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INTRODUCTION
In this work, we propose a regularization frame-
work for VAEs to generate semantically valid
graphs. Contributions:

1. A new deep generative framework for general
graph generation with validity constraints.

2. Formulation of constraints for I. molecular
graphs and II. node-compatible graphs.

3. An efficient inference algorithm for generating
valid graphs.

EXAMPLES
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Figure 1: Left: Moleculer graph. Right: Protein network.

FRAMEWORK
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Figure 2: Overview of the Regularized VAE

The central contribution of this work is an approach
to imposing validity constraints in the training of
VAEs. Besides the usual loss function f(x) of VAE,
we want the graph samples produced by the gener-
ative network to be valid, regardless of what latent
value z one starts with:

min
x

f(x)

subject to for almost all z ∼ px(z),
h1(x, z) = 0, . . . , hm(x, z) = 0,

g1(x, z) ≤ 0, . . . , gr(x, z) ≤ 0.

(1)

Lagrangian: To solve (1), we generalize the usual no-
tion of Lagrangian function to

L(x, λ, µ) = f(x) +
m∑
i=1

λih̃i(x) +
r∑
j=1

µj g̃j(x), (2)

where g̃j(x) =
[∫
gj(x, z)

2px(z) dz
] 1

2 and similarly
for h̃i(x).
Training: Let us write the i-th validity constraint as
gi(θ, z) ≤ 0 for all z, then the loss function is

−LELBO(θ, φ) + µ
∑
i

[∫
gi(θ, z)

2
+pθ(z) dz

] 1
2

, (3)

where g+ = max(g, 0) is the ramp function. This reg-
ularization will not penalize the desirable case gi ≤ 0.
In practice, the integral in the regularization may be
intractable, and hence we appeal to Monte Carlo ap-
proximation for evaluating the loss in each parameter
update:

−LELBO(θ, φ) + µ
∑
i

gi(θ, z)+, where z ∼ pθ(z).

(4)

NETWORK ARCHITECTURE

For input representation, we unfold the edge-label tensor E ∈ RN×N×(1+t) and concatenate it with the node-
label matrix F ∈ RN×(1+d) to form a wide matrix. The encoder is a 4-layer convolutional neural net. The
decoder is a 4-layer deconvolutional neural net similar to DCGAN.
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REGULARIZATION
Molecules:

• Ghost Nodes and Valence. Denote by V (i) the capacity of a node i and by U(i) the valence (upper
bound of the capacity). The valence constraint is gi = V (i)− U(i).

• Connectivity: If A is the adjacency matrix, then the (i, j) element of B = I + A + A2 + · · · + AN−1 is
nonzero iff i and j are connected by a path. Let q(i) = 0 indicate the ghost node, then the connectivity
constraint is q(i)q(j) · 1{B(i, j) = 0} + [1 − q(i)q(j)] · 1{B(i, j) 6= 0} ≤ 0. To be differentiable, in our
framework gij = q(i)q(j) · [1− C(i, j)] + [1− q(i)q(j)] · C(i, j) where C = σ(B).

Node-compatible Graphs: Consider the matrix P = F̃DF̃T . The (i, j) element of P is the probability
that nodes i and j have compatible types. We want node pairs with low compatibility to be disconnected.
Hence, the constraint is gij = [1− Ẽ(i, j, 0)][1− P (i, j)]− α where α ∈ (0, 1) is a tunable hyperparameter.

VISUALIZATION

Figure 3: 2D interpolation of latent space.

Figure 4: 1D interpolation of latent space (each row).

RESULTS

Table 1: Standard VAE versus regularized VAE.
QM9

Method % Valid ELBO
Standard 83.2 -17.3

Regul. 96.6 -18.5
Node-compatible

Method % Valid ELBO
Standard 40.2 -42.5

Regul. 98.4 -51.2

Table 2: Comparison with other VAEs.
QM9

Method % Valid % Novel % Recon.
Proposed 96.6 97.5 61.8

GVAE 60.2 80.9 96.0
CVAE 10.3 90.0 3.61

ZINC
Method % Valid % Novel % Recon.

Proposed 34.9 100 54.7
GVAE 7.2 100 53.7
CVAE 0.7 100 44.6

Table 3: Denoising node-incompatible graphs.
Standard VAE Regularized VAE

11.2 93.8


