

Online Planner Selection with Graph Neural Networks and Adaptive Scheduling

Tengfei Ma,¹ Patrick Ferber,^{3,4} Siyu Huo,¹ Jie Chen,^{1,2} Michael Katz¹

¹IBM Research, ²MIT-IBM Watson AI Lab, ³University of Basel, ⁴Saarland University

Background and Context

- Planning is one of the foundational areas of Al
- Planning is intractable in general (e.g., classical planning is PSPACE-complete)
- A single algorithm unlikely works well for all planning tasks and problem domains
- Portfolio-based approach: Build a portfolio of planners and select one on demand
- How?

Input consists of hand-crafted features; f is a classic machine learning model (e.g., SVM)

number of objects number of axioms whether action costs are used number of mutex groups number of variables of the CG maximum of accumulated costs of paths to goal propositions in the relaxed problem

f

 $= \begin{vmatrix} 34.03 \\ 74.14 \\ \text{time out} \\ 1499.84 \\ 964.99 \\ \vdots \end{vmatrix}$

h2-simpless-dks-celmcut
h2-simpless-dks-cpdbshc900
simpless-oss-masb50kmiasmdfp
h2-simpless-oss-900masb50ksbmiasm
seq-opt-symba-1

Delfi (winner of the Optimal Track of the 2018 International Planning Competition)

Input is an image converted from graph representation of the task; f is convolutional neural network

=

and the second sec	Ladelling C.C.	
8	386	

34.03h2-simpless-dks-celmcut74.14h2-simpless-dks-cpdbshc900time outsimpless-oss-masb50kmiasmdfp1499.84h2-simpless-oss-900masb50ksbmiasm964.99seq-opt-symba-1::

Input is graph representation of the task; f is graph neural network

34.03h2-simpless-dks-celmcut74.14h2-simpless-dks-cpdbshc900time outsimpless-oss-masb50kmiasmdfp1499.84h2-simpless-oss-900masb50ksbmiasm964.99seq-opt-symba-1

This work

Graph Representations of a Planning Task

- State transition graph (memory prohibitive)
- Problem description graph (also called grounded representation) [Pochter et al. 2011]

Pros and Cons

	Pros	Cons
Hand-crafted feature input	✓ Rich domain knowledge	X Engineering good features is a laborious task
lmage input	 No feature engineering needed Convolutional neural networks have been constantly improved 	 X Not permutation invariant X Cannot leverage node/edge attributes
Graph input	 Permutation invariant Leverage node/edge attributes No feature engineering needed Graph neural networks are emerging (ample opportunity for improvement) 	

Planner Selection with Graph Neural Networks

Setting

- Cost-optimal planning (must use optimal planner)
- Given time allowance T, identify a planner that completes within T (no need to be the fastest)
- Online scheduling (selected planner dependent on task)

Problem formulation

- Task G (as a graph)
- D planners
- $y \in \{0,1\}^{D}$, 0 success, 1 fail
- Find a function $f(G, \theta)$ as close to y as possible
- Selected planner = $\operatorname{argmin}_{i} f(G, \theta)_{i}$
- Experience favors classification over regression

Planner Selection with Graph Neural Networks

Graph neural network

- 1. Compute a vector representation h_v for each node v.
- 2. Compute an attention weight α_v for each node v.
- 3. Form the graph representation $h_G = \sum \alpha_v h_v$
- 4. Apply a fully connected layer $f(G, \theta) = sigmoid(W^T h_G)$. [Note: not softmax]

[See next slide]

[See next slide]

Planner Selection with Graph Neural Networks

GCN [Kipf and Welling 2017]

- Acts like a convolutional network
- Each node v has an initial feature vector $x_v =: h_v^{(0)}$
- For t = 0, ..., T-1

$$h_v^{(t+1)} = \sigma \Big(\sum_{u \sim v} \widehat{a}_{vu} W^{(t)^{\top}} h_u^{(t)} \Big)$$

• Attention weight is computed as

$$\alpha_v = \operatorname{sigmoid}\left(w^{\top}[h_v^{(T)}; h_v^{(0)}]\right)$$

GG-NN [Li et al. 2016]

- Acts like a recurrent network
- Treat node representation as system state and recurrently update it
- For t = 0, ..., T-1

$$h_{v}^{(t+1)} = \text{GRU}(h_{v}^{(t)}, m_{v}^{(t+1)})$$
$$m_{v}^{(t+1)} = \sum_{u \in \text{in}(v)} W_{\text{in}}^{\top} h_{u}^{(t)} + \sum_{u' \in \text{out}(v)} W_{\text{out}}^{\top} h_{u'}^{(t)}$$

- Computation of α_{v} is the same as left

Two-Stage Adaptive Scheduling

• Observation: If a planner solves a task in time, often it completes rather quickly.

T/2

• Consequence: One may try more than one planner.

0

Try planner 1

Planner 1 is predicted by a model described earlier

If planner 1 fails, try planner 2 (which may be the same as planner 1)

Planner 2 is predicted by a different model, trained by using a training set in which planner 1 fails

Т

Two-Stage Adaptive Scheduling

 $f(G, p, \theta) = sigmoid(W^T h_G + U^T e_p)$

this part models the

condition that planner

p fails in the first try

Label =

- 0, if j = p and time of j < T
- 1, if j = p and time of j > T
- 0, if $j \neq p$ and time of j < T/2
- 1, if $j \neq p$ and time of j > T/2

Compare with related ideas:

- 1. Both planners come from the same predictive model
 - If first planner is bad, second can be equally bad
- 2. More than two planners, same predictive model
 - Same as above
- 3. More than two planners, each using a different predictive model
 - Training set and label construction become more and more complicated

o Data Set

- We compile a data set by using International Planning Competition data
 - Training/validation set: IPC prior to 2018
 - Test set: IPC 2018
- Training/validation split A: fixed; same as Delfi split
- Training/validation split B: random
 - 10 splits preserve domains; 10 splits not
- Each task has a grounded graph and a lifted graph

Portfolio: 17 planners

h2-simpless-dks-celmcut, h2-simpless-dks-cpdbshc900, h2-simpless-dks-900masb50ksccdfp, h2-simpless-oss-900masb50ksbmiasm, h2-simpless-dks-blind, h2simpless-oss-zopdbsgenetic, h2-simpless-oss-blind, h2simpless-dks-900masb50ksbmiasm, seq-opt-symba-1, h2-simpless-oss-masginfsccdfp, h2-simpless-dks-900masginfsccdfp, h2-simpless-oss-cpdbshc900, h2simpless-dks-zopdbsgenetic, simpless-ossmasb50kmiasmdfp, h2-simpless-oss-900masb50ksccdfp, simpless-dks-masb50kmiasmdfp, h2-simpless-oss-celmcut Results

Delfi split, single planner

Table 2: Percentage of solved tasks in the test set and average evaluation time of the method. Delfi split; single planner.

Method		Eval. Time
Random planner	60.6%	0
Single planner for all tasks	64.8%	0
Complementary2	84.8%	0
Planning-PDBs	82.0%	0
Symbolic-bidirectional	80.0%	0
Enhanced features + random forest	82.1%	0.51s
Image based, CNN, grounded	73.1%	11.00s
Image based, CNN, lifted	86.9%	3.16s
Graph based, GCN, grounded	80.7%	23.15s
Graph based, GCN, lifted	87.6%	9.41s
Graph based, GG-NN, grounded	77.9%	14.53s
Graph based, GG-NN, lifted	81.4%	11.44s

Table 3: Percentage of solved tasks in the test set (lifted version). Multiple splits; single planner.

Multiple splits,

single planner &

adaptive scheduling

	Domain-preserv.		Random	
	Mean	Std	Mean	Std
Image based, CNN	82.1%	6.6%	86.1%	5.5%
Graph based, GCN	85.6%	5.5%	87.2%	3.5%
Graph based, GG-NN	76.6%	5.8%	74.4%	2.7%
Adaptive, GCN	91.1%	3.8%	92.1%	3.2%
Adaptive, GG-NN	83.0%	5.8%	86.6%	2.0%

Results

Delfi split, adaptive scheduling

Figure 4: Percentage of solved tasks in the test set. Delfi split; two planners.

Delfi split, multiple planners

Table 4: Percentage of solved tasks in the test set. Offline method. Delfi split. Compare with performance in Figure 4.

	U
Method	Solved
(Greedy) Best 2 planners from train set	85.5%
(Greedy) Best 3 planners from train set	92.4%
(Greedy) Best 4 planners from train set	89.7%
(Greedy) Best 5 planners from train set	87.6%
(Greedy oracle) Best 2 planners from test set	93.8%
(Greedy oracle) Best 3 planners from test set	93.8%
(Greedy oracle) Best 4 planners from test set	93.1%
(Greedy oracle) Best 5 planners from test set	92.4%
Fast Downward Stone Soup	92.4%

Open Opportunities

- Design graph representations for planning tasks
- Design graph neural networks for special graph structures
- Design scheduling for running more than two planners
- Scale graph neural network training

- arXiv <u>https://arxiv.org/abs/1811.00210</u>
- Code https://github.com/matenure/GNN_planner
- Data set https://github.com/IBM/IPC-graph-data
- Data set paper https://arxiv.org/abs/1905.06393
 - Patrick Ferber, Tengfei Ma, Siyu Huo, Jie Chen and Michael Katz. IPC: A Benchmark Data Set for Learning with Graph-Structured Data. In ICML 2019 Workshop on Learning and Reasoning with Graph-Structured Data, 2019.