
Online Planner Selection with
Graph Neural Networks and

Adaptive Scheduling
Tengfei Ma,1 Patrick Ferber,3,4 Siyu Huo,1 Jie Chen,1,2 Michael Katz1

1IBM Research, 2MIT-IBM Watson AI Lab, 3University of Basel, 4Saarland University

Background and Context

• Planning is one of the foundational areas of AI

• Planning is intractable in general (e.g., classical
planning is PSPACE-complete)

• A single algorithm unlikely works well for all
planning tasks and problem domains

• Portfolio-based approach: Build a portfolio of
planners and select one on demand

• How?

Machine Learning Can Help

h2-simpless-dks-celmcut

h2-simpless-dks-cpdbshc900

simpless-oss-masb50kmiasmdfp

h2-simpless-oss-900masb50ksbmiasm

seq-opt-symba-1

f

0

BBBBBBBBBB@

1

CCCCCCCCCCA

=

2

66666666664

34.03

74.14

time out

1499.84

964.99

...

3

77777777775

Machine Learning Can Help

h2-simpless-dks-celmcut

h2-simpless-dks-cpdbshc900

simpless-oss-masb50kmiasmdfp

h2-simpless-oss-900masb50ksbmiasm

seq-opt-symba-1

f

0

BBBBBBBBBB@

1

CCCCCCCCCCA

=

2

66666666664

34.03

74.14

time out

1499.84

964.99

...

3

77777777775

Input consists of hand-crafted features; f is a classic machine learning model (e.g., SVM)

number of objects
number of axioms
whether action costs are used
number of mutex groups
number of variables of the CG
maximum of accumulated costs
of paths to goal propositions in
the relaxed problem

Machine Learning Can Help

h2-simpless-dks-celmcut

h2-simpless-dks-cpdbshc900

simpless-oss-masb50kmiasmdfp

h2-simpless-oss-900masb50ksbmiasm

seq-opt-symba-1

f

0

BBBBBBBBBB@

1

CCCCCCCCCCA

=

2

66666666664

34.03

74.14

time out

1499.84

964.99

...

3

77777777775

Input is an image converted from graph representation of the task; f is convolutional neural network

Delfi (winner of the
Optimal Track of the
2018 International

Planning Competition)

Machine Learning Can Help

h2-simpless-dks-celmcut

h2-simpless-dks-cpdbshc900

simpless-oss-masb50kmiasmdfp

h2-simpless-oss-900masb50ksbmiasm

seq-opt-symba-1

f

0

BBBBBBBBBB@

1

CCCCCCCCCCA

=

2

66666666664

34.03

74.14

time out

1499.84

964.99

...

3

77777777775

Input is graph representation of the task; f is graph neural network

This work

Graph Representations of a Planning Task

• State transition graph (memory prohibitive)

• Problem description graph (also called grounded
representation) [Pochter et al. 2011]

• Abstract structure graph (also called lifted
representation) [Sievers et al. 2019]

Pros and Cons

Pros Cons

Hand-crafted feature input ✓ Rich domain knowledge ✗ Engineering good features is a
laborious task

Image input ✓ No feature engineering needed
✓ Convolutional neural networks
have been constantly improved

✗ Not permutation invariant
✗ Cannot leverage node/edge
attributes

Graph input ✓ Permutation invariant
✓ Leverage node/edge attributes
✓ No feature engineering needed
✓ Graph neural networks are
emerging (ample opportunity for
improvement)

Planner Selection with Graph Neural Networks

Setting

• Cost-optimal planning (must use optimal planner)

• Given time allowance T, identify a planner that
completes within T (no need to be the fastest)

• Online scheduling (selected planner dependent on
task)

Problem formulation

• Task G (as a graph)

• D planners

• y ∈ {0,1}D, 0 success, 1 fail

• Find a function f(G, θ) as close to y as possible

• Selected planner = argmin i f(G, θ) i

• Experience favors classification over regression

Planner Selection with Graph Neural Networks

Graph neural network

1. Compute a vector representation hv for each node v. [See next slide]

2. Compute an attention weight αv for each node v. [See next slide]

3. Form the graph representation hG = ∑ αv hv

4. Apply a fully connected layer f(G, θ) = sigmoid(WT hG). [Note: not softmax]

Planner Selection with Graph Neural Networks

GCN [Kipf and Welling 2017]

• Acts like a convolutional network

• Each node v has an initial feature vector

• For t = 0, …, T-1

• Attention weight is computed as

GG-NN [Li et al. 2016]

• Acts like a recurrent network

• Treat node representation as system state and
recurrently update it

• For t = 0, …, T-1

• Computation of αv is the same as left

h(t+1)
v = GRU(h(t)

v ,m(t+1)
v)

m(t+1)
v =

X

u2in(v)

W>
inh

(t)
u +

X

u02out(v)

W>
outh

(t)
u0

↵v = sigmoid
⇣
w>[h(T)

v ;h(0)
v]

⌘

h(t+1)
v = �

⇣X

u⇠v

bavu W (t)>h(t)
u

⌘

xv =: h(0)
v

Two-Stage Adaptive Scheduling

• Observation: If a planner solves a task in time, often it completes rather quickly.

• Consequence: One may try more than one planner.
If planner 1 fails, try planner 2 (which

may be the same as planner 1)

Planner 2 is predicted by a different
model, trained by using a training set

in which planner 1 fails

Try planner 1

Planner 1 is predicted by a model
described earlier

0 T/2 T

Two-Stage Adaptive Scheduling

The second model:

f(G, p, θ) = sigmoid(WT hG + UT ep)

Label =

• 0, if j = p and time of j < T

• 1, if j = p and time of j > T

• 0, if j ≠ p and time of j < T/2

• 1, if j ≠ p and time of j > T/2

Compare with related ideas:

1. Both planners come from the same predictive model

• If first planner is bad, second can be equally bad

2. More than two planners, same predictive model

• Same as above

3. More than two planners, each using a different
predictive model

• Training set and label construction become more and
more complicated

this part models the
condition that planner
p fails in the first try

Data Set

• We compile a data set by using International Planning
Competition data

• Training/validation set: IPC prior to 2018

• Test set: IPC 2018

• Training/validation split A: fixed; same as Delfi split

• Training/validation split B: random

• 10 splits preserve domains; 10 splits not

• Each task has a grounded graph and a lifted graph

Portfolio: 17 planners

h2-simpless-dks-celmcut, h2-simpless-dks-cpdbshc900,
h2-simpless-dks-900masb50ksccdfp, h2-simpless-oss-
900masb50ksbmiasm, h2-simpless-dks-blind, h2-
simpless-oss-zopdbsgenetic, h2-simpless-oss-blind, h2-
simpless-dks-900masb50ksbmiasm, seq-opt-symba-1,
h2-simpless-oss-masginfsccdfp, h2-simpless-dks-
900masginfsccdfp, h2-simpless-oss-cpdbshc900, h2-
simpless-dks-zopdbsgenetic, simpless-oss-
masb50kmiasmdfp, h2-simpless-oss-900masb50ksccdfp,
simpless-dks-masb50kmiasmdfp, h2-simpless-oss-celmcut

Results Delfi split,
single planner

Multiple splits,
single planner &

adaptive scheduling

Results Delfi split,
adaptive scheduling Delfi split,

multiple planners

Open Opportunities

• Design graph representations for planning tasks

• Design graph neural networks for special graph structures

• Design scheduling for running more than two planners

• Scale graph neural network training

Paper, Code, and Data Set

• arXiv https://arxiv.org/abs/1811.00210

• Code https://github.com/matenure/GNN_planner

• Data set https://github.com/IBM/IPC-graph-data

• Data set paper https://arxiv.org/abs/1905.06393

• Patrick Ferber, Tengfei Ma, Siyu Huo, Jie Chen and Michael Katz. IPC: A Benchmark Data Set for
Learning with Graph-Structured Data. In ICML 2019 Workshop on Learning and Reasoning with Graph-
Structured Data, 2019.

https://arxiv.org/abs/1811.00210
https://github.com/matenure/GNN_planner
https://github.com/IBM/IPC-graph-data
https://arxiv.org/abs/1905.06393

