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Abstract

We consider the estimation of the state transition matrix in vector autoregres-
sive models, when time sequence data is limited but nonsequence steady-state
data is abundant. To leverage both sources of data, we formulate the least
squares minimization problem regularized by a Lyapunov penalty. We impose
cardinality or rank constraints to reduce the complexity of the autoregressive
model. The resulting nonconvex, nonsmooth problem is solved by using the
proximal alternating linearization method (PALM). We prove that PALM is
globally convergent to a critical point and that the estimation error monoton-
ically decreases. Explicit formulas are obtained for the proximal operators to
facilitate the implementation of PALM. We demonstrate the effectiveness of the
developed method by numerical experiments.

Keywords: Autoregressive models, Lyapunov penalty, nonconvex nonsmooth

problem, steady-state data, proximal alternating linearized minimization.

1. Introduction

Vector autoregressive (VAR) models are widely used in the analysis of linear
interdependence in time series data. A key step in building the VAR model is the

identification of the state transition matrix. When sufficient time sequence data
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exist, the standard approach is to solve a least-squares problem of estimation
errors. In modern applications, however, the dimension of the model can exceed
the number of time sequence measurements, which results in multiple models
that fit the data equally well through the standard least-squares approach. Such
scenarios include tracking the progression of brain neurological diseases, for
example, because the number of comprehensive brain scans is limited due to
cost or medical concerns [1]. In gene expression networks, the number of genes
is typically much larger than the limited number of measurements due to the
intrusive nature of the measuring techniques [2, 3].

In such situations, one typically employs regularization techniques to induce
additional modeling features. For example, ridge regularization is a common
approach for ensuring a unique model. Other regularization methods introduce
additional structures to the solution; in particular, sparsity and low-rank struc-
tures are extensively studied. These low-complexity regularization approaches
are widely used partially because the resulting problem may be efficiently solved
via convex optimization [4, 5, 6, 2, 1, 7]. In [4], a sparse VAR model for gene
regulatory networks is obtained via LASSO. In [8], the state transition ma-
trix is decomposed into a sparse matrix and a low-rank matrix by using convex
penalty functions. Other approaches based on convex optimization can be found
in [6, 2,1, 7.

The steady states of a dynamical system driven by white noise provide valu-
able data for improving model accuracy. Several authors show that when the
VAR model is stable, the steady-state data can be utilized to reduce the es-
timation error [6, 9, 1, 2, 3]. In [1], the Lyapunov regularization is proposed
to exploit the second-order statistics of the steady-state data. In [2], the per-
turbed steady-state data is used to infer sparse, stable gene expression networks.
In [3], both steady-state and temporal data are integrated in the estimation of
the gene regulatory networks. Other work that employs steady-state data for
system identification includes [6, 9].

In this paper, we leverage both time sequence and steady-state nonsequence

data for the model estimation. We propose a least-squares estimator for the time



sequence data, regularized by the Lyapunov penalty on the second-order errors
of the steady-state data. In addition, the state transition matrix is subject to the
sparsity and matrix rank constraints. The identification problem is nonconvex
due to the Lyapunov penalty and nonsmooth due to the low-complexity con-
straints. We develop the proximal alternating linearization method (PALM) and
prove that it converges to a critical point starting from any initial condition.
Furthermore, we show that the estimation error is monotonically decreasing
with the PALM iterations. Closed-form expressions are obtained for the prox-
imal operators to facilitate implementation. We show that PALM can handle
the stability constraints and also the convex low-complexity constraints (e.g.,
the ¢; norm or the nuclear norm).

Our presentation is organized as follows. In Section 2, we formulate the es-
timation problem for the low-complexity VAR model. In Section 3, we present
the PALM algorithm and derive explicit formulas for the proximal operators. In
Section 4, we prove the global convergence of PALM. In Section 5, we demon-
strate the effectiveness of PALM via numerical experiments. In Section 6, we

summarize our contributions.

2. Model Identification via Lyapunov Penalty

In this section, we formulate the model identification problem using both
time-sequence data and steady-state data. The performance of the model is
measured by the least-squares error for the time-sequence data and the Lya-
punov penalty for the steady-state data. We employ low-complexity penalty
functions to promote sparsity and low-rank properties of the state transition
matrix.

Consider a p-dimensional vector autoregressive model: ¢(t+1) = Ap(t)+e(t),
where ¢(t) € RP is the state vector, A € RP*P is the state transition matrix,
and €(t) € RP is a zero-mean white stochastic process. We assume that the
autoregressive model is asymptotically stable; that is, all eigenvalues of A have

modulus less than one. The state vector ¢(t) has a steady-state distribution,



whose covariance matrix P is determined by the discrete-time Lyapunov equa-
tion APAT + @Q = P, where Q € RP*P is the covariance matrix of €(t). Note
that P is positive definite if and only if A is asymptotically stable.

Our objective is to identify the state transition matrix A. Given a set of n
time sequence measurements of ¢(t), the standard least-squares estimation is

minimize - X® — U|%, (1)
XeRrxp 2
where ® := [#(1),--- ,¢p(n—1)] € RP*X=1 W := [$(2),--- , ¢(n)] € RPX(=1)
and || - || denotes the Frobenius norm. We use X to denote the unknown state
transition matrix for the convenience of developing optimization details. When
the number of time sequence data is less than the dimension of the states (i.e.,
p > n — 1), infinitely many solutions exist for (1).

We are interested in the scenario when the time sequence data is scarce
but the steady-state nonsequence data is readily available [6, 9, 1]. Huang and
Schneider [1] propose the Lyapunov penalty as a regularization term || X PX7T +
Q — P||%. They show that the Lyapunov penalty helps improve the accuracy of
the estimation [1]. Since the covariance matrix P is unknown, we replace it by
the sample covariance S = 4 Zfil(zi —2)(2" — 2)T where z := + Zfil 2,
and {z'}Y | is the steady-state nonsequence data. The identification problem
with the Lyapunov regularization can be expressed as

minimize S|X® — |3 + £]XSX" + @ - S|, )
where p is a positive coefficient that balances the estimation error between the
sequence and the nonsequence data.

In [1], Huang and Schneider show that the Lyapunov penalty improves the
quality of estimation. However, there is no guarantee that the solution of (2) is
stable (i.e., spectral radius of X is less than 1). We next incorporate stability

constraint into (2).



2.1. Stability Constraint

Since stability is a necessary condition for the use of Lyapunov penalty, a sta-
bility constraint is included in the identification problem (2). Let 7(X) denote
the spectral radius of X, that is, 7(X) := max{|\;|}}_;. A stable autoregressive
model can be obtained by solving the following problem:

1 P
inimi ZIIx® — v|% + S xsx” - S2
mipimize | Iz + 5 +Q — S|

(3)

subject to  7(X) < 1.

Dealing with 7 directly in optimization is difficult because spectral radius is
neither convex nor locally Lipschitz [10]. One approach is to employ a convex
proxy as a conservative upper bound [11]. Since 7(X) < omax(X) < || X||F, we
can incorporate the stability constraint in the cost function

minimize 2| X® — W% + LIXSXT +Q - 82 + LIxxTIE
where p is a positive constant. While the spectral norm, omax(X), is less con-
servative than the Frobenius norm, we adopt the latter because both the Lya-
punov penalty and the stability penalty | X XT||% are quadratic functions of X
in Frobenius norm squared. Hence, the stability term is inconsequential in the
design of solution methods. For this reason and for the ease of presentation,
in what follows we omit the stability penalty, but comment on the modifica-
tion of the algorithm when appropriate to address stability. Detailed analysis

of spectral radius and its relaxation in minimization problem can be found

in [12, 11, 10].

2.2. Low-Complezity Models

In several applications, it is desired to impose sparsity or low-rank struc-
tures on the state transition matrix [4, 1, 2, 8]. In gene expression networks,
for example, the nonzero elements of the state transition matrix determine the

interaction graph of the expression network [4, 2]. A sparse state transition ma-



trix is useful because one can construct a sparse network to explain experiment
data.

One common approach to promoting sparsity is to impose the ¢; constraint:

[ XIle, == Z | Xz <1, (5)

4,5=1
where [ is a prescribed positive number. Since the ¢; norm promotes sparsity im-
plicitly, the actual number of nonzero elements in the solution is indirectly con-
trolled by the threshold I. However, given a desired level of sparsity, the correct
choice of [ is typically unknown a priori. An explicit way to guarantee sparsity

is to control the number of nonzero elements by the cardinality constraint:
card(X) := number of nonzero entries of X < s, (6)

where s is a given positive integer. Note that the cardinality constraint is harder
to deal with than the £; constraint, because cardinality is a nonconvex function.

Another approach to obtaining low-complexity models is to impose the low-
rank constraint. A low-rank state transition matrix is useful because it implies
that the data can be explained by a lower dimension model. An implicit way to

promote low-rank solutions is to use the nuclear norm

1X1l Zaz )<, (7)

where v is a prescribed positive number and the o; are the singular values.
Similar to the sparsity case, the threshold v is not known a priori. We impose

a low-rank constraint by controlling the rank of the state transition matrix:
rank(X) := number of nonzero singular values of X < r, (8)

where r is a given positive integer.



Hence we consider the following estimation problem:

~ 1
A = argmin -||X® — U|% + 2|xSXT + Q — S|2
XcRexp 2 2 9)

subject to constraint (5) or (6) or (7) or (8).

For the convex constraints (5) and (7), one may employ gradient projection
methods; namely, taking a descent direction of the objective function and pro-
jecting it onto the convex constraint sets. A gradient projection method is
proposed in [1] to solve (9) with the ¢; constraint (5). For the nonconvex con-

straints (6) and (8), on the other hand, we next develop the PALM algorithm.

3. Proximal Alternating Linearized Method

In this section, we develop the PALM algorithm for the identification prob-
lem of low-complexity models. This approach decomposes the problem into a
sequence of smaller problems that can be solved efficiently. Furthermore, we
show that PALM globally converge to a critical point for both convex and non-
convex constraints in (9).

We begin with a reformulation of (9)

.. 1 2 P T 2
minimize SIXe = ¥llp + SIYSX™ + Q — Sllw

subject to Y — X = 0,
(5) or (6) or (7) or (8).
Let f denote the least-squares term f(X) = 1[|X® — ¥||%, and let g denote the
indicator function of the individual constraints in (5)-(8). For the cardinality
constraint (6), for example, g(Y) =0 if card(Y) < s and ¢g(Y) = oo otherwise.

Then we have

minimize w(X,Y) = f(X) + g(Y) + h(X,Y), (10)



where h denotes the coupling term
14 P
WXY) = RIvsxT 4 Q - SlE + 2)x - Y.

Here, the penalty parameter p; > 0 resumes the role of p in (9) and p; > 0
is sufficiently large to penalize the discrepancy between X and Y. It is worth
mentioning that the convergence of PALM does not depend on the choice of p;

and ps.

3.1. Generic PALM

PALM computes the proximal operators of the uncoupled functions f and
g, around the linearization of the coupling function h at the previous iterate,
hence the name [13, 14, 15]. It is instructive to put PALM in the context of
other alternating methods. Suppose for the moment that w(X,Y) is a strictly
convex function. One approach to minimizing w is the Gauss-Seidel iteration

(also known as the coordinate descent):

Xkl ¢ argminy w(X,YF)

YFH € argminy, w(X*TLY).

Convergence of the iteration requires a unique solution in each minimization
step; otherwise, Gauss-Seidel may cycle indefinitely [16]. When w is convex
but not strictly convex, uniqueness can be achieved by including a quadratic

proximal term

X**1 ¢ argmin {w(X,Yk) + %’“HX - Xk||2F} (11a)
X
d
YF+ € argmin {w(xk“,Y) + ?kHY - Y’“%}, (11b)
Y

where ¢, and dy are positive coefficients. This class of proximal methods is well
studied; see [14] for a recent survey.
When w is nonconvex, as in our case (10), we need to modify the proximal

terms to ensure convergence. Instead of taking the proximal term around X%



as in (11a), we take the term around X* modified with a scaled partial gradient
of h:
Xk ¢ argmin{f(X) + %’“HX - Uk||%}, (12)
X

where UF = X* — LV h(X*,Y*). The parameter ¢4 is chosen to be greater
than the Lipschitz constant of Vxh; in particular, ¢z = L1 (Y*) for some
v1 > 1 where L is the Lipschitz constant of Vxh. Similarly, we take the

proximal term around Y* modified with a scaled partial gradient of h:
d
Y*1 € argmin {g(Y) + ?kHY - V’“||’j;}, (13)
Y

where V¥ = YF — ﬁVyh(Xk“,Yk). The parameter dj is determined by
dr = YoLo(X**1) for some v > 1 where L is the Lipschitz constant of Vyh.
PALM alternates between updating (X,Y’) by using the iterations (12)-(13).

3.2. Formulas for Lipschitz Constants and Solutions to (12)-(13)

To implement (12)-(13), one needs the Lipschitz constants L; and Lo in
order to determine the coeflicients c; and dy, respectively. Taking the partial
gradients of h yields Vxh = p1(XSTYTY S + (Q — 9)TYS) + p2(X — Y) and
Vyh = pr(YSXTXST +(Q — S)XST) + p2(Y — X). Since Vxh is linear

in X and Vyh is linear in Y, we obtain formulas for Lipschitz constants
Li(Y) = [pSTYTYS + pallla, La(X) = |;mSXTXST + pallls  (14)

where || - ||2 denotes the largest singular value of a matrix.
We next show that the proximal operators (12)-(13) can be computed effi-

ciently. The proximal operator (12) can be expressed as
k+1 . 1 2 | Ck k|2
X" € argmin §HX<I>—\II||F+§||X—U % ¢ -
X

Solving this least-squares problem yields X*+1 = (V®T +¢,U*)(®DT + ¢ 1)1,

where I denotes the identity matrix. When the number of states is no less than



the number of time sequence data (i.e., p > n), one can reduce the computational
cost by inverting ®7® + ¢, I instead of ®®T + ¢, I, since the Woodbury formula
gives X 1 = (¢ ' 0T + UF)(I — ®(cp I + @TP)~107).

The proximal operator (13) can be expressed as

dy
. . . Y _ k: 2
mlngnlze 42 || L || a

subject to  (5) or (6) or (7) or (8).

For the cardinality constraint (6), the solution is obtained by keeping the s
largest elements of V* in magnitude and zero out the rest of the elements in
V*. This is because the squared Frobenius norm is the sum of the squared
elements of Y — V¥. For the rank constraint (8), by the Eckart—Young theorem,
the solution is the best rank-r approximation of V* obtained by the truncated
SVD:; that is, keeping the r-largest singular value and setting the remaining
singular values of V* to zero.

For the ¢; constraint (5), the projection onto the ¢;-ball can be computed by
an algorithm developed in [17]. For the nuclear-norm constraint (7), the optimal
solution Y can be computed by performing the singular value decomposition of
V¥ and then projecting the singular values of V* onto the £;-ball. We summarize
the computational steps in Algorithm 1, focusing on the constraints (6) and (8).

We conclude this section with a remark on stability.

Remark 1 (Stability). As discussed in Section 2.1, we can incorporate the
stability constraint by penalizing | X XT||% in the cost function. In this case,
the coupling term becomes h(X,Y) = pQ—lHYSXT +Q—8|% + p2—2HX — Y% +
%HYXTH%. Its partial gradients are Vxh = p1(XSTYTYS +(Q — S)TYS) +
p2(X = Y) + puXYTY and Vyh = py(YSXTXST + (Q — S)XST) + po(Y —
X)+uY XT X, whose Lipschitz constants are given by L1(Y) = [|p1STYTY S +
pYTY + pol|lo and La(X) = ||p1SXTXST + uXT X + pol||a. Therefore, Algo-

rithm 1 applies by modifying the computation of the Lipschitz constants.

Remark 2 (Comparison with ADMM). The alternating direction method of

multipliers (ADMM) has been a very powerful tool in distributed control and
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Algorithm 1 Proximal Alternating Linearization Method for (10)

Initialization: Start with any (X°,Y?).

for £k =0,1,2,... until convergence do
Compute the Lipschitz constant Ly (Y*) = ||p1STY*TYES + pol|o.
Compute ¢, = v1L1(Y*) for some v, > 1.
Compute the partial gradient
Vxh(X*,Y*) = py(XFSTYRTYFS + (Q — S)TYFS) 4+ pa(XF —YF).
Update the proximal point U*¥ = X% — évxh(Xk,Yk).

if p < n then

XFHL = (0T + ¢, UF)(@DT + ¢ 1)t
else

Xk = (e ' 0T 4 UR)(I — (el + @TP) 10T,
end if

Compute the Lipschitz constant

Ly(XFH) = || pr SXEFIT XFFLGT 1 po ],

Compute dj, = YoLo(X*+1) for some v, > 1.

Compute the partial gradient

Vyh(Xk+1, Yk) = (Yks(Xk+1)TXk+lsT + (Q—S)Xk—HST) + ,02(Yk—

Xk’-l—l).

Update the proximal point V* = Y% — ith(Xk—i_l,Yk).

if g is the cardinality constraint (6) then
YE+L = T, o V¥ where (Z);; = 1 if (|V¥|);; > s-th largest element of
|V¥|, and (Z,);; = 0 otherwise.

else if g is the rank constraint (8) then
Y*+1 is the rank-r truncated SVD of V*.

end if

end for

optimization [18, 19, 20]. Since ADMM is a class of prozimal algorithms [14],
it is closely related to PALM. It is worth mentioning that ADMM is most useful
for minimizing the sum of convex functions. For certain classes of nonconver
problems, the convergence of ADMM has been established in [18, 19, 20]. For
the cardinality (6) and the rank function (8), ADMM may not converge for (9).
The solution to which ADMM converges may also depend on the value of p;
see [18]. Furthermore, efficient methods for subproblems in ADMM that deal
with the Lyapunov penalty are yet to be developed.

11



4. Convergence Analysis

In this section, we show that Algorithm 1 globally converges to a critical
point of the nonconvex, nonsmooth problem (10). Furthermore, the objective
value is monotonically decreasing throughout the PALM iterations. We build
upon the seminal work on the convergence of PALM for generic problems [15].
Our contributions are the establishments of the required Lipschitz conditions
and the KL property. We begin with a technical lemma on the Lipschitz condi-

tions of the objective function w.

Lemma 1. The objective function w in (10) satisfies the following properties:

1. infxyw(X,Y) > —o0o, infx f(X) > —o0, and infy g(Y) > —o0.

2. For a fixred Y, the partial gradient V x h(X,Y) is globally Lipschitz; that is,
there exists L1(Y') such that ||Vxh(X1,Y)=Vxh(X2,Y)|lr < Li(Y)|| X1—
Xso||p for all Xy and Xs. Likewise, for a fized X, the partial gradient
Vyh(X,Y) is globally Lipschitz; that is, there exists Lo(X) such that
IVyh(X,Y1) — Vyh(X,Y2)|lr < Lao(X)||Y1 — Ya||F for all Y1 and Ya.

3. There exist bounded constants q; , qf, qs » q;“ > 0 such that

inf{L1(Y*)} 2 ar, nf{L2(X")} 2 g3, sup{La(Y*)} < o sup{La(X ")} < g5
(15)
4. The entire gradient Vh(X,Y) is Lipschitz continuous on the bounded sub-

sets of RPXP x RP*P,

Proof. Property 1 is a direct consequence of the nonnegativity of f and h, and
the indicator function g. Property 2 follows from the Lipschitz constants derived
in (14). To show property 3, note that L (Y") in (14) is clearly bounded below for
all Y. In particular, L2(Y) = p?||STYTY S||Z + 2p1p2||[Y S||% + p3 > p3 > 0.
On the other hand, since Y* is the minimizer of a feasible problem over a
bounded set, it is bounded for all k and hence L;(Y*) is bounded above. Thus,
the entire sequence L;(Y*) satisfies the upper and lower bounds in (15). An

analogous argument shows that the Lipschitz constant Lo(X) satisfies (15).
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Property 4 is a direct consequence of the twice continuous differentiability of h

and the mean value theorem. O

A few comments are in order. Property 1 ensures that each proximal oper-
ator in PALM is well defined, as well as the minimization of w. Property 2 on
the boundedness of the Lipschitz constants is critical for convergence. Note that
the block-Lipschitz property in X and Y is weaker than standard assumptions
in proximal methods that require w to be globally Lipschitz in joint variables
(X,Y). Property 3 guarantees that the Lipschitz constants for the partial gra-
dients are lower and upper bounded by finite numbers. Property 4 is a technical
condition for controlling the distance between two consecutive steps in the se-

quence (X*,YF).

Proposition 1. Let Z* := (X* Y*) be a sequence generated by Algorithm 1.
Then, $||ZF+1 — ZF||2 < w(ZF) — w(ZF+1),Vk > 0 where § = min{(y; —
gy, (v2 — 1)gy }. Furthermore, limg_,o | Z¥1 — ZF||2 = 0.

Proof. Consider u**! € argmin {n(u) + Z|lu — (u* — 2Vh(u*))||?} where h is
a continuously differentiable function with Lipschitz constant Ly and 7 is a
proper, bounded, lower semicontinuous function. Recall the sufficient decrease

property of the proximal map [15, Lemma 3.2]
E+1 E+1 k by T —=Lny g k|2
B(u) 4 (u ) < hut) + () — TR b )
Applying (16) to (12) and (13) yields

BXFLYR) £ (X)) < B(XR YR 4 f(XR) - e X X2
BOXHEL YR (VR < (XML YR) 4 g(X0K) — gl |y Rty R,

IN

Adding these two inequalities leads to

d

- L —L
W(ZMHY) Sw(Zh) - ETH XM - XHE - E Ry - v

13



Since ¢ = y1 L1 and di = 2 Lo, we obtain

1—1) Ly —1)L .
W(ZN) —w(Z) 2 R - X e YR YR

S A

where ¢ := min{(y1 — 1)¢;, (72 — 1)¢; } and ¢y ,q, are the lower bounds of
Lipschitz constants defined in (15). Since w is bounded below and ¢ is strictly
positive, it follows that limg_,o ||Z**1 — Z%||2 = 0. This completes the proof.

O

Proposition 1 guarantees that the objective value is monotonically decreas-
ing and the PALM algorithm is globally convergent. Note that § > 0 throughout
iterations because v1,v2 > 1 (see Algorithm 1) and ¢; ,¢; > 0 (see Lemma 1).
The convergence of the decision variable Z* can be measured by the conver-
gence of the objective value. The numerical experiments in Section 5 verify this
convergence behavior. We next show that Algorithm 1 converges to a critical

point of w.! The key step is to establish the KL property of w.

Definition 1 (KL property [15]). Let f : R? — (—o0, +00] be proper and lower
semicontinuous. The function £ is said to have the Kurdyka-Lojasiewicz (KL)
property at 0 € domOf := {u € R? : 9f(u) # 0} if there exist n € (0, +o0],
a neighborhood N of @, and a scalar-valued function v such that for all u €
Nn{f(a) < f(u) < f(a) + n}, the following inequality holds: ¢'(f(u) — f(@)) -
dist(0,0f (w)) > 1, where () denotes the derivative function and dist(z,s) =
inf{|ly — z| : y € s} denotes the distance from a point x € R? to a set s C R%.
A function £ is called a KL function if £ satisfies the KL property at each point
of the domain of the gradient Of.

While KL property is a technical condition, it is shown in [15] that a large
class of nonsmooth problems that arise in modern applications satisfy the KL

property. For the low-complexity autoregressive model (10), the concept of

1For nonconvex, nonsmooth functions, the critical point is understood as the points whose
Frechet subdifferential contains 0.

14



semi-algebraic function is instrumental in establishing the KL property.

Definition 2 (Semi-algebraic function [15]). A subset S of R? is a real semi-
algebraic set if there exists a finite number of real polynomial functions g;; and
h;; : RY — R such that S = ?:1 7 {ueR?:g;;(u) =0 and h;;(u) < 0}.
A function h : R — (—o0,+00| is called semi-algebraic function if its graph

{(u,v) € R¥! : h(u) = v} is a semi-algebraic subset of RIT1.

A proper, lower semicontinuous, and semi-algebraic function satisfies the KL

property; see [15, Theorem 5.1]. We now show the KL property of w.
Lemma 2. The objective function w in (10) satisfies the KL property.

Proof. Since w is the summation of smooth functions f, A and the indicator
function g that is lower semicontinuous, it follows that w is a proper and lower
semicontinuous function. To show that it is a semi-algebraic function, we ex-
amine each term in w. Clearly, f and h are semi-algebraic because they are
real-valued polynomials. Moreover, the indicator function of the semi-algebraic
set {Y | card(Y) < s} is semi-algebraic, and the indicator function of the semi-
algebraic set {Y |rank(Y’) < r} is also semi-algebraic; see [15]. A finite sum of

semi-algebraic functions is semi-algebraic. This completes the proof. O

We conclude this section by invoking the convergence result [15, Theorem

3.1] of PALM for KL functions.

Proposition 2. Let Z% = (X*,Y*) be a sequence generated by the PALM algo-
rithm. Suppose that w is a KL function that satisfies the properties in Lemma 1.

Then the sequence {Z*} converges to a critical point Z* = (X*,Y*) of w.

5. Numerical Experiments

In this section, we evaluate the performance of Algorithm 1 via numerical
experiements. We conduct extensive experiments on both synthetic and real-
world data and compare PALM with gradient projection method; see [21]. Due

to space limitation, we report the performance of PALM on a sparse example and
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a low-rank example. We demonstrate that the solution converges to a matrix
with the prescribed level of nonzero elements or matrix rank. Furthermore, the
objective value (i.e., estimation error) decreases monotonically as predicted in
the convergence analysis.

In our experiments, we assume that the covariance matrix of the noise €(t)
is Q = 0%I. We set 71 = 2 = 2 in Algorithm 1. The hyperparameters p; and
o are determined through cross validation.

We test the performance of the proposed method on a sparse example and a
low-rank example with synthetic transition matrices of size 200 x 200. In both
examples, we use time series of length n = 50 for training and m = 800 for
testing. For steady-state data, we set the length N = 1600. The performance of
the identified autoregressive model is evaluated by using the normalized error [1]

1yl [é(t+1) = Ag(h) 1=l (@) =¢(0) T ($() —Ad(1))]

I PR
moT 2t=1 ern—g(of and cosinescore 575 5y S e L et —As )

A smaller normalized error (lower bounded by 0) and a higher cosine score (up-

per bounded by 1) imply better performance.

5.1. Sparse Example

The sparse matrix is generated by using the rule A = (0.95M)/ maxy, (| A\x (M)]),
where M has 5000 normally distributed nonzero elements and A (M) denotes
the eigenvalues of M. We set s = 5000 in the cardinality constraint (6). Fig-
ure 1 shows the convergence results. The objective value monotonically de-
creases, as Proposition 1 indicates. The errors in two consecutive steps, namely,
e = XM= XF|p, b = YR - YR, ey = [ XF = YE|p, all de-
crease quickly. It takes fewer than 30 iterations to reach ex,ey < 10~* and
exy < 3.5 x 107%. Note that the solution has exactly 5000 nonzero elements
as required by the cardinality constraint. For the estimated matrix ﬁ, the nor-

malized error is 0.2848 and the cosine score is 0.9582.

5.2. Low-Rank Ezample

The low-rank matrix is generated by using the rule A = UXV, where X €

R25%25 ig a diagonal matrix with random diagonal entries uniformly distributed
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Figure 1: Convergence results of PALM for the sparse example: the objective value (left) and
the errors in consecutive steps (right).

in [0,1), and U € R?°9%25 and ¥ € R**2% are random orthonormal matrices.
By construction A € R?00%200 jg stable with rank(A) = 25. We set r = 25 in
the rank constraint (8).

Figure 2 shows the convergence results. Similar to those for the sparse exam-
ple in Figure 1, we observe that the objective value w monotonically decreases
and the errors in two consecutive steps decrease quickly. It takes fewer than 30
iterations to reach ex,ey < 3 x 107° and exy < 2 x 10™%. The solution has a
numerical rank 25, as required by the rank constraint. For the estimated matrix
A\, the normalized error is 0.6949 and the cosine score is 0.7189.

Additional numerical experiments on real-world data and comparison of

PALM with gradient projection method can be found in [21].

6. Conclusions

We estimate the state transition matrix of a vector autoregressive model,
with limited time sequence data but abundant nonsequence steady-state data.
To reduce the complexity of the model, we propose a cardinality and a rank con-
straint on the transition matrix. We develop the PALM algorithm to solve the
resulting nonconvex, nonsmooth problem and establish its global convergence
to a critical point. Numerical experiments empirically verify the convergence

behavior of PALM.
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Figure 2: Convergence results of PALM for the low-rank example: the objective value (left)
and the errors in consecutive steps (right).
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