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Abstract

We consider the estimation of the state transition matrix in vector autoregres-

sive models, when time sequence data is limited but nonsequence steady-state

data is abundant. To leverage both sources of data, we formulate the least

squares minimization problem regularized by a Lyapunov penalty. We impose

cardinality or rank constraints to reduce the complexity of the autoregressive

model. The resulting nonconvex, nonsmooth problem is solved by using the

proximal alternating linearization method (PALM). We prove that PALM is

globally convergent to a critical point and that the estimation error monoton-

ically decreases. Explicit formulas are obtained for the proximal operators to

facilitate the implementation of PALM. We demonstrate the effectiveness of the

developed method by numerical experiments.

Keywords: Autoregressive models, Lyapunov penalty, nonconvex nonsmooth

problem, steady-state data, proximal alternating linearized minimization.

1. Introduction

Vector autoregressive (VAR) models are widely used in the analysis of linear

interdependence in time series data. A key step in building the VAR model is the

identification of the state transition matrix. When sufficient time sequence data
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exist, the standard approach is to solve a least-squares problem of estimation

errors. In modern applications, however, the dimension of the model can exceed

the number of time sequence measurements, which results in multiple models

that fit the data equally well through the standard least-squares approach. Such

scenarios include tracking the progression of brain neurological diseases, for

example, because the number of comprehensive brain scans is limited due to

cost or medical concerns [1]. In gene expression networks, the number of genes

is typically much larger than the limited number of measurements due to the

intrusive nature of the measuring techniques [2, 3].

In such situations, one typically employs regularization techniques to induce

additional modeling features. For example, ridge regularization is a common

approach for ensuring a unique model. Other regularization methods introduce

additional structures to the solution; in particular, sparsity and low-rank struc-

tures are extensively studied. These low-complexity regularization approaches

are widely used partially because the resulting problem may be efficiently solved

via convex optimization [4, 5, 6, 2, 1, 7]. In [4], a sparse VAR model for gene

regulatory networks is obtained via LASSO. In [8], the state transition ma-

trix is decomposed into a sparse matrix and a low-rank matrix by using convex

penalty functions. Other approaches based on convex optimization can be found

in [6, 2, 1, 7].

The steady states of a dynamical system driven by white noise provide valu-

able data for improving model accuracy. Several authors show that when the

VAR model is stable, the steady-state data can be utilized to reduce the es-

timation error [6, 9, 1, 2, 3]. In [1], the Lyapunov regularization is proposed

to exploit the second-order statistics of the steady-state data. In [2], the per-

turbed steady-state data is used to infer sparse, stable gene expression networks.

In [3], both steady-state and temporal data are integrated in the estimation of

the gene regulatory networks. Other work that employs steady-state data for

system identification includes [6, 9].

In this paper, we leverage both time sequence and steady-state nonsequence

data for the model estimation. We propose a least-squares estimator for the time
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sequence data, regularized by the Lyapunov penalty on the second-order errors

of the steady-state data. In addition, the state transition matrix is subject to the

sparsity and matrix rank constraints. The identification problem is nonconvex

due to the Lyapunov penalty and nonsmooth due to the low-complexity con-

straints. We develop the proximal alternating linearization method (PALM) and

prove that it converges to a critical point starting from any initial condition.

Furthermore, we show that the estimation error is monotonically decreasing

with the PALM iterations. Closed-form expressions are obtained for the prox-

imal operators to facilitate implementation. We show that PALM can handle

the stability constraints and also the convex low-complexity constraints (e.g.,

the `1 norm or the nuclear norm).

Our presentation is organized as follows. In Section 2, we formulate the es-

timation problem for the low-complexity VAR model. In Section 3, we present

the PALM algorithm and derive explicit formulas for the proximal operators. In

Section 4, we prove the global convergence of PALM. In Section 5, we demon-

strate the effectiveness of PALM via numerical experiments. In Section 6, we

summarize our contributions.

2. Model Identification via Lyapunov Penalty

In this section, we formulate the model identification problem using both

time-sequence data and steady-state data. The performance of the model is

measured by the least-squares error for the time-sequence data and the Lya-

punov penalty for the steady-state data. We employ low-complexity penalty

functions to promote sparsity and low-rank properties of the state transition

matrix.

Consider a p-dimensional vector autoregressive model: φ(t+1) = Aφ(t)+ε(t),

where φ(t) ∈ Rp is the state vector, A ∈ Rp×p is the state transition matrix,

and ε(t) ∈ Rp is a zero-mean white stochastic process. We assume that the

autoregressive model is asymptotically stable; that is, all eigenvalues of A have

modulus less than one. The state vector φ(t) has a steady-state distribution,
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whose covariance matrix P is determined by the discrete-time Lyapunov equa-

tion APAT + Q = P, where Q ∈ Rp×p is the covariance matrix of ε(t). Note

that P is positive definite if and only if A is asymptotically stable.

Our objective is to identify the state transition matrix A. Given a set of n

time sequence measurements of φ(t), the standard least-squares estimation is

minimize
X∈Rp×p

1

2
‖XΦ − Ψ‖2F , (1)

where Φ := [φ(1), · · · , φ(n−1) ] ∈ Rp×(n−1), Ψ := [φ(2), · · · , φ(n) ] ∈ Rp×(n−1),

and ‖ · ‖F denotes the Frobenius norm. We use X to denote the unknown state

transition matrix for the convenience of developing optimization details. When

the number of time sequence data is less than the dimension of the states (i.e.,

p > n− 1), infinitely many solutions exist for (1).

We are interested in the scenario when the time sequence data is scarce

but the steady-state nonsequence data is readily available [6, 9, 1]. Huang and

Schneider [1] propose the Lyapunov penalty as a regularization term ‖XPXT +

Q − P‖2F . They show that the Lyapunov penalty helps improve the accuracy of

the estimation [1]. Since the covariance matrix P is unknown, we replace it by

the sample covariance S := 1
N

∑N
i=1(zi − z̄)(zi − z̄)T where z̄ := 1

N

∑N
i=1 z

i,

and {zi}Ni=1 is the steady-state nonsequence data. The identification problem

with the Lyapunov regularization can be expressed as

minimize
X∈Rp×p

1

2
‖XΦ − Ψ‖2F +

ρ

2
‖XSXT + Q − S‖2F , (2)

where ρ is a positive coefficient that balances the estimation error between the

sequence and the nonsequence data.

In [1], Huang and Schneider show that the Lyapunov penalty improves the

quality of estimation. However, there is no guarantee that the solution of (2) is

stable (i.e., spectral radius of X is less than 1). We next incorporate stability

constraint into (2).

4



2.1. Stability Constraint

Since stability is a necessary condition for the use of Lyapunov penalty, a sta-

bility constraint is included in the identification problem (2). Let τ(X) denote

the spectral radius of X, that is, τ(X) := max{|λi|}pi=1. A stable autoregressive

model can be obtained by solving the following problem:

minimize
X∈Rp×p

1

2
‖XΦ − Ψ‖2F +

ρ

2
‖XSXT + Q − S‖2F

subject to τ(X) < 1.
(3)

Dealing with τ directly in optimization is difficult because spectral radius is

neither convex nor locally Lipschitz [10]. One approach is to employ a convex

proxy as a conservative upper bound [11]. Since τ(X) ≤ σmax(X) ≤ ‖X‖F , we

can incorporate the stability constraint in the cost function

minimize
X∈Rp×p

1

2
‖XΦ − Ψ‖2F +

ρ

2
‖XSXT + Q − S‖2F +

µ

2
‖XXT ‖2F (4)

where µ is a positive constant. While the spectral norm, σmax(X), is less con-

servative than the Frobenius norm, we adopt the latter because both the Lya-

punov penalty and the stability penalty ‖XXT ‖2F are quadratic functions of X

in Frobenius norm squared. Hence, the stability term is inconsequential in the

design of solution methods. For this reason and for the ease of presentation,

in what follows we omit the stability penalty, but comment on the modifica-

tion of the algorithm when appropriate to address stability. Detailed analysis

of spectral radius and its relaxation in minimization problem can be found

in [12, 11, 10].

2.2. Low-Complexity Models

In several applications, it is desired to impose sparsity or low-rank struc-

tures on the state transition matrix [4, 1, 2, 8]. In gene expression networks,

for example, the nonzero elements of the state transition matrix determine the

interaction graph of the expression network [4, 2]. A sparse state transition ma-
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trix is useful because one can construct a sparse network to explain experiment

data.

One common approach to promoting sparsity is to impose the `1 constraint:

‖X‖`1 :=

p∑
i,j=1

|Xij | ≤ l, (5)

where l is a prescribed positive number. Since the `1 norm promotes sparsity im-

plicitly, the actual number of nonzero elements in the solution is indirectly con-

trolled by the threshold l. However, given a desired level of sparsity, the correct

choice of l is typically unknown a priori. An explicit way to guarantee sparsity

is to control the number of nonzero elements by the cardinality constraint:

card(X) := number of nonzero entries of X ≤ s, (6)

where s is a given positive integer. Note that the cardinality constraint is harder

to deal with than the `1 constraint, because cardinality is a nonconvex function.

Another approach to obtaining low-complexity models is to impose the low-

rank constraint. A low-rank state transition matrix is useful because it implies

that the data can be explained by a lower dimension model. An implicit way to

promote low-rank solutions is to use the nuclear norm

‖X‖∗ :=

p∑
i=1

σi(X) ≤ ν, (7)

where ν is a prescribed positive number and the σi are the singular values.

Similar to the sparsity case, the threshold ν is not known a priori. We impose

a low-rank constraint by controlling the rank of the state transition matrix:

rank(X) := number of nonzero singular values of X ≤ r, (8)

where r is a given positive integer.
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Hence we consider the following estimation problem:

Â = argmin
X∈Rp×p

1

2
‖XΦ − Ψ‖2F +

ρ

2
‖XSXT + Q − S‖2F

subject to constraint (5) or (6) or (7) or (8).

(9)

For the convex constraints (5) and (7), one may employ gradient projection

methods; namely, taking a descent direction of the objective function and pro-

jecting it onto the convex constraint sets. A gradient projection method is

proposed in [1] to solve (9) with the `1 constraint (5). For the nonconvex con-

straints (6) and (8), on the other hand, we next develop the PALM algorithm.

3. Proximal Alternating Linearized Method

In this section, we develop the PALM algorithm for the identification prob-

lem of low-complexity models. This approach decomposes the problem into a

sequence of smaller problems that can be solved efficiently. Furthermore, we

show that PALM globally converge to a critical point for both convex and non-

convex constraints in (9).

We begin with a reformulation of (9)

minimize
X,Y ∈Rp×p

1

2
‖XΦ − Ψ‖2F +

ρ

2
‖Y SXT + Q − S‖2F

subject to Y − X = 0,

(5) or (6) or (7) or (8).

Let f denote the least-squares term f(X) = 1
2‖XΦ − Ψ‖2F , and let g denote the

indicator function of the individual constraints in (5)-(8). For the cardinality

constraint (6), for example, g(Y ) = 0 if card(Y ) ≤ s and g(Y ) =∞ otherwise.

Then we have

minimize
X,Y ∈Rp×p

ω(X,Y ) := f(X) + g(Y ) + h(X,Y ), (10)
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where h denotes the coupling term

h(X,Y ) =
ρ1
2
‖Y SXT + Q − S‖2F +

ρ2
2
‖X − Y ‖2F .

Here, the penalty parameter ρ1 > 0 resumes the role of ρ in (9) and ρ2 > 0

is sufficiently large to penalize the discrepancy between X and Y . It is worth

mentioning that the convergence of PALM does not depend on the choice of ρ1

and ρ2.

3.1. Generic PALM

PALM computes the proximal operators of the uncoupled functions f and

g, around the linearization of the coupling function h at the previous iterate,

hence the name [13, 14, 15]. It is instructive to put PALM in the context of

other alternating methods. Suppose for the moment that ω(X,Y ) is a strictly

convex function. One approach to minimizing ω is the Gauss-Seidel iteration

(also known as the coordinate descent):

Xk+1 ∈ argminX ω(X,Y k)

Y k+1 ∈ argminY ω(Xk+1, Y ).

Convergence of the iteration requires a unique solution in each minimization

step; otherwise, Gauss-Seidel may cycle indefinitely [16]. When ω is convex

but not strictly convex, uniqueness can be achieved by including a quadratic

proximal term

Xk+1 ∈ argmin
X

{
ω(X,Y k) +

ck
2
‖X − Xk‖2F

}
(11a)

Y k+1 ∈ argmin
Y

{
ω(Xk+1, Y ) +

dk
2
‖Y − Y k‖2F

}
, (11b)

where ck and dk are positive coefficients. This class of proximal methods is well

studied; see [14] for a recent survey.

When ω is nonconvex, as in our case (10), we need to modify the proximal

terms to ensure convergence. Instead of taking the proximal term around Xk
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as in (11a), we take the term around Xk modified with a scaled partial gradient

of h:

Xk+1 ∈ argmin
X

{
f(X) +

ck
2
‖X − Uk‖2F

}
, (12)

where Uk = Xk − 1
ck
∇Xh(Xk, Y k). The parameter ck is chosen to be greater

than the Lipschitz constant of ∇Xh; in particular, ck = γ1L1(Y k) for some

γ1 > 1 where L1 is the Lipschitz constant of ∇Xh. Similarly, we take the

proximal term around Y k modified with a scaled partial gradient of h:

Y k+1 ∈ argmin
Y

{
g(Y ) +

dk
2
‖Y − V k‖2F

}
, (13)

where V k = Y k − 1
dk
∇Y h(Xk+1, Y k). The parameter dk is determined by

dk = γ2L2(Xk+1) for some γ2 > 1 where L2 is the Lipschitz constant of ∇Y h.

PALM alternates between updating (X,Y ) by using the iterations (12)-(13).

3.2. Formulas for Lipschitz Constants and Solutions to (12)-(13)

To implement (12)-(13), one needs the Lipschitz constants L1 and L2 in

order to determine the coefficients ck and dk, respectively. Taking the partial

gradients of h yields ∇Xh = ρ1(XSTY TY S + (Q − S)TY S) + ρ2(X − Y ) and

∇Y h = ρ1(Y SXTXST + (Q − S)XST ) + ρ2(Y − X). Since ∇Xh is linear

in X and ∇Y h is linear in Y , we obtain formulas for Lipschitz constants

L1(Y ) = ‖ρ1STY TY S + ρ2I‖2, L2(X) = ‖ρ1SXTXST + ρ2I‖2 (14)

where ‖ · ‖2 denotes the largest singular value of a matrix.

We next show that the proximal operators (12)-(13) can be computed effi-

ciently. The proximal operator (12) can be expressed as

Xk+1 ∈ argmin
X

{
1

2
‖XΦ−Ψ‖2F +

ck
2
‖X − Uk‖2F

}
.

Solving this least-squares problem yieldsXk+1 = (ΨΦT+ckU
k)(ΦΦT + ckI)−1,

where I denotes the identity matrix. When the number of states is no less than
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the number of time sequence data (i.e., p ≥ n), one can reduce the computational

cost by inverting ΦTΦ + ckI instead of ΦΦT + ckI, since the Woodbury formula

gives Xk+1 = (c−1k ΨΦT + Uk)(I − Φ(ckI + ΦTΦ)−1ΦT ).

The proximal operator (13) can be expressed as

minimize
Y

dk
2
‖Y − V k‖2F

subject to (5) or (6) or (7) or (8).

For the cardinality constraint (6), the solution is obtained by keeping the s

largest elements of V k in magnitude and zero out the rest of the elements in

V k. This is because the squared Frobenius norm is the sum of the squared

elements of Y −V k. For the rank constraint (8), by the Eckart–Young theorem,

the solution is the best rank-r approximation of V k obtained by the truncated

SVD; that is, keeping the r-largest singular value and setting the remaining

singular values of V k to zero.

For the `1 constraint (5), the projection onto the `1-ball can be computed by

an algorithm developed in [17]. For the nuclear-norm constraint (7), the optimal

solution Y can be computed by performing the singular value decomposition of

V k and then projecting the singular values of V k onto the `1-ball. We summarize

the computational steps in Algorithm 1, focusing on the constraints (6) and (8).

We conclude this section with a remark on stability.

Remark 1 (Stability). As discussed in Section 2.1, we can incorporate the

stability constraint by penalizing ‖XXT ‖2F in the cost function. In this case,

the coupling term becomes h(X,Y ) =
ρ1
2
‖Y SXT +Q− S‖2F +

ρ2
2
‖X − Y ‖2F +

µ

2
‖Y XT ‖2F . Its partial gradients are ∇Xh = ρ1(XSTY TY S + (Q − S)TY S) +

ρ2(X − Y ) + µXY TY and ∇Y h = ρ1(Y SXTXST + (Q − S)XST ) + ρ2(Y −

X) +µY XTX, whose Lipschitz constants are given by L1(Y ) = ‖ρ1STY TY S+

µY TY + ρ2I‖2 and L2(X) = ‖ρ1SXTXST + µXTX + ρ2I‖2. Therefore, Algo-

rithm 1 applies by modifying the computation of the Lipschitz constants.

Remark 2 (Comparison with ADMM). The alternating direction method of

multipliers (ADMM) has been a very powerful tool in distributed control and
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Algorithm 1 Proximal Alternating Linearization Method for (10)

Initialization: Start with any (X0, Y 0).
for k = 0, 1, 2, . . . until convergence do

Compute the Lipschitz constant L1(Y k) = ‖ρ1STY kTY kS + ρ2I‖2.
Compute ck = γ1L1(Y k) for some γ1 > 1.
Compute the partial gradient
∇Xh(Xk, Y k) = ρ1(XkSTY kTY kS + (Q− S)TY kS) + ρ2(Xk − Y k).
Update the proximal point Uk = Xk − 1

ck
∇Xh(Xk, Y k).

if p < n then
Xk+1 = (ΨΦT + ckU

k)(ΦΦT + ckI)−1

else
Xk+1 = (c−1k ΨΦT + Uk)(I − Φ(ckI + ΦTΦ)−1ΦT ).

end if
Compute the Lipschitz constant
L2(Xk+1) = ‖ρ1SX(k+1)TXk+1ST + ρ2I‖2.
Compute dk = γ2L2(Xk+1) for some γ2 > 1.
Compute the partial gradient
∇Y h(Xk+1, Y k) = ρ1(Y kS(Xk+1)TXk+1ST + (Q−S)Xk+1ST ) + ρ2(Y k−
Xk+1).
Update the proximal point V k = Y k − 1

dk
∇Y h(Xk+1, Y k).

if g is the cardinality constraint (6) then
Y k+1 = Is ◦ V k, where (Is)ij = 1 if (|V k|)ij ≥ s-th largest element of
|V k|, and (Is)ij = 0 otherwise.

else if g is the rank constraint (8) then
Y k+1 is the rank-r truncated SVD of V k.

end if
end for

optimization [18, 19, 20]. Since ADMM is a class of proximal algorithms [14],

it is closely related to PALM. It is worth mentioning that ADMM is most useful

for minimizing the sum of convex functions. For certain classes of nonconvex

problems, the convergence of ADMM has been established in [18, 19, 20]. For

the cardinality (6) and the rank function (8), ADMM may not converge for (9).

The solution to which ADMM converges may also depend on the value of ρ;

see [18]. Furthermore, efficient methods for subproblems in ADMM that deal

with the Lyapunov penalty are yet to be developed.
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4. Convergence Analysis

In this section, we show that Algorithm 1 globally converges to a critical

point of the nonconvex, nonsmooth problem (10). Furthermore, the objective

value is monotonically decreasing throughout the PALM iterations. We build

upon the seminal work on the convergence of PALM for generic problems [15].

Our contributions are the establishments of the required Lipschitz conditions

and the KL property. We begin with a technical lemma on the Lipschitz condi-

tions of the objective function ω.

Lemma 1. The objective function ω in (10) satisfies the following properties:

1. infX,Y ω(X,Y ) > −∞, infX f(X) > −∞, and infY g(Y ) > −∞.

2. For a fixed Y , the partial gradient ∇Xh(X,Y ) is globally Lipschitz; that is,

there exists L1(Y ) such that ‖∇Xh(X1, Y )−∇Xh(X2, Y )‖F ≤ L1(Y )‖X1−

X2‖F for all X1 and X2. Likewise, for a fixed X, the partial gradient

∇Y h(X,Y ) is globally Lipschitz; that is, there exists L2(X) such that

‖∇Y h(X,Y1)−∇Y h(X,Y2)‖F ≤ L2(X)‖Y1 − Y2‖F for all Y1 and Y2.

3. There exist bounded constants q−1 , q+1 , q−2 , q+2 > 0 such that

inf
k
{L1(Y k)} ≥ q−1 , inf

k
{L2(Xk)} ≥ q−2 , sup

k
{L1(Y k)} ≤ q+1 , sup

k
{L2(Xk)} ≤ q+2 .

(15)

4. The entire gradient ∇h(X,Y ) is Lipschitz continuous on the bounded sub-

sets of Rp×p × Rp×p.

Proof. Property 1 is a direct consequence of the nonnegativity of f and h, and

the indicator function g. Property 2 follows from the Lipschitz constants derived

in (14). To show property 3, note that L1(Y ) in (14) is clearly bounded below for

all Y . In particular, L2
1(Y ) = ρ21‖STY TY S‖2F + 2ρ1ρ2‖Y S‖2F + ρ22 ≥ ρ22 > 0.

On the other hand, since Y k is the minimizer of a feasible problem over a

bounded set, it is bounded for all k and hence L1(Y k) is bounded above. Thus,

the entire sequence L1(Y k) satisfies the upper and lower bounds in (15). An

analogous argument shows that the Lipschitz constant L2(X) satisfies (15).
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Property 4 is a direct consequence of the twice continuous differentiability of h

and the mean value theorem.

A few comments are in order. Property 1 ensures that each proximal oper-

ator in PALM is well defined, as well as the minimization of ω. Property 2 on

the boundedness of the Lipschitz constants is critical for convergence. Note that

the block-Lipschitz property in X and Y is weaker than standard assumptions

in proximal methods that require ω to be globally Lipschitz in joint variables

(X,Y ). Property 3 guarantees that the Lipschitz constants for the partial gra-

dients are lower and upper bounded by finite numbers. Property 4 is a technical

condition for controlling the distance between two consecutive steps in the se-

quence (Xk, Y k).

Proposition 1. Let Zk := (Xk, Y k) be a sequence generated by Algorithm 1.

Then, δ
2‖Z

k+1 − Zk‖2F < ω(Zk) − ω(Zk+1),∀k ≥ 0 where δ = min{(γ1 −

1)q−1 , (γ2 − 1)q−2 }. Furthermore, limk→∞ ‖Zk+1 − Zk‖2F = 0.

Proof. Consider uk+1 ∈ argmin
{
η(u) + τ

2‖u− (uk − 1
τ∇h(uk))‖2

}
where h is

a continuously differentiable function with Lipschitz constant Lh and η is a

proper, bounded, lower semicontinuous function. Recall the sufficient decrease

property of the proximal map [15, Lemma 3.2]

h(uk+1) + η(uk+1) ≤ h(uk) + η(uk)− τ − Lh

2
‖uk+1 − uk‖2. (16)

Applying (16) to (12) and (13) yields

h(Xk+1, Y k) + f(Xk+1) ≤ h(Xk, Y k) + f(Xk)− ck−L1

2 ‖Xk+1 −Xk‖2F
h(Xk+1, Y k+1) + g(Y k+1) ≤ h(Xk+1, Y k) + g(Xk)− dk−L2

2 ‖Y k+1 − Y k‖2F .

Adding these two inequalities leads to

ω(Zk+1) ≤ ω(Zk)− ck − L1

2
‖Xk+1 −Xk‖2F −

dk − L2

2
‖Y k+1 − Y k‖2F .
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Since ck = γ1L1 and dk = γ2L2, we obtain

ω(Zk)− ω(Zk+1) ≥ (γ1−1)L1

2 ‖Xk+1 −Xk‖2F + (γ2−1)L2

2 ‖Y k+1 − Y k‖2F
≥ δ

2‖Z
k+1 − Zk‖2F

where δ := min{(γ1 − 1)q−1 , (γ2 − 1)q−2 } and q−1 , q
−
2 are the lower bounds of

Lipschitz constants defined in (15). Since ω is bounded below and δ is strictly

positive, it follows that limk→∞ ‖Zk+1 − Zk‖2F = 0. This completes the proof.

Proposition 1 guarantees that the objective value is monotonically decreas-

ing and the PALM algorithm is globally convergent. Note that δ > 0 throughout

iterations because γ1, γ2 > 1 (see Algorithm 1) and q−1 , q
−
2 > 0 (see Lemma 1).

The convergence of the decision variable Zk can be measured by the conver-

gence of the objective value. The numerical experiments in Section 5 verify this

convergence behavior. We next show that Algorithm 1 converges to a critical

point of ω.1 The key step is to establish the KL property of ω.

Definition 1 (KL property [15]). Let f : Rd → (−∞,+∞] be proper and lower

semicontinuous. The function f is said to have the Kurdyka-Lojasiewicz (KL)

property at ū ∈ dom ∂f := {u ∈ Rd : ∂f(u) 6= ∅} if there exist η ∈ (0,+∞],

a neighborhood N of ū, and a scalar-valued function ψ such that for all u ∈

N ∩ {f(ū) < f(u) < f(ū) + η}, the following inequality holds: ψ′(f(u)− f(ū)) ·

dist(0, ∂f(u)) ≥ 1, where ()′ denotes the derivative function and dist(x, s) :=

inf{‖y − x‖ : y ∈ s} denotes the distance from a point x ∈ Rd to a set s ⊂ Rd.

A function f is called a KL function if f satisfies the KL property at each point

of the domain of the gradient ∂f .

While KL property is a technical condition, it is shown in [15] that a large

class of nonsmooth problems that arise in modern applications satisfy the KL

property. For the low-complexity autoregressive model (10), the concept of

1For nonconvex, nonsmooth functions, the critical point is understood as the points whose
Frechet subdifferential contains 0.
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semi-algebraic function is instrumental in establishing the KL property.

Definition 2 (Semi-algebraic function [15]). A subset S of Rd is a real semi-

algebraic set if there exists a finite number of real polynomial functions gij and

hij : Rd → R such that S =
⋃p
j=1

⋂q
i=1{u ∈ Rd : gij(u) = 0 and hij(u) < 0}.

A function h : Rd → (−∞,+∞] is called semi-algebraic function if its graph

{(u, v) ∈ Rd+1 : h(u) = v} is a semi-algebraic subset of Rd+1.

A proper, lower semicontinuous, and semi-algebraic function satisfies the KL

property; see [15, Theorem 5.1]. We now show the KL property of ω.

Lemma 2. The objective function ω in (10) satisfies the KL property.

Proof. Since ω is the summation of smooth functions f , h and the indicator

function g that is lower semicontinuous, it follows that ω is a proper and lower

semicontinuous function. To show that it is a semi-algebraic function, we ex-

amine each term in ω. Clearly, f and h are semi-algebraic because they are

real-valued polynomials. Moreover, the indicator function of the semi-algebraic

set {Y | card(Y ) ≤ s} is semi-algebraic, and the indicator function of the semi-

algebraic set {Y | rank(Y ) ≤ r} is also semi-algebraic; see [15]. A finite sum of

semi-algebraic functions is semi-algebraic. This completes the proof.

We conclude this section by invoking the convergence result [15, Theorem

3.1] of PALM for KL functions.

Proposition 2. Let Zk = (Xk, Y k) be a sequence generated by the PALM algo-

rithm. Suppose that ω is a KL function that satisfies the properties in Lemma 1.

Then the sequence {Zk} converges to a critical point Z∗ = (X∗, Y ∗) of ω.

5. Numerical Experiments

In this section, we evaluate the performance of Algorithm 1 via numerical

experiements. We conduct extensive experiments on both synthetic and real-

world data and compare PALM with gradient projection method; see [21]. Due

to space limitation, we report the performance of PALM on a sparse example and
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a low-rank example. We demonstrate that the solution converges to a matrix

with the prescribed level of nonzero elements or matrix rank. Furthermore, the

objective value (i.e., estimation error) decreases monotonically as predicted in

the convergence analysis.

In our experiments, we assume that the covariance matrix of the noise ε(t)

is Q = σ2I. We set γ1 = γ2 = 2 in Algorithm 1. The hyperparameters ρ1 and

σ are determined through cross validation.

We test the performance of the proposed method on a sparse example and a

low-rank example with synthetic transition matrices of size 200× 200. In both

examples, we use time series of length n = 50 for training and m = 800 for

testing. For steady-state data, we set the length N = 1600. The performance of

the identified autoregressive model is evaluated by using the normalized error [1]

1
m−1

∑m−1
t=1

‖φ(t+1)−Âφ(t)‖
‖φ(t+1)−φ(t)‖ and cosine score 1

m−1
∑m−1
t=1

|(φ(t+1)−φ(t))T (φ(t)−Âφ(t))|
‖φ(t+1)−φ(t)‖‖φ(t)−Âφ(t)‖

.

A smaller normalized error (lower bounded by 0) and a higher cosine score (up-

per bounded by 1) imply better performance.

5.1. Sparse Example

The sparse matrix is generated by using the ruleA = (0.95M)/maxk(|λk(M)|),

where M has 5000 normally distributed nonzero elements and λk(M) denotes

the eigenvalues of M . We set s = 5000 in the cardinality constraint (6). Fig-

ure 1 shows the convergence results. The objective value monotonically de-

creases, as Proposition 1 indicates. The errors in two consecutive steps, namely,

ekX = ‖Xk+1 − Xk‖F , ekY = ‖Y k+1 − Y k‖F , ekXY = ‖Xk − Y k‖F , all de-

crease quickly. It takes fewer than 30 iterations to reach eX , eY ≤ 10−4 and

eXY ≤ 3.5 × 10−4. Note that the solution has exactly 5000 nonzero elements

as required by the cardinality constraint. For the estimated matrix Â, the nor-

malized error is 0.2848 and the cosine score is 0.9582.

5.2. Low-Rank Example

The low-rank matrix is generated by using the rule A = UΣV, where Σ ∈

R25×25 is a diagonal matrix with random diagonal entries uniformly distributed
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Figure 1: Convergence results of PALM for the sparse example: the objective value (left) and
the errors in consecutive steps (right).

in [0, 1), and U ∈ R200×25 and V ∈ R25×200 are random orthonormal matrices.

By construction A ∈ R200×200 is stable with rank(A) = 25. We set r = 25 in

the rank constraint (8).

Figure 2 shows the convergence results. Similar to those for the sparse exam-

ple in Figure 1, we observe that the objective value ω monotonically decreases

and the errors in two consecutive steps decrease quickly. It takes fewer than 30

iterations to reach eX , eY ≤ 3× 10−5 and eXY ≤ 2× 10−4. The solution has a

numerical rank 25, as required by the rank constraint. For the estimated matrix

Â, the normalized error is 0.6949 and the cosine score is 0.7189.

Additional numerical experiments on real-world data and comparison of

PALM with gradient projection method can be found in [21].

6. Conclusions

We estimate the state transition matrix of a vector autoregressive model,

with limited time sequence data but abundant nonsequence steady-state data.

To reduce the complexity of the model, we propose a cardinality and a rank con-

straint on the transition matrix. We develop the PALM algorithm to solve the

resulting nonconvex, nonsmooth problem and establish its global convergence

to a critical point. Numerical experiments empirically verify the convergence

behavior of PALM.
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Figure 2: Convergence results of PALM for the low-rank example: the objective value (left)
and the errors in consecutive steps (right).
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