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Background and Context

• Planning is one of the foundational areas of AI

• Planning is intractable in general (e.g., classical 
planning is PSPACE-complete)

• A single algorithm unlikely works well for all 
planning tasks and problem domains

• Portfolio-based approach: Build a portfolio of 
planners and select one on demand

• How?



Machine Learning Can Help
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Input consists of hand-crafted features; f is a classic machine learning model (e.g., SVM)

number of objects
number of axioms
whether action costs are used
number of mutex groups
number of variables of the CG
maximum of accumulated costs 
of paths to goal propositions in 
the relaxed problem
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Input is an image converted from graph representation of the task; f is convolutional neural network

Delfi (winner of the 
Optimal Track of the 
2018 International 

Planning Competition)



Machine Learning Can Help
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Input is graph representation of the task; f is graph neural network

This work



Graph Representations of a Planning Task

• State transition graph (memory prohibitive)

• Problem description graph (also called grounded 
representation) [Pochter et al. 2011]

• Abstract structure graph (also called lifted 
representation) [Sievers et al. 2019]



Pros and Cons

Pros Cons

Hand-crafted feature input ✓ Rich domain knowledge ✗ Engineering good features is a 
laborious task

Image input ✓ No feature engineering needed
✓ Convolutional neural networks 
have been constantly improved

✗ Not permutation invariant
✗ Cannot leverage node/edge 
attributes

Graph input ✓ Permutation invariant 
✓ Leverage node/edge attributes 
✓ No feature engineering needed
✓ Graph neural networks are 
emerging (ample opportunity for 
improvement)



Planner Selection with Graph Neural Networks

Setting

• Cost-optimal planning (must use optimal planner)

• Given time allowance T, identify a planner that 
completes within T (no need to be the fastest)

• Online scheduling (selected planner dependent on 
task)

Problem formulation

• Task G (as a graph)

• D planners

• y ∈ {0,1}D,     0 success, 1 fail

• Find a function f(G, θ) as close to y as possible

• Selected planner = argmin i f(G, θ) i

• Experience favors classification over regression



Planner Selection with Graph Neural Networks

Graph neural network

1. Compute a vector representation hv for each node v.           [See next slide]

2. Compute an attention weight αv for each node v.                [See next slide]

3. Form the graph representation hG = ∑ αv hv

4. Apply a fully connected layer f(G, θ) = sigmoid(WT hG).      [Note: not softmax]



Planner Selection with Graph Neural Networks

GCN [Kipf and Welling 2017]

• Acts like a convolutional network

• Each node v has an initial feature vector 

• For t = 0, …, T-1

• Attention weight is computed as

GG-NN [Li et al. 2016]

• Acts like a recurrent network

• Treat node representation as system state and 
recurrently update it

• For t = 0, …, T-1

• Computation of αv is the same as left
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Two-Stage Adaptive Scheduling

• Observation: If a planner solves a task in time, often it completes rather quickly.

• Consequence: One may try more than one planner.
If planner 1 fails, try planner 2 (which 

may be the same as planner 1)

Planner 2 is predicted by a different 
model, trained by using a training set 

in which planner 1 fails

Try planner 1

Planner 1 is predicted by a model 
described earlier

0 T/2 T



Two-Stage Adaptive Scheduling

The second model:

f(G, p, θ) = sigmoid(WT hG + UT ep)

Label = 

• 0, if j = p and time of j < T

• 1, if j = p and time of j > T

• 0, if j ≠ p and time of j < T/2

• 1, if j ≠ p and time of j > T/2

Compare with related ideas:

1. Both planners come from the same predictive model

• If first planner is bad, second can be equally bad

2. More than two planners, same predictive model

• Same as above

3. More than two planners, each using a different 
predictive model

• Training set and label construction become more and 
more complicated

this part models the 
condition that planner 
p fails in the first try



Data Set

• We compile a data set by using International Planning 
Competition data

• Training/validation set: IPC prior to 2018

• Test set: IPC 2018

• Training/validation split A: fixed; same as Delfi split

• Training/validation split B: random

• 10 splits preserve domains; 10 splits not

• Each task has a grounded graph and a lifted graph

Portfolio: 17 planners

h2-simpless-dks-celmcut, h2-simpless-dks-cpdbshc900, 
h2-simpless-dks-900masb50ksccdfp, h2-simpless-oss-
900masb50ksbmiasm, h2-simpless-dks-blind, h2-
simpless-oss-zopdbsgenetic, h2-simpless-oss-blind, h2-
simpless-dks-900masb50ksbmiasm, seq-opt-symba-1, 
h2-simpless-oss-masginfsccdfp, h2-simpless-dks-
900masginfsccdfp, h2-simpless-oss-cpdbshc900, h2-
simpless-dks-zopdbsgenetic, simpless-oss-
masb50kmiasmdfp, h2-simpless-oss-900masb50ksccdfp, 
simpless-dks-masb50kmiasmdfp, h2-simpless-oss-celmcut



Results Delfi split,
single planner

Multiple splits,
single planner &

adaptive scheduling



Results Delfi split,
adaptive scheduling Delfi split,

multiple planners



Open Opportunities

• Design graph representations for planning tasks

• Design graph neural networks for special graph structures

• Design scheduling for running more than two planners

• Scale graph neural network training



Paper, Code, and Data Set

• arXiv https://arxiv.org/abs/1811.00210

• Code https://github.com/matenure/GNN_planner

• Data set https://github.com/IBM/IPC-graph-data

• Data set paper https://arxiv.org/abs/1905.06393

• Patrick Ferber, Tengfei Ma, Siyu Huo, Jie Chen and Michael Katz. IPC: A Benchmark Data Set for 
Learning with Graph-Structured Data. In ICML 2019 Workshop on Learning and Reasoning with Graph-
Structured Data, 2019.
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https://github.com/matenure/GNN_planner
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https://arxiv.org/abs/1905.06393

