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Abstract

Automatic differentiation (AD) is a technique for computing
the derivative of function F : Rn → Rm defined by a
computer program. Modern applications of AD, such as
machine learning, typically use AD to facilitate gradient-based
optimization of an objective function for which m�n (often
m=1). As a result, these applications typically use reverse
(or adjoint) mode AD to compute the gradient of F efficiently,
in time Θ(m·T1(F)), where T1 is the work (serial running
time) of F . Although the serial running time of reverse-mode
AD has a well known relationship to the total work of F ,
general-purpose reverse-mode AD has proven challenging to
parallelize in a work-efficient and scalable fashion, as simple
approaches tend to result in poor performance or scalability.

This paper introduces PARAD, a work-efficient parallel
algorithm for reverse-mode AD of determinacy-race-free
recursive fork-join programs. We analyze the performance
of PARAD using work/span analysis. Given a program
F with work T1(F) and span (critical-path length) T∞(F),
PARAD performs reverse-mode AD of F in O(m ·T1(F))
work and O(logm+log(T1(F))T∞(F)) span. To the best
of our knowledge, PARAD is the first parallel algorithm
for performing reverse-mode AD that is both provably
work-efficient and has span within a polylogarithmic factor
of the original program F .

We implemented PARAD as an extension of Adept, a C++
library for performing reverse-mode AD for serial programs
that is known for its efficiency. Our implementation supports
the use of Cilk fork-join parallelism and requires no program-
mer annotations of parallel control flow. Instead, it uses
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compiler instrumentation to dynamically trace a program’s
series-parallel structure, which is used to automatically
parallelize the gradient computation via reverse-mode AD.
On eight machine-learning benchmarks, our implementation
of PARAD achieves 1.5× geometric-mean multiplicative
work overhead relative to the serial Adept tool, and 8.9×
geometric-mean self-relative speedup on 18 cores.

1 Introduction

Automatic differentiation1 [30, 45, 57, 58], or AD for
short, aims to numerically compute the derivative of a func-
tion F :Rn→Rm defined by a computer program. Although
AD has a long history of exploration and development in
applications such as computational fluid dynamics, molec-
ular dynamic simulations, engineering design optimization,
sensitivity analysis, and uncertainty quantification, AD is
commonly used today as a fundamental computational step
in training neural networks for machine learning. In that
context, the program is a neural network that defines a func-
tion F mapping a set of weights W ∈Rn to a loss L∈Rm,
for which m�n (often m=1). AD is used when training
the neural network to facilitate gradient-based optimization
of L [13]. In contrast to symbolic [33] or numerical differenti-
ation [17], AD provides an efficient way to compute partial
derivatives for functions of many input variables, which makes
AD appealing for training neural networks [5]. More broadly,
efficient general-purpose AD sees a diversity of uses today,
from general applications of AD in machine learning, such as
in differentiable programming systems (e.g., [14,42,57]), to
various applications in computational science.

For a function F computed serially in time T1(F), the
gradient of F can be computed using either forward-mode
AD [68], in time Θ(n · T1(F)), or using reverse-mode
(or adjoint-mode) AD [52, 65], in time Θ(m · T1(F)).
Reverse-mode AD is therefore well suited for machine
learning and has therefore grown in popularity.

This paper addresses the problem of automatically par-
allelizing general-purpose reverse-mode AD for programs
implemented using (recursive) fork-join parallelism,
as supported by parallel programming languages including
dialects of Cilk [27, 43, 50], Fortress [1], Kokkos [24], Ha-

1Also known as algorithmic differentiation.
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banero [4], Habanero-Java [18], Hood [12], HotSLAW [54],
Java Fork/Join Framework [47], OpenMP [3,56], Task Par-
allel Library [49], Threading Building Blocks (TBB) [60],
and X10 [19]. Fork-join parallelism allows subroutines to
be spawned recursively in parallel and iterations of parallel
loops to execute concurrently. Fork-join programs expose
fine-grained tasks that are allowed to execute in parallel, but
are not required to. The execution and synchronization of
fine-grained tasks is managed “under the covers” by a run-
time system, which typically implements a randomized work-
stealing scheduler [2,9,11,27] to schedule and load-balance the
computation among parallel worker threads. Constructs
such as parallel for can be implemented as syntactic sugar
on top of the fork-join model. As long as a fork-join program
contains no determinacy races [25] (also called general
races [55]) — no cases where two logically parallel operations
access the same memory location, and at least one access
writes to the location — then it is deterministic, meaning
that every execution of the program on a given input performs
the same operations, regardless of scheduling. Fork-join paral-
lelism has emerged as a popular parallel-programming model
that allows many programs to be implemented efficiently as
deterministic parallel programs [8,44,64].

This paper explores the following problem: given a
determinacy-race-free function F :Rn→Rm defined by a
recursive fork-join parallel program, automatically parallelize
the reverse-mode AD computation of F in a work-efficient
and scalable manner that is efficient in practice. We have
observed that, in practice, many applications of reverse-mode
AD, including machine-learning applications, implement
functions that satisfy these constraints.

General-purpose reverse-mode AD has long posed a
challenge to parallelize efficiently [7], despite its substantial
history of research and development (for a survey of previous
work, see [5]). Reverse-mode AD can be performed in
parallel for the m dimensions of the output of F , but
this approach yields minimal parallelism when m is small.
Specialized algorithms have been developed to perform
parallel reverse-mode AD for specific computations [38–41],
but these specialized approaches do not apply to recursive
fork-join computations in general. Previously developed
solutions [6, 61] to parallel reverse-mode AD either are
not work efficient — the total computation involved is
ω(m·T1(F)) — or they suffer in parallel performance and
scalability, for example, due to lock contention.

The challenges of parallelizing reverse-mode AD
To see the challenges in automatically parallelizing

reverse-mode AD, let us first examine serial reverse-mode
AD on a function F .

Intuitively, AD views the computation of F as a sequence
of primitive arithmetic operations and primitive functions —
such as addition, multiplication, sine, and cosine — and per-
forms a nonstandard interpretation of F to calculate deriva-
tives. Reverse-mode AD computes the derivative of F by ap-
plying the chain rule from differential calculus, starting from

the outermost function, which is the last operation or function
in the sequence. More precisely, let L∈Rm be the dependent
variable computed by F , and let n be the length of the
operation sequence to compute F . After at each step i, the
reverse-mode AD algorithm has evaluated some suffix Sn−i of
the computation of F , and it stores a set of gradients that
encode the adjoint ∂L/∂Wn−i, where Wn−i is the set of in-
puts to Sn−i. Step i+1 of the algorithm grows the evaluated
suffix Sn−i−1 from Sn−i by updating the set of gradients
to store ∂L/∂Wn−i−1=(∂L/∂Wn−i)(∂Wn−i/∂Wn−i−1).

Reverse-mode AD is most commonly accomplished
through maintenance of an auxiliary tape data-structure.2

Conceptually, reverse-mode AD first performs an augmented
execution of the function F , known as the forward pass,
to record data about F ’s computation onto the tape. After
the forward pass completes, reverse-mode AD performs
a reverse pass, in which it applies the chain rule to the
operations on the tape in reverse order. Section 2 describes
an efficient serial reverse-mode AD algorithm in detail.

At a high level, the tape and the set of gradients pose
two key challenges to parallelizing reverse-mode AD.
Parallelizing the tape. Parallel reverse-mode AD must

accommodate the parallelism in the computation of F .
For a fork-join parallel program F , the spawning and
synchronization of logically parallel tasks imposes a directed
acyclic graph (DAG) of dependencies operations, rather
than a sequence. Dependencies between primitive operations
must be recorded efficiently in parallel during the forward-
pass execution of F . In addition, the DAG structure of
dependencies implies logical parallelism between operations
in the reverse pass, which should be exploited to achieve
performance and scalability.
Parallel maintenance of gradients. As Section 2

describes, one well-known feature of reverse-mode AD is
that a variable-read operation in the given function F
corresponds to a write of a gradient value during the reverse
pass of the reverse-mode AD computation of F , and vice
versa [7, 61]. As a result, even if F is determinacy-race
free, logically parallel read operations during the forward
pass become logically parallel write operations during the
reverse pass. Intuitive approaches to managing gradients
can lead to poor performance. For example, coordinating
updates to gradients using locks can result in high contention
that inhibits scalability. Alternatively, one might imagine
maintaining gradients using P thread-local tables, where P
is the number of processors executing the reverse pass. But a
simple use of thread-local gradient tables is not work efficient,
because reads of gradient values can occur asynchronously
during a parallel execution of the reverse pass, and O(P)
work is needed to read a gradient out of the thread-local
tables. Synchronizing these reads can reduce the total work,
but at the cost of parallel scalability.
Previous approaches. Previous work [6] has explored

parallel reverse-mode AD for OpenMP programs using

2Also called a Wengert list [68].
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ADOL-C [67], a library for reverse-mode AD in C++
programs. To accommodate OpenMP threads, a separate
instance of ADOL-C is created for each thread, such that each
thread operates on its own tape and set of gradients. Separate
user code is invoked to combine gradient information from
these parallel tapes at serial points in the computation. This
thread-local AD approach can work efficiently for programs
with simple parallel control flow, such as a sequence of parallel
loops. But it is unclear how to generalize the approach to
handle arbitrary recursive fork-join parallel programs while
maintaining work efficiency and scalability. Nested parallel
control flow in particular presents a significant challenge,
because work efficiency can be precluded by the total work
performed over the entire reverse pass to combine gradient
information at nested synchronization points.

Previous work has also explored similar node-local
approaches to parallelize reverse-mode AD for MPI
programs [61], by assigning each MPI node to operate on
a separate tape and replacing MPI communications in the
forward pass with appropriate reversed communications to
communicate gradient information in the reverse pass. These
approaches are not work efficient [36], due to the cost of
communicating and combining parallel gradient information.

PARAD: Work-efficient and scalable reverse-mode AD
This paper introduces PARAD a provably efficient

parallel algorithm for reverse-mode AD for determinacy-race-
free recursive fork-join programs. Given such a program
F , PARAD computes the gradient of F using reverse-mode
AD work-efficiently and with parallel scalability comparable
to that of F itself. In particular, PARAD exploits the
logical parallel control flow of the input of F to parallelize
the reverse-mode AD computation of F .

In particular, Section 4 analyzes the parallel performance
of PARAD using work/span analysis [21, Ch. 27]. The
work of a computation is the total number of instructions
executed, and the span is the length of a longest path
of dependencies in the program. Section 4 shows that,
given an input function F : Rn→Rm which takes work
T1(F) and span T∞(F) to compute, PARAD computes
reverse-mode AD of F in work Θ(m · T1(F)) and span
O(logm+log(T1(F ))T∞(F )). To the best of our knowledge,
PARAD is the first parallel algorithm for performing
reverse-mode AD that both is provably work-efficient and
has span within a polylogarithmic factor of T∞(F).

To efficiently parallelize reverse-mode AD, PARAD
implements an SP-Tape data structure, which records
a tape for F efficiently in parallel, and a novel parallel
algorithm for maintaining gradients.
A work-efficient, scalable, deterministic parallel

tape. Section 3 describes the SP-Tape data structure for
recording a tape of the forward-pass execution of F , including
all series-parallel relationships between primitive operations
and functions in F . The SP-Tape data structure ensures that,
if F is determinacy-race free, then the SP-Tape recorded for
the forward-pass execution of F is the same, regardless of how

Algorithm Ts/T1 Ts/T18 T1/T18

PARAD 0.57 5.12 9.02
PARAD+S 0.66 5.88 8.89

Locks 0.45 2.77 6.14
Worker-Local 0.94 4.96 5.27

Table 1: Performance comparison of PARAD, PARAD+S,
Locks, and Worker-Local over the 8 application benchmarks
discussed in Section 6. Average (geometric mean) work-
efficiencies Ts/T1 and 18-core speedups Ts/T18 are provided
relative to the serial runtime Ts of Adept.

the forward-pass is scheduled at runtime. Section 3 justifies
that the SP-Tape records the tape in a work-efficient and
scalable manner with bounded contention. The maintenance
of an SP-Tape resembles techniques in previous work for
recording series-parallel dependencies in recursive fork-join
programs [59], but with substantial extensions to implement
reverse-mode AD.
Work-efficient parallel maintenance of gradients.

To achieve a work efficient and scalable reverse pass, PARAD
uses a novel algorithm to maintain gradients that overcomes
the problems of approaches based on locks or thread-local
gradient tables. In contrast to lock-based approaches, the
algorithm avoids the overheads of locks and bounds the
contention involved in updating gradients. In contrast
to approaches that use thread-local gradient tables, the
algorithm allows gradients to be read in an asynchronous
manner, while maintaining both work efficiency and span
comparable to the input function F . Section 4 describes this
algorithm for maintaining sets of gradients in parallel.

The LibPARAD parallel reverse-mode AD library
We implemented PARAD in a library, called Lib-

PARAD, to evaluate the empirical performance of PARAD.
LibPARAD extends the Adept [35] library for reverse-mode
AD computation of serial C++ programs, which is known
to exhibit low overheads in practice. LibPARAD supports
the use of the Cilk programming language [27, 43, 50] to
encode recursive fork-join parallelism. LibPARAD captures
the series-parallel relationships between operations using
compiler-inserted program instrumentation, based on a
version of the CSI framework [62] that instruments the
Tapir compiler intermediate representation of recursive
fork-join parallelism [63]. This approach has the extra
benefit that programmers need not annotate the logical
parallelism in the program. Instead, LibPARAD captures
this logical parallelism based on the linguistic constructs in
the original program. Section 5 describes the implementation
of LibPARAD as well as several practical optimizations that
LibPARAD implements on top of the PARAD algorithm.

We evaluated LibPARAD’s serial and parallel per-
formance in practice on a variety of machine-learning
benchmarks, and we compare the performance of Lib-
PARAD to Adept applied to the serial projection [27,63]
of each benchmark, as well as to implementations that use
fine-grained locks (Locks) and thread-local gradient tables
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(Worker-Local). Table 1 summarizes our empirical evaluation
of LibPARAD in which we compared PARAD and
PARAD+S, which incorporates additional optimizations
described in Section 5, with algorithms using locks and
worker-local tables. On average, the PARAD and
PARAD+S algorithms have better scalability than Locks
and Worker-Local both in terms of self-relative speedup and
relative to the serial Adept code. Section 6 dives into the
empirical evaluation of LibPARAD and examines how the
scalability of each algorithms varies across benchmarks.

Contributions
This paper makes the following contributions.

1. We introduce PARAD, an algorithm that performs
reverse-mode AD for determinacy-race-free recursive
fork-join parallel programs with substantially fewer
overheads than existing systems. Given a determinacy-
race-free recursive fork-join program F : Rn → Rm,
PARAD automatically parallelizes the reverse-mode AD
computation of F .

2. Using work/span analysis [21, Ch. 27], we show that
PARAD performs reverse-mode AD on a given function
F in work O(m·T1(F )) and O(logm+log(T1(F ))T∞(F )).
To the best of our knowledge, PARAD is the first
parallel algorithm for performing reverse mode AD that
is both provably work-efficient and has span within a
polylogarithmic factor of T∞(F).

3. We introduce LibPARAD, an implementation of
PARAD for performing automatically parallel reverse-
mode AD for determinacy-race-free recursive fork-join
programs. LibPARAD extends the Adept [35] C++
library for serial reverse-mode AD, which is known to
outperform other C++ AD libraries [66].

4. We study the empirical performance of LibPARAD
on eight machine-learning benchmarks and compare the
the PARAD, PARAD+S, Locks, and Worker-Local
algorithms for reverse-mode AD.

Organization
The remainder of the paper is organized as follows. Sec-

tion 2 provides background on AD and fork-join parallelism.
Section 3 describes the SP-Tape data structure and analyzes
it in terms of work and span. Section 4 presents and
analyzes PARAD’s work-efficient and scalable reverse-mode
algorithm. Section 5 describes the implementation of
LibPARAD, a C++ library implementation of PARAD,
based on the Adept C++ library for serial reverse-mode
AD. Section 6 compares the empirical performance of
LibPARAD against Adept and a lock-based implementation
of reverse-mode AD. Section 7 discusses related work in
parallel AD. Section 8 provides concluding remarks.

2 Preliminaries

This section provides background information on the serial al-
gorithm for reverse-mode AD, recursive fork-join parallelism,

the dag model of multithreading, and work/span analysis. To
simplify the description of reverse-mode AD, we shall consider
input programs F :Rn→Rm for which m=1. It is straight-
forward to extend this description for programs where m>1.

A serial algorithm for reverse-mode AD
In general, a serial reverse-mode AD computation, as

implemented by tools including Adept [35], ADOL-C [67],
and Tapenade [32], operates in two passes. Given a function
F :Rn→Rm, the forward pass first executes F and records
the primitive operations of F onto a tape data structure.
The reverse pass maintains a table of gradient values and
processes the tape data structure step by step in reverse,
updating the gradient values at each step.

To examine the algorithm more closely, let us first examine
the tape data structure and the forward pass. The serial
tape data structure consists of two stacks: a statement
stack, corresponding to writes to variables in the program
F , and an operation stack, that records the values read
to compute statements. Each differentiable variable v in
the program, corresponding to an executed statement in
F , is assigned a unique integer identifier index(v), called
the gradient index. A statement-stack entry contains
the index associated with the left-hand-side variable v, and
the length of the operation stack when the statement was
inserted. Each operation-stack entry contains the index of
the variable u being read, as well as the partial derivative
of the statement’s left-hand-side variable v with respect
to u. Figure 1 illustrates the statement and operation stacks
recorded for a simple program with 3 statements.

To see how the forward pass populates the statement
and operation stacks, consider the forward-pass executing
of TwoByTwoMatVecSqLoss in Figure 1 line by line.
Line 1 computes the statement g=a·e+b·f . The expression
on the right-hand side of the statement is evaluated first
and the operations O0, O1, O2, O3 are pushed onto the
operation stack. After the right-hand expression is evaluated,
an entry S0 is pushed onto the statement stack recording
the gradient index index(g) of the left-hand-side variable
g, and the current length 4 of the operation stack. As
a result, after line 1 is executed, statement S0 on the
statement stack identifies operations O0, O1, O2, and O3

as storing partial derivatives ∂g/∂a, ∂g/∂e, ∂g/∂b, and
∂g/∂f , respectively. Line 2 is handled similarly by pushing
operations O4,O5,O6,O7 to the operation stack and then
pushing statement S1 to the statement stack. Lastly,
to handle line 3, operations O8,O9 are pushed onto the
operation stack and statement S2 onto the statement stack.

After executing the function, the reverse pass creates
a gradient table with one entry for each gradient index
created during the execution of the forward pass. Initially,
all entries of the gradient table are set to 0, except for (one
or more) variables whose derivatives are already known. In
the example in Figure 1, there is a single loss variable L
whose gradient index is initialized to 1.

The gradient-table state after each step of the reverse-mode
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Forward pass program

TwoByTwoMatVecSqLoss(a,b,c,d,e,f):

1 g=a·e+b·f
2 h=c·e+d·f
3 L=g2+h2

4 return L

Gradient table state after each step of reverse-mode AD

Step ∂a ∂b ∂c ∂d ∂e ∂f ∂g ∂h ∂L

0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 2g 2h 0
2 0 0 2h·e 2h·f 2h·c 2h·d 2g 0 0
3 2g·e 2g·f 2h·e 2h·f 2h·c+2g·a 2h·d+2g·b 0 0 0

Statement Stack

index end index

S0 index(g) 4
S1 index(h) 8
S2 index(L) 10

Operation Stack

index mul

O0 index(a) ∂g/∂a=e
O1 index(e) ∂g/∂e=a
O2 index(b) ∂g/∂b=f
O3 index(f) ∂g/∂f=b
O4 index(c) ∂h/∂c=e
O5 index(e) ∂h/∂e=c
O6 index(d) ∂h/∂d=f
O7 index(f) ∂h/∂f=d
O8 index(g) ∂L/∂g=2g
O9 index(h) ∂L/∂h=2h

Figure 1: Illustration of a serial reverse-mode AD computation on simple program, TwoByTwoMatVecSqLoss. The
tables in the top right show the statement and operation stacks, recorded during the execution of the forward pass of
the program. The bottom table shows the state of the gradient table after processing each statement (in reverse order)
during the reverse pass.

SerialReversePass(S,O,G):

1 i= |O|−1
2 for k= |S|−1,|S|−2,...,0
3 α=G[Sk.index ]
4 G[Sk.index ] = 0
5 while i>Sk−1.endIndex
6 G[Oi.index ] += α·Oi.mul
7 i−= 1

Figure 2: Pseudocode for the serial algorithm for computing
the reverse pass over the statement stack S and operation
stack O with input gradients in the table G.

AD algorithm is presented in Figure 1. In the figure, each
row presents the state of the gradient table after a step of
the reverse pass. Each row therefore encodes the coefficients
of a differential expression obtained via differentiation of
an implicit function. Row 0, for example, encodes the
initial (trivial) differential expression ∂L = 1 · ∂L. After
processing statement S2, this expression is transformed to
∂L=(∂L/∂g)∂g+(∂L/∂h)∂h=2g ∂g+2h ∂h. The gradient
table on Row 1 encodes this transformation, in which the
coefficient of ∂L is 0, and the coefficients of ∂g and ∂h are 2g
and 2h respectively. To process statement S1 the reverse pass
reads the relationship between ∂h and the operations used to
compute h encoded on the operation stack: ∂h=c ∂e+e ∂c+
d ∂f+f ∂d. The reverse pass then uses this relationship to
update the differential expression encoded in the gradient
table. The new differential expression, encoded on Row 2,
is ∂L=2g ∂g+2h(c ∂e+e ∂c+d ∂f+f ∂d). The last step
processes statement S0 as we processed S1, and results in
the final gradient table (Row 3) that contains the partial
derivatives of L with respect to each variable in the program.

Figure 2 gives psuedocode for the SerialReversePass
procedure that performs the reverse pass, specifically, the
updates to the gradient table using a previously recorded
statement stack S, operation stack O, and input gradients G.
The total work to maintain the two stacks and execute
SerialReversePass is Θ(|O|)+Θ(|S|)=Θ(T1(F)) for an
input program F with work T1(F).
Observations Conceptually, PARAD makes use of two

observations of this serial reverse-mode AD algorithm to
parallelize it. First, during the forward-execution of a parallel
program, the serial tape data structure behaves like a list-
monoid with an append operator. Second, the read and write
sets of the forward-execution are swapped in the reverse-pass
over the tape, i.e., every read becomes a write, and every
write becomes a read. PARAD leverages these observations
in its design of the SP-tape for recording the forward pass,
and in its algorithm for automatically parallelizing the reverse
pass to compute derivatives.

Recursive fork-join parallelism
Recursive fork-join parallelism allows logical parallelism

in a program to be exposed using the keywords [21, Ch. 27]
spawn, sync, and parallel for. When preceding a func-
tion call F , the spawn keyword spawns F , allowing F to
execute in parallel with its continuation — the statement
immediately after the spawn of F . The sync keyword com-
plements the spawn keyword and acts as a local barrier that
joins together, or syncs, the parallelism specified by spawn.
When a function F reaches a sync, control is not allowed
to pass that sync until all functions spawned previously in
F return. These keywords can be used to implement other
parallel control constructs, such as the parallel for loop,
which allows all of its iterations to operate logically in parallel.
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A recursive fork-join program has a serial projection
[27,63], which intuitively is the serial program derived by
removing parallel keywords from the fork-join program. If the
fork-join program contains no determinacy races, then every
execution of the program matches that of its serial projection.

The computation dag model
An execution of a fork-join program can be modeled as a

computation dag G=(V,E). Each directed edge represents
a strand, that is, a sequence of executed instructions with
no spawn or sync statements. The execution of a spawn
statement results in a spawn vertex, which contains two
successor strands. The execution of a sync statement results
in a sync vertex, which contains multiple incoming edges.

The dag G is a series-parallel dag [25], which means
that G has two distinguished vertices — a source vertex,
from which one can reach every other vertex in G, and a
sink vertex, which is reachable from every other vertex in
G — and can be constructed by recursively combining pairs
of series-parallel dags using series and parallel combinations.
A series combination combines two dags G1 and G2

by identifying the sink vertex of G1 with the source vertex
of G2. A parallel combination combines two dags G1

and G2 by identifying their source vertices with each other
and their sink vertices with each other.

The recursive construction of a series-parallel dag can
be represented as a binary tree, called the SP tree [25],
as follows. Each leaf in the SP tree represents a strand in
the computation dag, and each internal node is either an
S-node or a P-node. A subtree of the SP tree represents
a series-parallel subdag of the computation dag. An
S-node represents a series composition of the two subdags
represented by its children. A P-node represents a parallel
composition of the two subdags represented by its children.

Work/span analysis
Given a fork-join program whose execution is modeled as a

DAG A, we can bound the P -processor running time TP (A)
of the program using work/span analysis [21, Ch. 27].
The work T1(A) is the number of instructions in A, and the
span T∞(A) is the length of a longest path in A. Greedy
schedulers [15,23,28] can execute a deterministic program
with work T1 and span T∞ on P processors in time TP
satisfying max{T1/P,T∞} ≤ Tp ≤ T1/P +T∞. A similar
bound can be achieved by more practical work-stealing
schedulers [10, 11]. The speedup of an algorithm on P
processors is T1/TP , which the inequality shows to be at
most P in theory. The parallelism T1/T∞ is the greatest
theoretical speedup possible for any number of processors.

3 The SPTape Data Structure

This section describes the SPTape data structure that
PARAD uses to record, in parallel, the statement and
operation stacks for reverse-mode AD, and the series-parallel
dependencies in the program. After recording, the SPTape
supports parallel traversals with work and span proportional

to that of the original recorded program. For later use, we
describe and analyze generic parallel traversal algorithms
over the SPTape and provide a set of rules governing
memory access during the traversal that ensure the absence
of determinacy races.

For didactic simplicity, we describe the SPTape data struc-
ture for binary recursive fork-join programs, in which each
node in the computation dag has at most two incoming edges.

Basic structure of an SPTape

The SPTape data structure for a recursive fork-join
program stores an SP tree [25] of the program augmented
with data nodes that store “subtapes.” A subtape
contains a statement and operation stack that are used
to record derivative dependencies within a strand. The
subtapes in the SPTape represent an ordered partitioning of
the statement and operation stack data structures employed
by the serial AD tool discussed in Section 2.

Recording an SPTape serially
An SPTape is constructed incrementally during the

execution of the forward pass. We shall first see a serial
algorithm for constructing the SP-Tape, and then we shall
see how to parallelize this algorithm.

To record an SPTape, a single processor maintains a
shadow stack that is updated based on the parallel control
flow of the forward-pass execution. Each entry on the
shadow stack stores a local SPTape T , which is initialized
with a single root node. When an entry is popped from the
shadow stack, the local SPTape T for the popped entry
is appended to the children of the SPTape node of the new
top entry on the stack.

Figure 3 presents pseudocode for creating an SPTape. At
a high level, this pseudocode creates S and P nodes in the SP-
Tape based on spawn and sync statements in the program,
and it records derivative dependencies in the subtape stored
in the data node at the top of the shadow stack. Figure 4 illus-
trates an example of how the operations on the shadow stack
execute in a simple example fork-join program. As the exam-
ple shows, a P-node is pushed onto the stack when a program
executes a spawn, reflecting the fact that both the spawned
function and its continuation can execute in parallel. S-nodes
are pushed onto the stack when the program enters a function
or a continuation of a spawn. Nodes are popped off the
stack at the ends of functions and around sync operations.

The following lemma shows that, when the serial execution
of a series-parallel computation dag G completes, the local
SPTape at the top of the shadow stack records the gradient
information and series-parallel dependencies for G.

Lemma 1. When a serial execution completes a compu-
tation dag G, the top of the shadow stack stores a local
SPTape that records the execution of G.

Proof. The proof follows by induction on the structure of G.
In the base case, G is a single strand u, and the top of the
shadow stack stores an SPTape with a single S-node contain-
ing a single child data node that records the derivative depen-
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PushShadow(K,type)

1 Push(K)
2 Top(K).T .type = type

PopShadow(K)

1 τ = Top(K).T
2 Pop(K)
3 Append(Top(K).T .children,τ)

On entering a function:

1 PushShadow(K,Series)

On executing a spawn:

1 PushShadow(K,Parallel)

Before executing arithmetic:

1 if Top(K).T .type 6=Data
2 PushShadow(K,Data)

On executing the continuation
of a spawn:

1 PushShadow(K,Series)

On returning from a function:

1 if Top(K).T .type==Data
2 PopShadow(K)
3 PopShadow(K)

Immediately before executing
a sync:

1 if Top(K).T .type==Data
2 PopShadow(K)
3 PopShadow(K)

Immediately after executing a
sync:

1 PopShadow(K)

Combine(K,τ)

1 Append(Top(K).T .children,τ)

Figure 3: Pseudocode for the maintenance of the SPTape
data structure. The variable K denotes the shadow stack,
each entry of which contains a local SP-Tape T . The field
T.type identifies the type of the root node of T . The field
T.children is a list of children of the root node of T . The
Combine method is used to incorporate an SPTape τ
recorded in parallel.

dencies in u. Otherwise G is the result of a series or parallel
composition of subdags G1 and G2. In either case, the pseu-
docode in Figure 3 ensures that an entry for G is pushed onto
the shadow stack at the beginning of G, and separate pushes
and pops occur at the beginning and end, respectively, of each
subdag. When popping the shadow stack at the end of each
subdag, PopShadow in Figure 3 shows that the new top of
the shadow stack is either a P-node, if a spawn executed, or an
S-node otherwise. In addition, Figure 3 shows that the local
SPTape formerly at the top of the stack is appended to the
list of children for the new top of the stack. Hence the top of
the shadow stack stores a node of the correct type and correct
child SPTape structures for the execution ofG1 andG2.

Parallelizing SPTape construction
To construct an SPTape in parallel, the parallel execution

TwoByTwoMatVecSqLoss(a,b,c,d,e,f,K):

1 PushShadow(K,Series)
2 PushShadow(K,Parallel)
3 spawn λ{
4 PushShadow(K,Series)
5 PushShadow(K,Data) // (D1)
6 g=a·e+b·f
7 PopShadow(K) // (D1)
8 PopShadow(K) // Series
9 }

10 PushShadow(K,Series)
11 PushShadow(K,Data) // (D2)
12 h=c·e+d·f
13 PopShadow(K) // (D2)
14 PopShadow(K) // Series
15 sync
16 PopShadow(K) // Parallel
17 PushShadow(K,Data) // (D3)
18 L=g2+h2

19 PopShadow(K) // (D3)
20 PopShadow(K) // Series
21 return L

Figure 4: An example of the SPTape recorded for a parallel
implementation of TwoByTwoMatVecSqLoss.

of a computation dag G is augmented to maintain separate
shadow stacks. Intuitively, consider two series-parallel
subdags G1 and G2 of G that are composed in parallel and
are scheduled to execute in parallel. The execution uses
distinct shadow stacks to separately record the SPTape
structures of G1 and G2 and then combines those SPTape
structures when execution reaches the common sink vertex of
G1 and G2. In modern dialects of Cilk, this behavior can be
accomplished using reducer hyperobjects [26]. We describe
this behavior generically for series-parallel computation dags.

We model the scheduling of a computation dag G as a
partitioning of the strands into scheduling components,
such that logically parallel strands execute in parallel if
the scheduler places the strands into distinct scheduling
components. We assume that the scheduler maintains the
following properties of scheduling components:

• A new scheduling component can only begin at a successor
strand u of a spawn vertex in G.

• Consider a spawn vertex s, which is the source vertex of a
series-parallel subdag G produced via parallel composition.
A new component C that begins at a successor strand
u of s terminates at a predecessor strand v of the sink
vertex of G such that v is reachable from u.

These properties create a correspondence between scheduling
components and series-parallel subdags of G. In particular,
the same scheduling component contains both the first
strand in a series-parallel subdag and the last strand in that
subdag. We shall also assume that the execution of strands
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WalkSPTape(node,G,VisitSubTape,dir):

1 if node.type=D:
2 VisitSubTape(node.S,node.O,G,dir)
3 C=node.children
4 If dir is right first reverse C.
5 if node.type=S :
6 for c∈C
7 RightFirstTraversal(c,G,dir)
8 if node.type=P:
9 parallel for c∈C:

10 RightFirstTraversal(c,G,dir)

Figure 5: Pseudocode for the parallel right-first traversal
of SPTape.

within the same component follows a depth-first traversal
consistent with the execution of the serial projection of
that computation. Practical work-stealing schedulers [10,11]
typically satisfy these assumptions.

The parallel execution of the computation dag is aug-
mented to maintain separate SPTape structures for distinct
scheduling components. At the first strand s of each schedul-
ing component C, the scheduler creates a new local SPTape
for C. Subsequent operations within C operate on C’s local
SPTape as described in Figure 3. At the end of C, the local
SPTape τ for C is combined into the shadow stack K′ of
the scheduling component C′ that contains the predecessor
w of s. In particular, τ is appended to the list of children
of the root note of the SPTape at the top of K′, using the
Combine method in Figure 3. The following lemma extends
Lemma 1 to incorporate combining local SPTape structures.

Lemma 2. When execution completes a computation dag
G, the top of the shadow stack stores a local SPTape that
records the execution of G.

Proof. The proof follows by extending the induction in
Lemma 1 to handle computation dags G resulting from a
composition involving a subdag G′ whose strands belong
to a different scheduling component. Suppose the lemma
holds for such a subdag G′. Because the initial strand of G′

must be a successor of a spawn vertex, G must be the result
of a parallel composition. Hence, the pseudocode in Figure 3
shows that, at the end of executing G, the top of the shadow
stack contains an SPTape structure T rooted at a P-node.
The Combine routine appends the SPTape τ for G′ to the
children of this P-node, yielding an SPTape T that correctly
represents G as a parallel composition involving G′.

Race-free traversals of SPTape The PARAD algo-
rithm makes use of parallel traversals over the SPTape.
Here we provide conditions on which these traversals are
race-free3, and analyze their work and span.

3These conditions assume that the recorded program was, itself,
free of determinacy races.

For didactic purposes, consider a table Gx mapping
gradient indices to distinct memory locations. Consider a call
to VisitSubTape(S ,O,G,dir,Gx), and let IS,IO be the sets
of gradient indices appearing in the statement stack S and
operation stack O respectively. We say a parallel traversal
of an SP-Tape obeys the safe adjoint access property
if VisitSubTape performs a read of Gx[gid] only if gid ∈
IS∪IO, and only performs a write to Gx[gid] if gid∈IS.

As Lemma 3 shows below, a parallel traversal of an
SP-Tape produced by a determinacy-race-free program is
free of data-races on entries of Gx if the traversal has the
safe adjoint access property. Due to space limitations, we
omit the proof of Lemma 3.

Lemma 3. Let T be an SPTape produced by a determinacy-
race-free fork-join program P . Consider a parallel traversal
of T that obeys the safe adjoint access property. Then, the
parallel traversal of T has no data races on accesses to tables
Gx indexed by gradient indices appearing in statements and
operations on the tape.

Work/span analysis of SPTape traversal Subsequent
algorithms will perform parallel traversals over the SPTape
data structure. Lemma 4 provides bounds on the work
and span of a traversal whose VisitSubTape evaluates a
function f(·) on each operation and statement stack entry
which performs O(σ) amortized work (amortized over the
whole traversal), and has worst-case span O(υ). Due to
space limitations, we omit the proof of Lemma 4.

Lemma 4. Consider a parallel traversal by WalkSPTape
of a SPTape T produced by a parallel program P with work
T1(P) and span T∞(P). If VisitSubTape processes each
statement and operation with a function f(·) that performs
O(σ) amortized work (amortized over the whole traversal)
and has O(υ) worst-case span, then WalkSPTape performs
T1=O(σT1(P)) work and has T∞=O(υT∞(P)) span.

4 The PARAD algorithm

This section presents PARAD, a work-efficient algo-
rithm for performing parallel reverse-mode AD. For a
determinacy-race-free fork-join program F with work
T1(F) and span T∞(F), the program R that performs
reverse-mode AD on F has work T1(R)=Θ(m·T1(F)) and
span T∞(R)=Θ(logm+T∞(F)log(T1(F))).

Design of the PARAD algorithm
The PARAD algorithm is designed to parallelize the serial

reverse-mode AD algorithm based upon the series-parallel
structure of the recorded program. The serial reverse-mode
AD algorithm can be implemented by executing the
SerialReversePass function on each subtape in the
order of a right-first traversal of the SPTape. The problem
with parallelizing this traversal, however, is the presence of
write-write races on the gradient table, which occur when the
original program read the same memory location in-parallel.
The key challenge solved by PARAD is the resolution of
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index mul

index(a) output

index(e) output

index(b) output

index(f) output

index(c) output

index(e) output

index(d) output

index(f) output

index(g)

index(h)

index endindex

index(g)

index(h)

index(L) input

SP Tape

Statements Operations

Evolution of deposit array during PARAD
step

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2g 2h

0 0 0 0 2g 0

0 0

Figure 6: Illustration of PARAD performing reverse-mode AD on a parallel implementation of
TwoByTwoMatVecSqLoss. This example continues the running example used in Figure 1 from Section 2
and Figure 4 from Section 3. The statement and operation stacks are presented in the style of the serial AD example
in Figure 1, and the subarrays in these stacks that correspond to the subtapes D1, D2, and D3 are indicated. Additional
columns have been added to the statement and operation stacks to illustrate the Srcv, OS, and Osnd functions that map
statements and operations to locations in the deposit array. For clarity, entries that would be undefined by these maps are
marked as input or output. The deposit array state after processing each subtape during PARAD’s right-first traversal over
the tape is provided. The final gradients ∂a,∂b,...,∂h are obtained by summing the indicated subarrays of the deposit array.

these races in a work-efficient and scalable manner.
To resolve write-write races on the gradient table, PARAD

employs the strategy to precompute a unique memory lo-
cation where each operation can safely deposit its gradient
contribution. These memory locations are assigned from a
deposit array that provides one slot for each recorded opera-
tion. The gradient contributions are aggregated when a state-
ment extracts its gradient value. In the serial AD algorithm,
a statement can extract its gradient value by reading from the
global gradient table. In PARAD, however, a statement must
potentially collect and sum multiple gradient contributions.
To allow this aggregation to be performed efficiently, the de-
posit array is organized so that all the gradient contributions
a statement must collect are contiguous in the deposit array.

Let us discuss the structure of the PARAD algorithm
whose pseudocode is provided in Algorithm 1.

The organization of the deposit array in PARAD is

accomplished as follows. Step 1 of PARAD computes a table
OS that associate each operation with the statement that will
consume its gradient contribution. Next, in Step 2 PARAD
collects and semisorts all operations o by their associated
statement OS[o]4. The semisorted array of operations O∗ is
used to assign each operation a unique index in the deposit
array D based upon its location in O∗. The assignment
of operations to deposit array locations is recorded in a
table Osnd. Since all operations associated with the same
statement are contiguous in O∗, the gradient contributions
for a statement are in a contiguous range of the deposit array
D. A table Srcv records, for each statement s, a reference to
the subarray D[m..m+k] of k gradient contributions to s.

The deposit array is now used by PARAD to avoid

4For didactic simplicity, the pseudocode of PARAD additionally
semisorts by each operation’s gradient index to make it simpler to
export them to a global gradient table at the end of the computation.

Copyright c©2021 by SIAM
Unauthorized reproduction of this article is prohibited



Algorithm 1 PARAD Algorithm

Inputs: Gradient table G, and SP-Tape T .
Outputs: Updated gradient table G.

1. Construct OS mapping operations to statements.

• Perform
a parallel left-first traversal of the SP-Tree. At statement
s, set GS[s.gid]=s. At operation o, set OS[o]=GS[o.gid].

2. Construct Osnd and Srcv.

• Traverse the
SP-Tape T and pack all operations into contiguous array O∗.

• Semisort O∗ using the key function k1(o)=o.gid.

• For each subarray of O∗ with operations
of equal k1(o), semisort using the key k2(o)=OS[o].

• For each subarray O∗[m..m+k] of operations o with
equal k2(o) do the following. Set Srcv[k2(o)]=(m,m+k).
For l=m,m+1,...,m+k set Osnd[O∗[l]]=l.

3. Perform reverse-mode AD.

• Allocate deposit array D of size |O∗|.
• Perform a right-first traversal.

• At statement s, let (m,m+k)=Srcv[s]
and compute α=G[s.gid]+sum(D[m..m+k]).
Set G[s.gid]=0, and D[m..m+k]=0.

• At operation o, compute β=α·o.mul and set D[Osnd[o]]=β.

4. Export gradients in D to gradient table G.

• Find subarrays O∗[n..n+r] in O∗

of operations o with equal gradient index (i.e. k1(o)=o.gid).

• For each sub subarray, set G[O∗[n].gid]=sum(D[n..n+r]).

write-write races during its right-first traversal of the
SPTape. Step 3 of PARAD performs reverse-mode AD
via a right-first traversal of the SPTape. The final gradients
are then exported in Step 4 to a global gradient table for
application-specific use (e.g., for a gradient descent step).

Figure 6 provides an illustration of the deposit array
structure for the parallelized TwoByTwoMatVecSqLoss
function. The tables OS, Srcv, and Osnd are shown in
Figure 6 as columns of the tables illustrating the statement
and operation stacks. The deposit array structure is provided
after processing each of the subtapes D3, D2, and D1.

As stated in Theorem 5 below, PARAD and Serial-
ReversePass are equivalent (i.e., they compute the same
gradients) when ran on the same recorded program P . Due
to space limitations, we omit the proof of Theorem 5.

Theorem 5. PARAD and SerialReversePass compute
the same gradients for a recorded program P that is free of
determinacy races.

Analysis of PARAD

We now analyze the work and span of Algorithm 1.

Theorem 6. Given a program F : Rn→Rm with total
work T1(F) and span T∞(F), the program R performing
reverse-mode AD on F performs work T1(R)=Θ(m·T1(F ))

with span T∞(R)=Θ(logm+T∞(F)logT1(F)).

Proof. We analyze Algorithm 1 for m=1. The bounds for
larger m follow from spawning m instances of PARAD to
process the m dimensions in parallel.

Step 1 performs a left-first traversal of the SPTape where
O(1) work is performed for each recorded statement and
operation in the program F . We apply Lemma 4 with
σ=O(1),υ=O(1) to conclude that the total work and span
of this step is O(T1(F)) and O(T∞(F)) respectively.

Step 2 performs a parallel compaction and a parallel scan
over operations in F , both of which perform O(T1(F )) work
and haveO(log(T1(F ))) span. The semisort performed in this
step can be performed in O(T1(F )) work and O(log(T1(F )))
span by using the logarithmic-depth semisort from [31], which
semisorts N elements in Θ(N) work and Θ(logN) span.

Step 3 performs a right-first traversal with constant work
per-operation. The work performed for each statement may
be Ω(1), but each unit of work is associated with a unique
operation. The amortized work for each operation and
statement is, therefore, O(1). Accumulating the subarray
D[m..m+ k] requires Θ(logk) span, and the worst-case
span is O(logT1(F)). Therefore, we apply Lemma 4 with
σ=O(1) and υ=O(logT1(F)) to conclude that this step
performs O(T1(F )) work and has O(T∞(F )logT1(F )) span.

Step 4 performs a parallel scan and multiple in-parallel
reductions with total work O(T1(F )) and span O(logT1(F )).

Thus, the work and span is bounded by the time required
to perform the right-first traversal of the SPTape, resulting
in total work O(T1(F)) and span (T∞(F)logT1(F)).

5 Implementation of LibPARAD

This section describes LibPARAD which is an extension
of the serial AD library Adept [35] that implements four
different parallel algorithms for performing reverse-mode
automatic differentiation, all of which employ the SPTape.
Adept is a C++ library that implements reverse-mode
AD via operator overloading. Other AD libraries using a
similar approach include ADOL-C [67], Autograd [53], and
PyTorch [57]. We chose Adept to base our implementation
since its clever use of C++ expression templates and
particularly concise representation for its tape data structure
allows it to outperform other C++ AD libraries [66].

Implementation of the SPTape

LibPARAD uses a version of CSI that instruments
the Tapir compiler representation of recursive fork-join
parallelism [63] to insert operations in Figure 3 around
spawn and sync statements, at the locations in the
program code described in the figure.
LibPARAD modifies the parts of Adept that access its

statement and operation stacks to instead use the SPTape
data structure described in Section 3. We implemented the
SPTape using a reducer hyperobject [26] and worker-local
storage that is accessed by using the worker identifier returned
by Cilk’s GetWorkerNumber runtime call. Storage in
data nodes for subtapes is allocated out of worker-local storage
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to improve efficiency in practice. The operations described
in Figure 3 for constructing an SPTape are inserted into the
program automatically at compile-time through the use of the
CSI framework [62]. Specifically, LibPARAD uses a version
of CSI that instruments the Tapir compiler representation
of recursive fork-join parallelism to insert operations around
spawn and sync statements. The LibPARAD library is de-
signed to operate on any existing code using Adept, and does
not require any additional annotations from the user aside
from the normal use of Cilk keywords to express parallelism.

Our implementation deviates from the description in
Figure 3 only slightly to handle nonbinary spawns. First,
immediately after a sync, multiple PopShadow calls
are performed to pop the S- and P-nodes pushed onto
the shadow stack for each continuation of an executed
spawn statement that the sync statement syncs. Second,
the SPTape reducer hyperobject optimizes the handling
chains of continuations, rather than simply enqueue calls
to Combine to operate only on SPTape structures that
capture the complete execution of a series-parallel subdag.
Neither of these changes impact the theoretical work/span
of the computation or the structure of the SPTape.

Implementation of PARAD

The implementation of PARAD includes optimizations
related to the construction of the deposit array. In our discus-
sions of Algorithm 1 in Section 4 we explained how to resolve
write-write races by assigning operations unique memory lo-
cations from the deposit array to deposit their gradient contri-
butions. Our implementation of PARAD avoids performing
this work for operations that cannot possibly participate in a
write-write race. We identify operations whose gradient index
never appears in a statement and for such operations we accu-
mulate gradients using worker-local sparse arrays. Addition-
ally, we identify operations in subtapes whose contribution to
the gradient is extracted by a statement in the same subtape.
For such operations, we set its deposit location in D to be the
global gradient table G. This does not introduce data races
because it obeys the safe adjoint access property discussed in
Section 3. The remaining operations are filtered and packed
in-parallel and are processed as described in Algorithm 1.

Implementation of PARAD+S

A commonly used strategy to resolve races in reverse-mode
AD is to employ worker-local (or thread-local) gradient
tables. The problem with this approach, however, is that
it is not work-efficient — extracting the gradient value
for a statement requires work proportional to the number
of processors, which may be greater than the number of
operations that provided gradient contributions.

In PARAD+S, a sampling-based algorithm is used to
identify “heavy” statements that accumulate a large number
(greater than P) of operations. Operations contributing
to “heavy” statements can use worker-local gradient tables
instead of the deposit array without compromising the work-
efficiency of the algorithm. As such, work can be avoided

in Step 2 of Algorithm 1 by filtering these operations during
the traversal of the SPTape to pack operations into O∗.

The additional computation performed by PARAD+S
introduces a small constant overhead relative to PARAD on
some benchmarks, but does not compromise the theoretical
work-efficiency or scalability of PARAD.

6 Performance Evaluation

This section evaluates the performance of PARAD and
PARAD+S that were implemented in LibPARAD. All
experiments were run on an 18-core (hyperthreading
disabled) Intel Xeon CPU (E5-2666 v3, 2.9GHz) with 64GB
RAM available as a 4th-generation compute-optimized
machine from Amazon web services. LibPARAD uses Cilk
Plus to express parallelism and compiles the codes using
the Tapir [63] based on LLVM 6.0.
Locks and Worker-Local implementations. We

implemented two additional reverse-mode AD algorithms
Locks and Worker-Local that employ fine-grain locking and
worker-local storage, respectively, to resolve data races on
the gradient table. Both of these implementations use
the SPTape to record series-parallel dependencies and
automatically parallelize the reverse pass over the tape,
but they differ from LibPARAD in that do not need to
perform additional work to organize a deposit array. This,
however, comes at the expense of a loss of scalability and
work-efficiency.

Application benchmarks. We evaluated the perfor-
mance of LibPARAD across 8 benchmarks with different
performance characteristics relevant to reverse-mode AD. For
each benchmark, we measured the time required to perform
AD while training the weights of the network via gradient
descent. Table 2 provides a breakdown of the performance
results obtained across the eight benchmarks and four im-
plemented AD algorithms. A summary (geometric mean
over all benchmarks) of each implementation’s performance
is provided in Table 1 in Section 1.
Note on serial performance of Adept. Although, in

general, Adept is highly efficient, we have observed on certain
benchmarks (mlp, gcn, lstm) that the serial T1 runtime of
some of our algorithms outperforms the serial runtime Ts of
Adept. This difference comes entirely from the forward pass
of the computation, and we believe it relates to differences in
how gradient identifiers are allocated in an SPTape and in
Adept’s serial data structures. This phenomenon also affects
the algorithms using the SPTape, but negatively, on the
cnn benchmarks, where it causes added overheads in the
forward pass.

Multilayer perceptron benchmarks
The mlp benchmarks are feed-forward multilayer

perceptron networks where mlp1 has a single hidden layer of
800 nodes, and mlp2 has two hidden layers with 400 and 100
nodes respectively. Both networks are trained on the MNIST
data set [22]. Performance results are shown in Table 2.

There is little performance variation among the different
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Benchmark Algorithm Ts T1 T18 Ts/T1 Ts/T18 T1/T18

mlp1 PARAD 149.50 156.94 14.44 0.95 10.35 10.87
mlp1 PARAD+S 149.50 165.18 15.17 0.91 9.85 10.89
mlp1 Locks 149.50 219.33 16.64 0.68 8.98 13.18
mlp1 Worker-Local 149.50 129.87 12.91 1.15 11.58 10.06

mlp2 PARAD 83.66 92.18 8.22 0.91 10.18 11.22
mlp2 PARAD+S 83.66 95.93 8.77 0.87 9.54 10.94
mlp2 Locks 83.66 95.75 8.31 0.87 10.07 11.52
mlp2 Worker-Local 83.66 71.05 7.23 1.18 11.58 9.83

gcn1 PARAD 94.30 113.00 13.30 0.83 7.09 8.50
gcn1 PARAD+S 94.30 111.00 13.00 0.85 7.25 8.54
gcn1 Locks 94.30 216.00 77.10 0.44 1.22 2.80
gcn1 Worker-Local 94.30 84.90 14.20 1.11 6.64 5.98

gcn2 PARAD 19.20 26.90 4.14 0.71 4.64 6.50
gcn2 PARAD+S 19.20 28.20 4.76 0.68 4.03 5.92
gcn2 Locks 19.20 47.40 9.38 0.41 2.05 5.05
gcn2 Worker-Local 19.20 17.60 5.63 1.09 3.41 3.13

cnn1 PARAD 126.00 307.00 27.00 0.41 4.67 11.37
cnn1 PARAD+S 126.00 311.00 28.60 0.41 4.41 10.87
cnn1 Locks 126.00 314.00 42.30 0.40 2.98 7.42
cnn1 Worker-Local 126.00 246.00 80.50 0.51 1.57 3.06

cnn2 PARAD 159.00 381.00 35.30 0.42 4.50 10.79
cnn2 PARAD+S 159.00 380.00 36.40 0.42 4.37 10.44
cnn2 Locks 159.00 566.00 197.00 0.28 0.81 2.87
cnn2 Worker-Local 159.00 284.00 94.10 0.56 1.69 3.02

lstm1 PARAD 168.00 249.00 46.60 0.67 3.61 5.34
lstm1 PARAD+S 168.00 248.00 44.80 0.68 3.75 5.54
lstm1 Locks 168.00 441.00 62.60 0.38 2.68 7.04
lstm1 Worker-Local 168.00 147.00 34.20 1.14 4.91 4.30

lstm2 PARAD 168.00 933.00 93.80 0.18 1.79 9.95
lstm2 PARAD+S 168.00 241.00 23.40 0.70 7.18 10.30
lstm2 Locks 168.00 442.00 71.00 0.38 2.37 6.23
lstm2 Worker-Local 168.00 147.00 18.00 1.14 9.33 8.17

Table 2: Table of benchmark results for the eight application
benchmarks and four algorithm implementations. The best
runtime/speedup on each benchmark is in bold font.
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Figure 7: Comparison of the 18-core runtime of PARAD+S,
Locks, and Worker-Local implementations over eight
benchmarks.

AD algorithms on the multilayer perception benchmarks. On
these benchmarks, most of the work is performed by library
calls (using OpenBLAS) to perform matrix-vector multi-
plication, and all implementations include an optimization
of the Adept library for concisely recording the derivative
dependencies resulting from a matrix-vector multiplication.
Furthermore, the network is very simple and regular.

Both the Locks and the Worker-Local implementations
achieve relatively good scalability on the multilayer
perceptron benchmarks. On these benchmarks, the shared
weight matrices are large and used only once-per-element

of a training batch in the forward pass. The average number
of operations-per-statement is large (> 100) which causes
Worker-Local gradient tables to be relatively efficient on
18-cores. Since these operations’ contributions are well
distributed and are performed on large weight matrices,
however, there is little lock contention and Locks also
achieves good scalability on 18-cores.

Similarly, PARAD and PARAD+S perform similarly
and achieve reasonably good scalability. The optimizations
outlined in Section 5 for PARAD eliminate almost all the
overheads related to the organization of the deposit array.
As such, the 18-core runtime is slower, but only slightly,
than Worker-Local, and is still better than Locks.

Convolutional neural networks
The cnn1 and cnn2 benchmarks are convolutional neural

networks (CNNs) based on the lenet-5 architectures. The
cnn1 benchmark implements a modernized version of lenet-5
using maxpooling layers and linear rectifiers as activation
functions. The cnn2 benchmark implements the lenet-5 ar-
chitecture as it was originally described in [22,48] with average
pooling and the use of the tanh activation function. For both
networks, we verified that we achieve the expected accuracy
for these well known networks after training for sufficiently
many epochs. The performance results are shown in Table 2.

The Worker-Local and Locks implementations scale poorly
on the cnn benchmarks. The average number of operations-
per-statement is approximately 2 on cnn1 and 8 on cnn2. As
such, Worker-Local performs substantially more work when
executing on 18-cores than it does when it executes serially.
As such, Worker-Local achieves just 3x self-relative speedup
on the cnn benchmarks on 18-cores. Locks performs similarly
poorly on the cnn2 benchmark, but performs better on cnn1

— achieving 7.4x self-relative speedup. Both of the cnn bench-
marks have many parallel updates to small shared weight
matrices which causes scalability issues for Locks. The cnn1
benchmark, however, has a lot of dynamic sparsity (many gra-
dients are zero) which substantially reduces lock contention.

The PARAD and PARAD+S algorithms scale well
on the cnn benchmarks each achieving 10–11x self-relative
speedup. Differences between the SPTape and Adept
stack data structures results in a performance hit on these
benchmarks that causes somewhat worse overheads. As a
result, the speedup relative to Adept on cnn is about 4.5x
on 18-cores for PARAD and PARAD+S.

Graph convolutional networks
The graph convolution network (GCN) benchmark gcn1

performs community detection on the pubmed network [46].
The input embeddings for the vertices are sparse bags of
words vectors and the network uses a single graph convolu-
tional layer that learns an embedding of dimension 32 for each
vertex in the graph. We follow the training method described
in [20] and match their accuracy when training for the same
number of epochs. The gcn2 benchmark operates on the
email-Eu-core network dataset [51,69] with random feature
vectors of dimension 1024 and learns an embedding of dimen-
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sion 64. The performance results are provided in Table 2.
The scalability of Locks and Worker-Local is mixed on the

gcn benchmarks. Like cnn there are many parallel updates
to small weight matrices, but the degree of contention varies
since it depends on the structure of the graph. As such, the
self-relative speedup of Locks and Worker-Local is mixed.
The speedup relative to the serial Adept implementation,
however, is uniformly poor (1.2–2x) for Locks on 18-cores.
Worker-Local achieves 6.6x speedup relative to Adept on
gcn1 and 3.4x speedup on gcn2.

The scalability of PARAD and PARAD+S is better than
Locks and Worker-Local on both gcn benchmarks. On gcn1
they achieve 8.5x self-relative speedup, and on gcn2 achieve
6–6.5x self-relative speedup. Relative to the serial adept code,
they are about 7x faster on gcn1 and 4–4.6x faster on gcn2 on
18-cores. The PARAD+S algorithm is the best performing
algorithm on gcn1, by a small margin. The more complex par-
allel structure in the gcn benchmarks causes the more sophis-
ticated optimizations in PARAD+S to be, subtly, visible.

Long short-term memory networks
The long short-term memory network (LSTM) [34]

benchmarks lstm1 and lstm2 implement a recurrent neural
network to generate text given examples. We used a subset
of the Paul Graham dataset consisting of 500 100-character
data points, using a one-hot encoding of each character.
The primary difference between lstm1 and lstm2 is that
lstm1 has very little parallelism. The lstm2 benchmark
expresses additional fine-grained parallelism and allows some
algorithms to achieve improved performance.

On the lstm benchmarks, the Worker-Local implemen-
tation performs very well and Locks performs poorly. The
locking overheads are significant on the lstm networks and
so the scalability of Locks relative to Adept is poor 2x, even
though its self-relative speedup is fairly good. The Worker-
Local implementation scales relatively well achieving 4x
and 8x self-relative speedup on lstm1 and lstm2 respectively.
Worker-Local is pretty efficient relative to Adept on the lstm
benchmarks as well since there are hundreds of operations,
on average, per statement. As such, Worker-Local achieves
5x and 9x speedup relative to Adept on lstm1 and lstm2.

The differences between PARAD and PARAD+S are
very apparent in the lstm benchmarks. Although they
perform similarly to one another on lstm1, the expression
of additional fine-grained parallelism in lstm2 causes an
increase in PARAD’s constant overheads. The additional
optimizations in PARAD+S, however, enable it to perform
consistently across both lstm1 and lstm2. PARAD+S
achieves 7x and 10.3x self-relative speedup on lstm1 and
lstm2 respectively, and achieves 3.7x and 7x speedup
relative to the serial Adept code. Although not as good as
Worker-Local on these benchmarks, PARAD+S is not too
far behind in terms of performance and scalability.

Overall performance of PARAD+S

Figure 7 illustrates the 18-core runtime of PARAD+S,
Locks, and Worker-Local. The performance of PARAD+S

is fairly robust across the benchmarks. On the two lstm
benchmarks, PARAD+S is slower than Worker-Local by
about 30% on average. On the remaining six benchmarks,
PARAD+S is either the best or similar to the best
performing implementation.

7 Related work

This section discusses related work on parallel AD.
Some previous work has examined parallelization of

forward-mode AD. Forward-mode differentiation can be
accomplished using dual numbers that tie to each param-
eter x the infinitesimal εx and perform computations on
x̃=(x+εx). Hovland et al. have explored approaches that
augment MPI communications to transmit dual numbers
between nodes, in order to parallelizing forward-mode AD for
MPI programs [36,37]. Forward-mode AD is less efficient than
reverse-mode AD, however, for many applications, including
machine-learning applications, for which the function F :
Rn→Rm being differentiated has a low-dimensional output,
that is, m�n. Bücker et al. [16] examine parallel forward
and reverse-mode AD for OpenMP programs when minm,n is
large. In contrast, PARAD’s parallelization of reverse-mode
AD is work-efficient and scalable, even when m=1.

Prior work has developed specialized parallel reverse-mode
AD algorithms for specific computations. Gremse et al.
developed optimized reverse-mode AD computations on
GPUs of four input functions [29]. Hückelheim et al. devel-
oped a parallel reverse-mode AD algorithm for compressible
flow solvers for unstructured meshes [38]. Other parallel
reverse-mode AD algorithms have been devised for stencil
computations [40,41], and convolutional neural networks [39].
The code transformations employed for these parallel
reverse-mode AD algorithms do not generalize to handle
arbitrary recursive fork-join programs. PARAD, meanwhile,
handles arbitrary recursive fork-join parallel programs.

Prior work has developed several systems that support
parallel reverse-mode AD. In the context of a parallel plasma
simulation code, Bischof et al. explored parallel reverse-mode
AD for OpenMP programs, using OpenMP-thread-local
instances of ADOL-C [6]. Substantial prior work has
explored parallel reverse-mode AD in message-passing
programs [36, 37]. Schanen et al. [61] have developed
an adjoint MPI library, which provides appropriate MPI
communications to parallelize reverse-mode AD, based on
communications in a given MPI program. These systems are
not guaranteed to be work-efficient, because of the overheads
they incur to combine parallel gradients. In contrast, the
PARAD parallel AD algorithm targets shared-memory
multicore systems and is provably work-efficient and scalable.

8 Conclusion

This paper presents PARAD, a work-efficient and scalable
reverse-mode AD algorithm for determinacy-race-free
recursive fork-join programs. PARAD performs reverse-
mode AD on a given program with scalability similar to
the input program and bounded contention. We have
observed that PARAD works well in practice, achieving
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good work efficiency and self-relative speedups on eight
machine-learning benchmarks.
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Y. Zhao, and V. Sarkar. The Habanero multicore software
research project. In Proceedings of the 24th ACM SIGPLAN
Conference Companion on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’09, pages
735–736, Orlando, Florida, USA, 2009. ACM.

[5] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.
Siskind. Automatic differentiation in machine learning: A
survey. J. Mach. Learn. Res., 18(1):55955637, Jan. 2017.

[6] C. Bischof, N. Guertler, A. Kowarz, and A. Walther.
Parallel reverse mode automatic differentiation for openmp
programs with adol-c. In Advances in Automatic Differ-
entiation, pages 163–173, Berlin, Heidelberg, 2008. Springer
Berlin Heidelberg.

[7] C. H. Bischof. Issues in parallel automatic differentiation.
In Proceedings of the 1991 International Conference on
Supercomputing, pages 146–153. ACM Press, 1991.

[8] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun.
Internally deterministic parallel algorithms can be fast.
In Proceedings of Principles and Practice of Parallel
Programming, pages 181–192, 2012.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An efficient
multithreaded runtime system. Journal of Parallel and
Distributed Computing, 37(1):55–69, 1996.

[10] R. D. Blumofe and C. E. Leiserson. Space-efficient
scheduling of multithreaded computations. SIAM Journal
on Computing, 1998.

[11] R. D. Blumofe and C. E. Leiserson. Scheduling mul-
tithreaded computations by work stealing. JACM,
46(5):720–748, 1999.

[12] R. D. Blumofe and D. Papadopoulos. Hood: A user-level
threads library for multiprogrammed multiprocessors.
Technical report, Oct. 1998. Technical Report, University
of Texas at Austin.

[13] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018.

[14] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, and S. Wanderman-Milne. JAX: Composable
transformations of Python+NumPy programs, 2018.

[15] R. P. Brent. The parallel evaluation of general arithmetic
expressions. Journal of the ACM, 1974.
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[29] F. Gremse, A. Höfter, L. Razik, F. Kiessling, and U. Nau-
mann. Gpu-accelerated adjoint algorithmic differentiation.
Computer Physics Communications, 200:300–311, 2016.

[30] A. Griewank et al. On automatic differentiation. Mathe-
matical Programming: recent developments and applications,
6(6):83–107, 1989.

[31] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down
parallel semisort. In Proceedings of the 27th ACM
symposium on Parallelism in Algorithms and Architectures,
pages 24–34, 2015.

[32] L. Hascoet and V. Pascual. The tapenade automatic
differentiation tool: Principles, model, and specification.
ACM Trans. Math. Softw., 39(3), May 2013.

Copyright c©2021 by SIAM
Unauthorized reproduction of this article is prohibited



[33] M. Hitz, J. Grabmeier, E. Kaltofen, and V. Weispfenning.
Computer Algebra Handbook: Foundations·Applications·
Systems. Springer Berlin Heidelberg, 2012.

[34] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[35] R. J. Hogan. Fast reverse-mode automatic differentiation
using expression templates in c++. ACM Transactions
on Mathematical Software (TOMS), 40(4):26, 2014.

[36] P. Hovland and C. Bischof. Automatic differentiation for
message-passing parallel programs. In IPPS, pages 98–104,
March 1998.

[37] P. D. Hovland, C. H. Bischof, and L. Roh. Automatic
differentiation of a parallel molecular dynamics application.
In PPSC. SIAM, 1997.

[38] J. Hückelheim, P. Hovland, M. M. Strout, and J.-D.
Mller. Reverse-mode algorithmic differentiation of an
openmp-parallel compressible flow solver. The International
Journal of High Performance Computing Applications,
33(1):140–154, 2019.

[39] J. Hückelheim and P. D. Hovland. Automatic differentiation
of parallelised convolutional neural networks - lessons from
adjoint pde solvers. In NIPS, 2017.

[40] J. Hückelheim, N. Kukreja, S. H. K. Narayanan, F. Luporini,
G. Gorman, and P. Hovland. Automatic differentiation for
adjoint stencil loops. In Proceedings of the 48th International
Conference on Parallel Processing, ICPP 2019, New York,
NY, USA, 2019. Association for Computing Machinery.

[41] J. C. Hückelheim, P. D. Hovland, M. M. Strout, and
J.-D. Müller. Parallelizable adjoint stencil computations
using transposed forward-mode algorithmic differentiation.
Optimization Methods and Software, 33:672–693, 2018.

[42] M. Innes. Flux: Elegant machine learning with julia.
Journal of Open Source Software, 3(25):602, 2018.

[43] Intel Corporation. Intel Cilk Plus Language Specification,
2010. Document Number: 324396-001US. Available from
http://software.intel.com/sites/products/cilk-
plus/cilk_plus_language_specification.pdf.

[44] T. Kaler, W. Hasenplaugh, T. B. Schardl, and C. E.
Leiserson. Executing dynamic data-graph computations
deterministically using chromatic scheduling. Transactions
on Parallel Computing, 3(1):2:1–2:31, 2016.

[45] G. Kedem. Automatic differentiation of computer pro-
grams. Technical report, WISCONSIN UNIV MADISON
MATHEMATICS RESEARCH CENTER, 1976.

[46] T. N. Kipf and M. Welling. Semi-supervised classification
with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

[47] D. Lea. A Java fork/join framework. In ACM 2000
Conference on Java Grande, pages 36–43, 2000.

[48] Y. LeCun et al. Lenet-5, convolutional neural networks.
URL: http://yann. lecun. com/exdb/lenet, 20, 2015.

[49] D. Leijen and J. Hall. Optimize managed code for
multi-core machines. MSDN Magazine, 2007. Available
from http://msdn.microsoft.com/magazine/.

[50] C. E. Leiserson. The Cilk++ concurrency platform.
Journal of Supercomputing, 51(3):244–257, March 2010.

[51] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM transactions on
Knowledge Discovery from Data (TKDD), 1(1):2–es, 2007.

[52] S. Linnainmaa. Taylor expansion of the accumulated
rounding error. BIT Numerical Mathematics, 16(2):146–160,

Jun 1976.
[53] D. Maclaurin, D. Duvenaud, and R. P. Adams. Autograd:

Effortless gradients in numpy. In ICML 2015 AutoML
Workshop, 2015.

[54] S.-J. Min, C. Iancu, and K. Yelick. Hierarchical work
stealing on manycore clusters. In Fifth Conference on
Partitioned Global Address Space Programming Models
(PGAS ’11), Oct. 2011.

[55] R. H. B. Netzer and B. P. Miller. What are race conditions?
ACM Letters on Programming Languages and Systems,
1(1):74–88, March 1992.

[56] OpenMP application program interface, version
3.0. Available from http://www.openmp.org/mp-
documents/spec30.pdf, May 2008.

[57] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.
Automatic differentiation in pytorch. 2017.

[58] L. B. Rall and G. F. Corliss. An introduction to automatic
differentiation. Computational Differentiation: Techniques,
Applications, and Tools, 89, 1996.

[59] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav.
Scalable and precise dynamic datarace detection for
structured parallelism. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’12, pages 531–542, 2012.

[60] J. Reinders. Intel Threading Building Blocks: Outfitting
C++ for Multi-core Processor Parallelism. O’Reilly Media,
Inc., 2007.

[61] M. Schanen, U. Naumann, L. Hascoët, and J. Utke.
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