e
' g ¢ @

=

Online Planner Selection with
Graph Neural Networks and
Adaptive Scheduling Q

Tengfei Ma,' Patrick Ferber,3* Siyu Huo,' Jie Chen,'? Michael Katz' :

"IBM Research, 2MIT-IBM Watson Al Lab, 3University of Basel, “Saarland U@ersi’ry ‘
Ve

\o”’

J

) Background and Context

* Planning is one of the foundational areas of Al

* Planning is intractable in general (e.g., classical
planning is PSPACE-complete) I I

* A single algorithm unlikely works well for all

planning tasks and problem domains
* Portfolio-based approach: Build a portfolio of .l

planners and select one on demand Start Goal

* How?

T

"’

~ Machine Learning Can Help

\

ull

Start

rH

Goal

34.03
74.14
time out
1499.84
964.99

h2-simpless-dks-celmcut
h2-simpless-dks-cpdbshc?00
simpless-oss-masb50kmiasmdfp
h2-simpless-0ss-900masb 50ksbmiasm
seq-opt-symba-1

</ °

~ Machine Learning Can Help

Input consists of hand-crafted features; f is a classic machine learning model (e.g., SVM)

(number of objects

number of axioms

whether action costs are used
f number of mutex groups

\’rhe relaxed problem

number of variables of the CG
maximum of accumulated costs
of paths to goal propositions in

\

)

34.03
74.14
time out
1499.84
964.99

h2-simpless-dks-celmcut
h2-simpless-dks-cpdbshc?00
simpless-oss-masb50kmiasmdfp
h2-simpless-0ss-900masb 50ksbmiasm
seq-opt-symba-1

</

Delfi (winner of the
Optimal Track of the

201 8 International

W/ Mthine LeCIrning CCIn Help Planning Competition)

Input is an image converted from graph representation of the task; f is convolutional neural network

(e . \ 34.03 h2-simpless-dks-celmcut
“aned ~ : 74.14 h2-simpless-dks-cpdbshc?00
GRS
R 4 T ' time out| simpless-oss-masb50kmiasmdfp
‘ ‘. -
/ l,!| W — |1 1499.84 | h2-simpless-0ss-200masb50ksbmiasm
I "Lﬁ 964.99 seqg-opt-symba-1
\ e) Lo

\ N

"/

~ Machine Learning Can Help

Input is graph representation of the task; f is graph neural network

\ [34.03 | h2-simpless-dks-celmcut
74.14 h2-simpless-dks-cpdbshc?00

7

u\

964.99 seq-opt-symba-1

N e : . .
A THTIB 7 time out | simpless-oss-masb50kmiasmdfp
f .%é%!!%%%‘%ﬁ%‘n.%h%‘ _
(DR ‘]
J S

‘1(.(N J — | 1499.84 | h2-simpless-0ss-200masb50ksbmiasm
LA !

</ °

N’
~ Graph Representations of a Planning Task
* State transition graph (memory prohibitive) * Abstract structure graph (also called lifted
* Problem description graph (also called grounded represeniation/iiSicyersiciiaipe BN
representation) [Pochter et al. 2011]
‘.\>'\
\'//Il\\‘i'\
IR i
Ll v N
I e A
(eSS G R
(Nl (e SR b 0
[Nk N
“!so'é}\é\: B ///))‘o’/‘\! y —— O

./

-/

_ Pros and Cons

Hand-crafted feature input

Image input

Graph input

v Rich domain knowledge

v/ No feature engineering needed
v/ Convolutional neural networks
have been constantly improved

v Permutation invariant

v Leverage node/edge attributes
v/ No feature engineering needed
v/ Graph neural networks are
emerging (ample opportunity for
improvement)

~

X Engineering good features is a
laborious task

X Not permutation invariant
X Cannot leverage node/edge
attributes

W/ i

- N

\/ ‘ o

~ Planner Selection with Graph Neural Networks

Setting Problem formulation
* Cost-optimal planning (must use optimal planner) * Task G (as a graph)
* Given time allowance T, identify a planner that * D planners

completes within T (no need to be the fastest)

y € {0,1}°, O success, 1 fail
* Online scheduling (selected planner dependent on

task)

Find a function f(G, 0) as close to y as possible

Selected planner = argmin; f(G, 0);

* Experience favors classification over regression

Ak

— Planner Selection with Graph Neural Networks

Graph neural network

1. Compute a vector representation h, for each node v. [See next slide]
2. Compute an attention weight a, for each node v. [See next slide]
3. Form the graph representation hg = > a, h,

4. Apply a fully connected layer f(G, 0) = sigmoid(WThg). [Note: not softmax]

e/ N

\/ o

— Planner Selection with Graph Neural Networks

GCN [Kipf and Welling 2017] GG-NN [Li et al. 2016]
* Acts like a convolutional network * Acts like a recurrent network
* Each node v has an initial feature vector x,, =: hq(jo) * Treaf node represeniction csiytic RIS IEEIC

recurrently update it

* Fort=0,..., T-1 e Fort=20.T-1

R — U(N W(t)Th,Ef)> B — GRU(h(t) m{t+D)
iy m(t+D) = 30 B
* Attention weight is computed as Z - Z Out

u€in(v) u’ €out(v)

o, = sigmoid (wT[h,S,T); h,E,O)D

* Computation of a, is the same as left

</

o Two-Stage Adaptive Scheduling

* Observation: If a planner solves a task in time, often it completes rather quickly.

* Consequence: One may try more than one planner.

Try planner 1

If planner 1 fails, try planner 2 (which
may be the same as planner 1)

Planner 2 is predicted by a different

Planner 1 is predicted by a model
> i model, trained by using a training set

described earlier in which planner 1 fails

@ Two-Stage Adaptive Scheduling

The second model: Compare with related ideas:

f(G, p, B) = sigmoid(W'hg + UTe,) 1. Both planners come from the same predictive model
* If first planner is bad, second can be equally bad

Label = this part models the 2. More than two planners, same predictive model

condition that planner e Same as above

+ 0,if | = p and time of | <T
IT | = p and fime or | p fails in the first try

3. More than two planners, each using a different

* l,ifi=pandtimeof >T
By .) predictive model
 0,if | #Z p and time of | < T/2

* Training set and label construction become more and

 1,if | #Z p and time of | > T/2

more complicated

YU v

Data Set

* We compile a data set by using International Planning Portfolio: 17 planners
Competition data h2-simpless-dks-celmcut, h2-simpless-dks-cpdbshc?00,
* Training/validation set: IPC prior to 2018 h2-simpless-dks-200masb 50ksccdfp, h2-simpless-oss-

900masb50ksbmiasm, h2-simpless-dks-blind, h2-
simpless-oss-zopdbsgenetic, h2-simpless-oss-blind, h2-
* Training/validation split A: fixed; same as Delfi split simpless-dks-900masb50ksbmiasm, seq-opt-symba-1,

* Test set: IPC 2018

h2-simpless-oss-masginfsccdfp, h2-simpless-dks-
900masginfsccdfp, h2-simpless-oss-cpdbshc?00, h2-
simpless-dks-zopdbsgenetic, simpless-oss-
masb50kmiasmdfp, h2-simpless-0ss-200masb50ksccdfp,
simpless-dks-masb50kmiasmdfp, h2-simpless-oss-celmcut

* Training/validation split B: random

* 10 splits preserve domains; 10 splits not

* Each task has a grounded graph and a lifted graph

YN (U >

Delfi split,

Multiple splits,
single planner

single planner &
adaptive scheduling

Table 2: Percentage of solved tasks in the test set and average
evaluation time of the method. Delfi split; single planner.

Method Solved Eval. Time

Random planner 60.6% 0 Table 3: Percentage of solved tasks in the test set (lifted ver-
Single planner for all tasks 64.8% 0 sion). Multiple splits; single planner.

Complementary?2 84.8% 0 Domain-preserv. Random
Planning-PDBs 82.0% 0 Mean Std Mean Std
Symbolic-bidirectional 80.0% 0 Image based, CNN 82.1% 6.6% 86.1% 5.5%
Enhanced features + random forest 82.1% 0.51s Graph based, GCN 85.6% 55% 87.2% 3.5%
Image based, CNN, grounded 73.1% 11.00s Graph based, GG-NN 76.6% 58% 744% 2.7%
Image based, CNN, lifted 86.9% 3.16s Adaptive, GCN 911% 38% 921% 3.2%
Graph based, GCN, grounded 80.7% 23.15s Adaptive, GG-NN 83.0% 58% 86.6% 2.0%

Graph based, GCN, lifted
Graph based, GG-NN, grounded
Graph based, GG-NN, lifted

87.6% 9.41s
77.9% 14.53s
81.4% 11.44s

V\Ju 9)

—
_ Results Delfi split,
adaptive scheduling
100% :
Il Single planner
[Two planner
89.7 [1Adaptive
0, . - 4
o 0% 883 876 [| 83y
2 828
% a0 80.7 = 81.4
3 et 6.6
(2]
©
S
> 70%
g 5.5
o
[
& 60% |-
50%
GCN GCN GG-NN GG-NN
grounded lifted grounded lifted

Figure 4: Percentage of solved tasks in the test set. Delfi

split; two planners.

Delfi split,
multiple planners

Table 4: Percentage of solved tasks in the test set. Offline
method. Delfi split. Compare with performance in Figure 4.

Method Solved
(Greedy) Best 2 planners from train set 85.5%
(Greedy) Best 3 planners from train set 92.4%
(Greedy) Best 4 planners from train set 89.7%
(Greedy) Best 5 planners from train set 87.6%
(Greedy oracle) Best 2 planners from test set 93.8%
(Greedy oracle) Best 3 planners from test set 93.8%
(Greedy oracle) Best 4 planners from test set 93.1%
(Greedy oracle) Best 5 planners from test set 92.4%
Fast Downward Stone Soup 92.4%

YU

_J =%

) Open Opportunities

Design graph representations for planning tasks

Design graph neural networks for special graph structures

Design scheduling for running more than two planners

Scale graph neural network training

| \o_/ N—
</ °

) Paper, Code, and Data Set

e arXiv

Code

Data set

Data set paper

* Patrick Ferber, Tengfei Ma, Siyu Huo, Jie Chen and Michael Katz. IPC: A Benchmark Data Set for

Learning with Graph-Structured Data. In ICML 2019 Workshop on Learning and Reasoning with Graph-
Structured Data, 2019.

https://arxiv.org/abs/1811.00210
https://github.com/matenure/GNN_planner
https://github.com/IBM/IPC-graph-data
https://arxiv.org/abs/1905.06393

