgraph
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classification techniques in both cost and accuracy. Furthermore,
we demonstrate the effectiveness of RevFilter in discovering new
suspicious subgraphs, confirming its utility for practical AML.
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1 Introduction
Money laundering, a financial crime, supports a range of destruc-
tive activities including human trafficking, drug trafficking, and
terrorism. Over 70% of criminal networks use money laundering to
fund their activities and conceal their assets [7]. This demonstrates
not only the extensive reach of money laundering across various
crimes but also the profound consequence, with estimated $3.1 tril-
lion in illicit funds flowed through the global financial system in
2023 [16]. The rise of cryptocurrencies has accelerated this issue,
with the number of victims and volume of dollar lost to crypto-
frauds doubling [17]. Worse, the pesudo-anonymous nature of the
technology offers the illegal activities an additional layer of protec-
tion. Combating financial crimes today is crucial and is considered
a matter of national security [18].

Driven by the need for better tools for anti-money launder-
ing (AML), the Elliptic dataset (henceforth referred to as Elliptic1)
was released in 2019, as the largest, publicly accessible, labeled
AML/cryptocurrency dataset at the time [23]. Elliptic1 is a graph,
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Figure 1: Terminology and examples of money laundering schemes.

comprising 204K crypto transactions as graph nodes and 234K
payment flows (the flows of every Bitcoin from one transaction
to the next) as directed edges. The machine learning task is node
classification—classifying the licit vs. illicit nature of each transac-
tion. While Elliptic1 gained significant traction in both the machine
learning and the AML communities, the task it supports is limited to
analyzing individual transactions, leaving the question of studying
more complex money laundering schemes unaddressed.

Money laundering schemes involve a series of financial trans-
actions that transform illegally obtained funds to apparently legal
accounts. In 2024, Elliptic2 was released in response to the need for
effective tools to unveil such complex patterns on the cryptocur-
rency blockchain [4]. Besides being a graph that is nearly three
orders of magnitude larger than Elliptic1, Elliptic2 models the trans-
action graph differently and features a different machine learning
task—subgraph classification. Specifically, each node represents a
financial entity on the blockchain and each edge aggregates transac-
tions between a pair of entities. Thus, a money laundering scheme
signifies a subgraph consisting of a series of transactions among
multiple entities, likely from criminal to legal.

Representing money laundering schemes as subgraphs allows
one to leverage the rapid progress of the field of graph-based ma-
chine learning [24, 28] to develop effective AML tools. In partic-
ular, subgraph classification is an emerging topic, which extends
the thoroughly studied tasks—node classification, edge prediction,
and graph classification—to yet another granularity of graphs—
subgraphs. Several subgraph neural network methods [1, 2, 22]
appear to be good candidates.

However, there are multiple challenges in subgraph AML. First,
crypto transaction graphs are massive. The cumulated number of
transactions on the blockchain exceeded one billion on May 05,
2024 [5]. Even with address and transaction aggregation, Elliptic2
includes nearly 50M nodes and 200M edges. Such a large scale costs
effective subgraph models, such as GLASS [22], a few days to train
without GPUs, while requiring nonstraightforward system engi-
neering efforts to port the training on GPUs [4]. Second, there are

exponentially many subgraphs in a graph; identifying suspicious
subgraphs corresponding to money laundering is like finding nee-
dles in a haystack. A typical classification method can classify a
reasonable amount of instances, but it becomes impractical when
the amount is exponential.

In this work, we develop a framework, coined RevTrack, which
allows efficient classification and discovery of suspicious money
laundering subgraphs. A key to this framework is to track the
sending and receiving entities of the subgraph rather than the sub-
graph itself. Doing so allows the use of alternative neural networks
(other than graph neural networks) that are easier to train and
scale better. Based on this framework, we propose a RevClassify
method for subgraph classification (classifying a given subgraph)
and a RevFilter method for identifying potential criminal entities
and their money laundering activities (discovering new, suspicious
subgraphs). Benchmarking these methods on the Elliptic2 dataset,
we demonstrate their superior performance over strong baselines
and their practical utility in AML.

2 Subgraph Representations of Money
Laundering

A majority of the participants on the blockchain are “licit” entities;
they range from exchanges, wallet providers, miners, to licit ser-
vices. On the other hand, an “illicit” entity is commonly associated
with crimes, such as dark markets, scammers, and hackers. A funda-
mental assumption of money laundering is that a path connecting
an illicit entity to a licit one without a change of ownership of the
funds likely represents money laundering by a criminal person or
organization. Through layers of transactions (laundering), crimi-
nals deposit funds at a legitimate service and evade detection of
the illegal source of the funds.

A money laundering scheme may consist of one or multiple such
illict→licit paths; the union of these paths is a subgraph. A known
scheme is a “peeling chain” (see the middle illustration of Figure 1),
where all the intermediate entities on the path additionally point to
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the end of the path. In this case, the ending entity could be an ex-
change, to which all intermediate entities deposit part of the funds
(with the rest sent to the next entity). Another example is a “nested
service” (see also Figure 1), where multiple paths starting from sepa-
rate illicit entities merge on the same “service” entity, which further
points to an exchange that is licit. Such services typically have
less stringent customer due diligence checks than the exchanges,
resulting in their (mis)use for cryptocurrency laundering.

2.1 Terminology and Notation
We illustrate in Figure 1 the main concepts used throughout the
paper. The blockchain is modeled as a directed graph G = (V,E),
where a node 𝑣 ∈ V is a set of Bitcoin addresses thought to be
controlled by a single entity (e.g., a person or organization) and
a directed edge 𝑒 = (𝑢, 𝑣) ∈ E denotes one or multiple transac-
tions from entity 𝑢 to 𝑣 . We call G the background graph when its
subgraphs are of concern.

Denote byH = (VH,EH) a subgraph of G. Each node 𝑣 ∈ VH
with a zero in-degree inside H is called a source and all sources
form the set V𝑠𝑜𝑢𝑟𝑐𝑒 . Similarly, each node with a zero out-degree
insideH is called a sink and all sinks form the set V𝑠𝑖𝑛𝑘 . A node
pointing to any source is called a sender and all senders form the
set S. Similarly, a node that is pointed to by any sink is called a
receiver and all receivers form the set R. Note that by definition, S
and R are outside the subgraphH .

The Elliptic2 dataset constructs subgraphs for classification with
the help of node labeling that is undisclosed. A node is (manually)
labeled as licit, illicit, or in most of the cases, unlabeled, in which
case we call it unknown. Subgraphs in Elliptic2 are labeled either
licit or suspicious. Based on the construction procedure described
in [4], one can infer that a subgraph in Elliptic2 is licit if the senders
and receivers are all licit, while a subgraph is suspicious if the
receivers are licit but the senders are illicit. Suspicious subgraphs
are intended to be validated by human analysts to confirm their
illicit nature (money laundering).

Note that not every subgraph can be labeled; and illicit sub-
graphs are scarce among those labeled. It is tempting to predict the
subgraph labels based on the labels of the senders and receivers.
However, node labels are not provided and reverse engineering
them based on the subgraph construction procedure will reveal the
labels of only a small fraction of the nodes.

2.2 Two Tasks of Interest
In this work, we are interested in two tasks:
(1) Classify the nature (licit vs. suspicious) of a given subgraphH ;
(2) Identify new suspicious subgraphs.

Task (1) is a standard classification problem: Given a set of sub-
graphs with labels, split it into training/validation/test subsets.
Train a model to predict the label of each subgraph by using the
training and validation sets and evaluate it on the test set. This
task solicits effective machine learning models that can discern the
nature of any given subgraph.

The ultimate goal of AML, on the other hand, is to discover all
money laundering schemes. Task (1) is infeasible for this goal, for
two reasons. First, there are exponentially many (specifically, 2 |V |)
subgraphs; it is impossible to enumerate them and classify one by

Figure 2: Graphlet distribution for licit subgraphs and that
for suspicious subgraphs.

one. Second, not every subgraph can be logically labeled; in fact,
only a few can be considered licit and even few are suspicious.

Hence, Task (2) is an alternative solution to this goal: Given a
set of labeled subgraphs, design a method that can discover new
subgraphs that are likely suspicious (among the exponentially many
candidates). This task is highly nontrivial. We propose a method
by reusing the learned model from Task (1) to accomplish the task.

3 Identifying Money Laundering Subgraphs
with Senders and Receivers

Subgraph neural networks are costly. A straightforward ap-
proach to telling if a subgraph is a suspicious money laundering
scheme is to perform subgraph classification. Several representative
neural networks for this approach were explored in [4], suggesting
that the effective ones for our use case are quite expensive to train.
For example, GLASS [22], using as few as two layers, requires sev-
eral days to train by using CPUs. This is because GPU training is a
complex matter for a background graph as large as Elliptic2 (∼50M
nodes and ∼200M edges) due to the massive memory consumption
and it requires nonstraightforward engineering efforts to adapt
the node classification workload [12, 13] to subgraph classification
workload [4]. While GPU training is the standard for usual neural
networks, for graph neural networks it requires special handling
because the loss of a data point (i.e., a node) requires the infor-
mation of not just the data itself but also its neighborhood, which
causes debates regarding whether full-graph training or mini-batch
training should be used. Moreover, if one uses mini-batch train-
ing, adapting batching and neighborhood sampling to subgraphs
requires reengineering existing libraries or codebases for effective
memory usage [12, 13].

The subgraph structure alone is insufficient for identifica-
tion. A reason why GLASS, a method that trains a neural network
on the entire background graph, performs more effective classifi-
cation than do methods that train a neural network on individual
subgraphs only (e.g., Sub2Vec [1]), is that the internal subgraph
structure alone is insufficient for classification. What matters ad-
ditionally is the border information surrounding but outside the
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subgraph. To further illustrate this point, we compute the distribu-
tion of graphlets (including 2-node, 3-node, and 4-node graphlets)
inside a collection of subgraphs. Figure 2 shows that the distribution
for licit subgraphs and that for suspicious ones are rather similar.
Although this example is simplified for computational purpose (e.g.,
ignoring edge directions and larger graphlets), more evidences from
the subsequent experiment section confirm that one should look
beyond the internal structures for identifying suspicious subgraphs.

Senders and receivers of funds provide a strong hint.A log-
ically useful piece of border information is the senders and receivers,
because field wisdom suggests that illicit senders launder money
through transferring funds layer by layer to licit accounts. Hence,
in the next section, we propose methods to identify money launder-
ing subgraphs with a focal use of sender and receiver information.
These entities can be easily extracted by using the definition intro-
duced in Section 2.1 (see also the example in Figure 1): For each
subgraph, we first identify nodes where transactions begin and end,
namely, sources and sinks. Then, the nodes outside the subgraph
pointing to the sources are senders and those being pointed to by
the sinks are receivers. Note that a subgraph occasionally is not
acyclic (e.g., two entities may send funds to each other at different
times), which leads to no sources or sinks. In this case, we remove
all detected cycles to extract sources and sinks.

4 RevTrack: A Tale of Two Methods
We are now ready to introduce RevTrack, a framework that ana-
lyzes and discovers money laundering subgraphs through tracking
senders and receivers. The framework represents a subgraphH by
its sender set S and its receiver set R. We create “links” between
them; these links can be interpreted as an abstraction of the paths
between S and R. RevTrack includes two methods: RevClassify clas-
sifies the nature (licit vs. suspicious) of a given subgraph, while
RevFilter discovers new suspicious subgraphs through iteratively
filtering out deemed licit links. Figure 3 illustrates both methods.

4.1 RevClassify: Subgraph Classification
RevClassify classifies a given subgraphH . Given the (S,R) repre-
sentation of H , the method generates an embedding vector hH
for the subgraph, such that a logistic regression of hH performs
the classification. RevClassify requires an expressive architecture
to handle the two sets as inputs. Here, we name two architectures,
RevClassify𝐵𝑃 and RevClassify𝐷𝑆 , both of which are permutation-
invariant with respect to S and R.

RevClassify𝐵𝑃 This architecture builds a fully-connected, directed
bipartite graph H̃ between S and R. That is,

H̃ = (ṼH, ẼH), (1)

where ṼH = S ∪ R and ẼH = {(𝑢, 𝑣) | 𝑢 ∈ S ∧ 𝑣 ∈ R}. Then, the
embedding hH is computed by using any Message Passing Neural
Network (MPNN) [15, 20, 25], followed by a global pooling layer as
the readout:

hH = READOUT
(
MPNN(H̃ )

)
. (2)

This architecture effectively runs a graph neural network on an
alternative but augmented version of the subgraph, H̃ , to classify
H . It considers information outsideH and is more effective.

RevClassify𝐷𝑆 This architecture does not use any graph neural
network. Instead, it processes S and R separately by using Deep
Sets [27], a universal architecture that generates set representations
preserving permutation invariance and equivariance:

hS = DeepSets(S) hR = DeepSets(R). (3)

This is suitable for our setting as there is no preference among
the senders or receivers. Then, hS and hR are concatenated and a
Multi-Layer Perceptron (MLP) is used to yield the final embedding:

hH = MLP (CONCAT(hS, hR)) . (4)

Both RevClassify𝐵𝑃 and RevClassify𝐷𝑆 can learn to classifyH ef-
fectively when trained with the binary cross-entropy loss.

4.2 RevFilter: Discovering New Suspicious
Subgraphs

Although RevClassify can accurately classify subgraphs, it assumes
that the subgraphs of interest are provided. However, there are in
total 2 |V | subgraphs and only a tiny fraction of them correspond
to money laundering. Hence, it is impractical to enumerate all sub-
graphs and apply RevClassify on them one by one. Rather, there is a
strong desire for a recommendation-like system that can efficiently
discover potential money laundering without exhaustive search.

To this end, we propose RevFilter , an efficient and scalablemethod
that recommends suspicious subgraphs. The method works by itera-
tively filtering out groups of senders and receivers that are deemed
to not contribute to money laundering. Specifically, given an arbi-
trary set of senders, S, and an arbitrary set of receivers, R, RevFilter
produces a list of top-𝑘 ranked (𝑠, 𝑟 ) pairs, where 𝑠 ∈ S, 𝑟 ∈ R, and
each (𝑠, 𝑟 ) pair is deemed suspicious (i.e., the path connecting 𝑠

and 𝑟 is a suspicious subgraph). Remarkably, RevFilter leverages a
pretrained RevClassify classifier, thus eliminating the need for any
training or optimization.

Algorithm 1 describes the details. RevFilter maintains a list 𝐿 of
sender-set-and-receiver-set pairs. Initially, there is only one pair,
(S,R). In each iteration, we split each pair in the list into four
pairs, by bisecting the sender set and the receiver set. Then, all
pairs are passed into the pretrained classifier C, which assigns a
probability score indicating the likelihood of money laundering
between the senders and the receivers. Based on the score, only the
top-𝑘 ranked pairs are retained for the next iteration. This iterative
filtering process is repeated until the size of each pair is reduced to
1-1, suggesting top-𝑘 most likely money laundering paths.

This basic version of RevFilter can be made more robust with the
following enhancements, when suspicious subgraphs are scarce.

(1) Fine-tuning with data augmentation. Note that the pairs
passed into the pretrained classifier C have a large sender/receiver
set at the beginning. However, this classifier is mostly trained with
small pairs, due to the nature of the Elliptic2 dataset. Thus, to en-
hance the performance of C, we fine-tune it by using merged pairs.
These pairs are created by randomly merging sets of senders and
receivers, such that the number of sets merged, 𝑛𝑚𝑒𝑟𝑔𝑒 , follows
the exponential distribution 𝑃 (𝑛𝑚𝑒𝑟𝑔𝑒 = 𝑡) = 𝛾𝑒−𝛾 ·𝑡 . Such data
augmentation generates a fine-tuning dataset where the size distri-
bution of the pairs is similar to that encountered in the execution
of RevFilter .
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Figure 3: Illustration of the RevClassify and RevFilter methods.

Algorithm 1 RevFilter : Discovering New Suspicious Subgraphs

1: Input: A pair of sender set and receiver set, (S,R); Number of pairs to recommend, 𝑘 ; Pretrained classifier C
2: Output: Top-𝑘 ordered list of suspicious sender-set-and-receiver-set pairs, 𝐿
3: 𝐿 ← [(S,R)]
4: repeat
5: for (S𝑖 ,R𝑖 ) ∈ 𝐿 do
6: S𝑖 → S1𝑖 + S

2
𝑖
, R𝑖 → R1𝑖 + R

2
𝑖

⊲ split senders/receivers into two equal-sized groups
7: 𝐿 ← 𝐿 − [(S𝑖 ,R𝑖 )] +

[
(S1

𝑖
,R1

𝑖
), (S1

𝑖
,R2

𝑖
), (S2

𝑖
,R1

𝑖
), (S2

𝑖
,R2

𝑖
)
]

⊲ replace the pair (S𝑖 ,R𝑖 ) with four new pairs
8: end for
9: if |𝐿 | > 𝑘 then
10: scores 𝑠 ← C(𝐿) then REVERSE-SORT(𝐿, key = 𝑠) ⊲ sort the list 𝐿 by the scores computed by the classifier C
11: 𝐿 ← 𝐿[: 𝑘] ⊲ keep only the top-𝑘 scoring pairs
12: end if
13: until |𝐿 | = 𝑘 and ∀(S𝑖 ,R𝑖 ) ∈ 𝐿, |S𝑖 | = |R𝑖 | = 1 ⊲ repeat until all 𝑘 pairs are 1-1
14: return 𝐿

(2) Keeping more candidates. If the classifier C mistakenly
assigns a low score to a pair that contains suspicious money laun-
dering activities during iterations, the suspicious activities are er-
roneously ignored. Even when the classifier is highly accurate, this
could occur through many iterations. Thus, for the initial iteration,
we maintain 𝛼𝑘𝑒𝑒𝑝 ×𝑘 pairs (𝛼𝑘𝑒𝑒𝑝 > 1) and gradually decrease this
number to 𝑘 by the end of the iterations, to mitigate accidentally
eliminating suspicious pairs. Note that using a large 𝛼𝑘𝑒𝑒𝑝 may lead
to a trade-off: while it helps preserve potential candidates, it can
also result in a decrease in inference speed and a flattening of the
iterative filtering process.

Practical Use of RevFilter Algorithm 1 requires an initial sender set
S and a receiver set R as input. One practical use of RevFilter is to
identify additional illicit entities given known money laundering
subgraphs. The end of these subgraphs are linked to licit entities
(such as an exchange). Hence, using these entities to form R poten-
tially identify new money laundering schemes sharing the same
choice of crypto deposits. Additionally, one may partition the node
set V such that one partition is used to form S each time, balancing
the relative sizes of S and R while speeding up the inference.

5 Experiments: RevClassify
We comprehensively evaluate the effectiveness of the proposed
methods—RevClassify in this section and RevFilter in the next—with
the Elliptic2 dataset [4]. Elliptic2 was a recently released benchmark,
the largest of its kind, which innovatively models AML as a sub-
graph classification problem. In the dataset, the background graph
contains 49,299,864 nodes and 196,215,606 edges. Additionally, there
are 121,810 labeled subgraphs, among which 119,092 are licit and
2,718 are suspicious.

5.1 Experiment Setup
Following [4], we split the labeled subgraphs into training, valida-
tion, and test sets randomly (80:10:10). In addition to the full-shot
setting, which uses the entire training set for training, we also ex-
plore the few-shot setting, where only a fraction of the training set
is used, to investigate model behaviors in data-scarce environments.
For a given fraction 𝑝 , we randomly sample 𝑝 of the suspicious
subgraphs as well as licit subgraphs.

5.1.1 Baselines. We compare RevClassify with four typical sub-
graph classification methods. Sub2Vec [1] is an early graph em-
bedding method, which samples random walks within a subgraph
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Table 1: Accuracy and cost comparisons betweenRevClassify and baselines. “Full-shot” uses the whole training set for training
while “few-shot” uses a portion of it. The best results are boldfaced and the second-best are underlined.

Method

Few-shot Full-shot Cost

3% 10% 30% Time (min) Memory (GB)
PR-AUC ↑ F1 ↑ PR-AUC ↑ F1 ↑ PR-AUC ↑ F1 ↑ PR-AUC ↑ F1 ↑ Preprocess ↓ Train ↓ Inference ↓ Train ↓

Sub2Vec 0.024 0.045 0.024 0.043 0.024 0.043 0.025 0.044 105.4 2.1 0.037 2.00
GNN-SEG 0.098 0.109 0.170 0.142 0.194 0.153 0.413 0.206 7.5 75.4 1.740 1.81
GNN-PLAIN 0.158 0.105 0.327 0.118 0.440 0.135 0.789 0.660 N/A 25.7 0.069 5.80
GLASS 0.164 0.107 0.350 0.134 0.477 0.149 0.816 0.705 N/A 56.1 0.070 6.23

RevClassify𝐵𝑃 0.235 0.140 0.372 0.157 0.599 0.319 0.972 0.954 40.4 5.4 0.006 0.49
RevClassify𝐷𝑆 0.445 0.287 0.665 0.363 0.802 0.614 0.974 0.953 3.5 0.005 0.51

and uses Paragraph2Vec to learn subgraph embeddings from the
sampled walks. GNN-SEG is an MPNN that also acts on only the
internal structure of the subgraph. GNN-PLAIN is another MPNN,
but the message passing is conducted on the background graph,
such that the subgraph representation draws information addition-
ally outside the subgraph. GLASS [22] extends GNN-PLAIN by
employing a zero-one labeling trick that distinguishes the nodes
inside and outside the subgraph; this method is theoretically proved
to be more expressive than GNN-PLAIN.

5.1.2 EvaluationMetrics. Due to the label imbalance and the impor-
tance of the suspicious class, we use the binary F1-score (treating
suspicious as positive) and the PR-AUC score to evaluate model
performance. Additionally, we compare the resource demands of
each method, including time and memory usage.

5.1.3 Implementation Details. RevClassify𝐵𝑃 employs GIN [25] as
the MPNN backbone. RevClassify𝐷𝑆 uses MLP for the invariant
layers in Deep Sets [27]. GLASS and Sub2Vec are implemented
from the codebases provided by the original authors. GNN-SEG
and GNN-PLAIN use the same MPNN backbone as does GLASS.
We train all models to minimize the binary cross entropy loss using
the Adam optimizer [14] for 1000 epochs for the baseline meth-
ods and 150 epochs for RevClassify, incorporating early stopping.
We tune hyperparameters, including the number of layers, hidden
dimensions, type of pooling, learning rate, dropout, and batch size.

The performance of the baselines Sub2Vec, GNN-SEG, andGLASS
is (sometimes substantially) improved over that reported by [4].
The results in [4] were obtained by CPU training and ignoring node
features, but our results are obtained by GPU training and lever-
aging node features, whenever possible. Additionally, for GLASS
and GNN-PLAIN, we use only one MPNN layer with neighborhood
sampling, which significantly reduces the training time and the
memory requirement. Moreover, we implement data preprocessing
to enable faster data loading and replace the memory-intensive
GraphNorm layer [6] with the more light-weight LayerNorm [3].
These modifications boost the speed and accuracy of the baselines,
making them stronger competitors. Our experiments are conducted
by using a single V100 GPU with 16GB VRAM.

5.2 Results
5.2.1 Accuracy. The results are summarized in Table 1. RevClassify
outperforms all baselines across the board. Among the baselines,
Sub2Vec performs the most poorly, because node features are not
used. GNN-PLAIN and GLASS perform significantly better than
GNN-SEG, confirming the importance of involving external node
information beyond the internal subgraph structure. Our method
further significantly improves over GNN-PLAIN and GLASS. Be-
tween the two architectures of our method, RevClassify𝐷𝑆 is ro-
bustly stronger in the few-shot settings.

5.2.2 Cost. As shown by Table 1, RevClassify is considerably more
memory-efficient and much faster in inference than the other meth-
ods. This efficiency stems from the use of only sender/receiver
nodes, whereas GNN-SEG computes with all nodes in the subgraph,
and Sub2Vec, GLASS, and GNN-PLAIN involve the background
graph. GNN-SEG, GNN-PLAIN, and GLASS are slow to train; on
the other hand, Sub2Vec is fast, but it requires extensive prepro-
cessing. The preprocessing of RevClassify is not as demanding as
Sub2Vec. Moreover, processed senders and receivers are stored in a
hash table for reuse and their costs are amortized over subgraphs.

6 Experiments: RevFilter
In this section, we evaluate RevFilter for discovering new suspicious
subgraphs. The objective is to answer the following questions.
• Q1: How does RevFilter perform compared to baselines?
• Q2a: How does the sparsity of money laundering affect the per-
formance of RevFilter?
• Q2b: How many recommendations (𝑘) are needed for RevFilter
to discover the majority of money laundering activities?
• Q3: (Ablation) Is the iterative filtering in Algorithm 1, as opposed
to a one-pass top-𝑘 selection, necessary?
• Q4a: (Ablation) How does fine-tuning with data augmentation
impact the performance of RevFilter?
• Q4b: (Ablation) How does the keeping of more candidates impact
the performance of RevFilter?

6.1 Experiment Setup
To the best of our knowledge, there does not exist previous liter-
ature experimenting on the same setting. The closest domain is
collaborative filtering, which typically recommends items given
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Table 2: Performance comparison betweenRevFilter and baselines in eight settings (𝑛++𝑛−@𝑘). The twometrics HR andNDCG
are the higher the better.

𝒏+ + 𝒏−@𝒌 1+5@1 1+10@1 1+10@3 1+100@3 3+100@10 3+1000@10 10+1000@100 10+10000@100
Density (%) 12.54 6.83 6.83 0.92 0.98 0.16 0.18 0.02

HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG HR NDCG

MLP 0.4935 0.4935 0.3151 0.3151 0.7383 0.5596 0.0156 0.0105 0.0499 0.0278 0.0000 0.0000 0.0088 0.0034 0.0000 0.0000
NGCF 0.5560 0.5560 0.4831 0.4831 0.6393 0.5723 0.4570 0.4226 0.4199 0.3705 0.3516 0.3291 0.4008 0.3374 0.3590 0.3170
LightGCN 0.5391 0.5391 0.4596 0.4596 0.6862 0.5925 0.4310 0.3661 0.3652 0.3139 0.2452 0.2150 0.2958 0.2556 0.1939 0.1853

RevFilter 0.9479 0.9479 0.9479 0.9479 0.9779 0.9424 0.9271 0.8208 0.8826 0.6298 0.7385 0.5291 0.8568 0.4569 0.6646 0.3790
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Figure 4: Comparison between RevFilter and baselines regarding sparsity and 𝑘 .

a user (i.e., single-user→ multi-item). In contrast, our task in-
volves recommending links (suspicious 1-1 sender-receiver pairs)
in amulti-sender→multi-receiver setting. Therefore, we adopt
the experimental setup and evaluation protocol used in collabora-
tive filtering and recommendation systems [10, 11, 21, 26] but make
modifications to suit our task.

6.1.1 Constructing a Test Set. We modify the test set of Ellip-
tic2 for the recommendation task, which recommends links be-
tween senders and receivers corresponding to suspicious money-
laundering subgraphs. The modification proceeds as follows:

(1) For every subgraph, identify the senders and receivers. Denote
the suspicious set as D+ and the licit set as D−.

(2) Filter the suspicious set to include only subgraphs that induce a
single link between senders and receivers (i.e., subgraphs with
only a single sender and receiver). Call this subset D+1−1.

(3) Randomly select 𝑛+ subgraphs (links) from D+1−1 and 𝑛
− sub-

graphs from D−. Then, collect all the nodes from these sub-
graphs to construct a fully-connected, bipartite graphS through
linking the senders and receivers. The task is to recommend
the 𝑛+ links in S.

(4) Repeat (3) 𝑁 times to construct a test set of size 𝑁 . A large 𝑁
can significantly reduce the performance variance of a method.
We take 𝑁 = 256 for all experiments.

We evaluate each method by asking it to recommend top-𝑘 links
and denote the setting by 𝒏+ + 𝒏−@𝒌 . The task is more challenging
with a smaller 𝑛+ and larger 𝑛−, or with a smaller 𝑘 . We define the
density to be 𝑛+/(|S| |R|) and call the case of small density, sparse.
We evaluate on different settings with varying 𝑛+, 𝑛−, and 𝑘 .

6.1.2 Baselines. We compare RevFilter against three baselines.MLP
is a straightforward collaborative filtering method: it produces node
embeddings by using MLP and makes recommendations based
on the dot product between embeddings. NGCF [21] and Light-
GCN [10] are state-of-the-art recommendation systems based on
GCN [15]. Both methods propagate messages in a user-item graph
to yield node embeddings; recommendations are made based on
the dot product. The distinction between the two lies in their archi-
tectures: NGCF incorporates feature transformations and nonlinear
activations inside its GCN layers, whereas LightGCN does not.

6.1.3 Evaluation Metrics. To evaluate the performance of top-𝑘
recommendation, we employ Hit Ratio (HR) and Normalized Dis-
counted Cumulative Gain (NDCG) [9], which are widely used in
collaborative filtering [11, 21]. HR counts the number of ground-
truth links appearing in the top-𝑘 ranked list and HDCG gives a
higher score when the ground-truth links are ranked higher.

6.1.4 Implementation Details. Both architectures of RevClassify
can serve as the pretrained classifier for RevFilter ; we use RevClas-
sify𝐷𝑆 because of its faster inference and robustness (Section 5.2).
We also employ the two enhancements mentioned in Section 4.2:
we fine-tune the pretrained classifier with merging pairs, setting
𝛾 = 0.4, 1 ≤ 𝑛𝑚𝑒𝑟𝑔𝑒 ≤ 20, and 𝛼𝑘𝑒𝑒𝑝 = 1.5.

We implement NGCF and LightGCN using publicly available
codebases, while incorporating the following changes for our set-
ting. (1) We initialize the embedding layer with node features in-
stead of using the Xavier initialization [8]. (2) We optimize the
binary cross entropy loss instead of the BPR loss [19] due to the
limited number of labeled links available. We train the baselines
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for 150 epochs incorporating early stopping, with hyperparameter
(number of layers, dropout, and hidden dimension) searching.

6.2 Results
6.2.1 Performance ComparisonWith Baselines (Q1). Table 2 presents
the comparison of methods in eight diverse settings of 𝒏+ + 𝒏−@𝒌 .
RevFilter outperforms all baselines on both metrics. In most cases,
RevFilter achieves an HR that is 50–100% higher than the second
best method, indicating that we can identify 1.5 to 2 times more
money-laundering schemes.

6.2.2 Impact of Sparsity (Q2a). As shown in Figure 4a, RevFilter
demonstrates significant robustness in sparse settings (i.e., low
density), where there are few illicit links. For instance, when the
density of S decreases from 10−1 to 10−4 (i.e., 1000x more sparse),
RevFilter experiences only a ∼ 20% loss in HR, whereas NGCF and
LightGCN show a ∼ 50% drop and MLP suffers a ∼ 100% decrease.

6.2.3 Impact of 𝑘 (Q2b). We present the performance of the meth-
ods in the 1+ 1000@𝑘 setting, with varying 𝑘 in Figure 4b. RevFilter
can identify the ground-truth links in more than 90% chance with
a small number of recommendations (𝑘 = 10), whereas the base-
lines cannot reach 75% with a large number of recommendations
(𝑘 = 100). This result underscores that RevFilter can recommend
a small yet high-quality set of suspicious subgraphs, significantly
reducing the need for human analysts to examine numerous po-
tential money laundering schemes. Note, unlike others, that our
method’s NDCG decreases as 𝑘 increases. This is because 1) as 𝑘
increases, our method’s iterative filtering becomes less effective and
2) our method is optimized for filtering rather than ranking links.
Therefore, it is important to select a proper 𝑘 to avoid suboptimal
performance associated with an excessively large 𝑘 .

6.2.4 Iterative Versus One-Pass Filtering (Q3). To verify the use-
fulness of iterative filtering, we compare against a variant (“No
iterations”). In this variant, the outer loop in Algorithm 1 is re-
moved and the filtering is done in a single-pass, by computing
scores for every 1-1 sender-receiver pair and recommending the
top-𝑘 pairs. The results in Table 3 show a significant drop in HR
(0.4 to 0.6) for sparse S. This suggests that iterative filtering can
mitigate the errors of the base classifier.

6.2.5 Impact of Fine-Tuning With Data Augmentation (Q4a). We
investigate the impact of fine-tuning the classifier with augmented
data by comparing against the case without fine-tuning (“No fine-
tuning”). Table 3 shows that the performance without fine-tuning
drops across the board, with more significant decrease in sparse
settings. This indicates that fine-tuning improves the classifier’s
accuracy, particularly for large sender-receiver pairs.

6.2.6 Impact of Keeping More Candidates (Q4b.) To evaluate the
effect of keeping more candidates on recommendation performance,
we compare our method against the standard case of 𝛼𝑘𝑒𝑒𝑝 = 1,
where exactly 𝑘 candidates are retained in each iteration. The latter
case leads to a slight decline in performance in most of the settings.
We speculate that the fine-tuned classifier is already near-perfect,
hence the improvement brought in by more candidates is minor.
Since keeping more candidates compromises the inference speed,
we suggest considering the trade-off when applying a large 𝛼𝑘𝑒𝑒𝑝 .

Table 3: Ablation (increasing sparsity from left to right).

Method 1+80@10 1+640@10 1+5120@10 1+10240@10

RevFilter 0.9710 0.9128 0.7969 0.7161
No iterations 0.9609 0.5286 0.1484 0.1367
No fine-tuning 0.8724 0.6563 0.3698 0.3815
𝛼𝑘𝑒𝑒𝑝 = 1 0.9688 0.9167 0.7891 0.7122

7 Conclusions
Elliptic2 introduced a subgraph approach for AML and it set a new
standard for forensic analysis in cryptocurrencies. While the orig-
inal paper benchmarked a few subgraph classification methods
and showed the promise of subgraph modeling, in this paper we
advance the state-of-the-art by (1) improving the effectiveness of
subgraph classification and (2) developing the capability of new
subgraph discovery. RevClassify abstracts a transaction subgraph by
using its initial senders and end receivers of the funds, significantly
reducing the model inference cost and the memory consumption;
while RevFilter discovers new subgraphs by using an innovative
approach inspired by recommendation systems: recommending
suspicious links between senders and receivers, which may not
be directly connected by a single transaction. We have conducted
many empirical evaluations to show that these two approaches
significantly outperform strong baselines. An avenue of future re-
search is to discover more complex money laundering schemes (e.g.,
those involving more than a single sender and receiver). Another
avenue is to study the temporal behavior of money laundering and
develop more effective methods that leverage both temporal and
structural information.

8 Supporting code
Our implementation and pretrained models are available at https:
//github.com/MITIBMxGraph/RevTrack.
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