
1

Lanczos Vectors versus Singular Vectors for
Effective Dimension Reduction

Jie Chen and Yousef Saad

Abstract— This paper takes an in-depth look at a technique for
computing filtered matrix-vector (mat-vec) products which are
required in many data analysis applications. In these applications
the data matrix is multiplied by a vector and we wish to perform
this product accurately in the space spanned by a few of the
major singular vectors of the matrix. We examine the use of the
Lanczos algorithm for this purpose. The goal of the method is
identical with that of the truncated singular value decomposition
(SVD), namely to preserve the quality of the resulting mat-vec
product in the major singular directions of the matrix. The
Lanczos-based approach achieves this goal by using a small
number of Lanczos vectors, but it does not explicitly compute
singular values/vectors of the matrix. The main advantage of the
Lanczos-based technique is its low cost when compared with that
of the truncated SVD. This advantage comes without sacrificing
accuracy. The effectiveness of this approach is demonstrated on a
few sample applications requiring dimension reduction, including
information retrieval and face recognition. The proposed tech-
nique can be applied as a replacement to the truncated SVD
technique whenever the problem can be formulated as a filtered
mat-vec multiplication.

Index Terms— Dimension reduction, SVD, Lanczos algorithm,
information retrieval, latent semantic indexing, face recognition,
PCA, eigenfaces.

I. INTRODUCTION

IN many data analysis problems, such as information retrieval
and face recognition, it is desired to compute a matrix-vector

(mat-vec) product between the data matrix A and a certain
“query” vector b. However, in order to remove noise and/or extract
latent structures of the data, the optimal rank-k approximation
of A, denoted Ak, is commonly used in place of A itself.
Specifically, if we let A have the SVD

A = UΣV T ,

and define
Ak = UkΣkV T

k ,

where Uk (resp. Vk) consists of the first k columns of U (resp. V)
and Σk is the k-th principal submatrix of Σ, then the matrix Ak

is the best rank-k approximation of A in the 2-norm or Frobenius
norm sense [1], [2]. Then the product

Akb (1)

is a filtered version of the mat-vec product Ab. The use of this
filtered mat-vec product is illustrated in the following two sample
applications.

This work was supported by NSF grants DMS 0510131 and DMS 0528492
and by the Minnesota Supercomputing Institute.

The authors are with the Department of Computer Science and Engineer-
ing, University of Minnesota at Twin Cities, MN 55455. Email: {jchen,
saad}@cs.umn.edu

a) Latent Semantic Indexing (LSI): LSI [3], [4] is an effec-
tive information retrieval technique which computes the relevance
scores for all the documents in a collection in response to a user
query. In LSI, a collection of documents is represented as a term-
document matrix X = [xij] where each column vector represents
a document and xij is the weight of term i in document j. A query
is represented as a pseudo-document in a similar form—a column
vector q. By performing dimension reduction, each document xj

(j-th column of X) becomes PT
k xj and the query becomes PT

k q

in the reduced-rank representation, where Pk is the matrix whose
column vectors are the k major left singular vectors of X. The
relevance score between the j-th document and the query is then
computed as the cosine of the angle between PT

k xj and PT
k q:

cos(PT
k xj , P

T
k q) =

(PT
k xj)

T (PT
k q)‚‚PT

k xj

‚‚‚‚PT
k q
‚‚ =

(Xkej)
T q‚‚Xkej

‚‚‚‚PT
k q
‚‚ ,

where Xk is the best rank-k approximation of X, and ej is the
j-th column of the identity matrix. Hence, relevance scores for
all the documents in the collection are equivalently represented
by the column vector

XT
k q (2)

modified by scaling each entry with the norm of the corresponding
row of XT

k . Thus, LSI reduces to computing the filtered mat-vec
product XT

k q.
b) Eigenfaces: The eigenfaces methodology [5] applies

principal component analysis to face recognition. Similar to LSI,
face images in the training set are represented as column vectors
to form a matrix F . A difference with LSI is that the columns of
F are centered by concurrently subtracting their mean. An image
p in the test set is also represented as a column vector. Let Qk

be the matrix constituting the k major left singular vectors of F .
The similarity between the j-th training image and the test image
is then computed as the cosine of the angle between QT

k fj and
QT

k p, where fj is the j-th column of F . Similar to the above
derivation in LSI, the similarity scores for all the training images
are represented as the column vector

FT
k p (3)

modified by scaling each entry with the norm of the corresponding
row of FT

k , where Fk is the best rank-k approximation of F . The
main computation in the eigenfaces technique is the filtered mat-
vec product FT

k p.
A notorious difficulty in computing Akb is that it requires the

truncated SVD, which is computationally expensive for large A.
(See Table I for a summary of the costs.) In addition, frequent
changes in the data set require an update of the SVD, and this is
not an easy task. Much research has been devoted to the problem
of updating the (truncated) SVD [6]–[9]. A drawback of these
approaches is that the resulting (truncated) SVD loses accuracy
after frequent updates.

2

To bypass the truncated SVD computation, Kokiopoulou and
Saad [10] introduced polynomial filtering techniques, and Erhel et
al. [11] and Saad [12] proposed algorithms for building good
polynomials to use in such techniques. These methods all ef-
ficiently compute a sequence of vectors φi(A)b where φi is a
polynomial of degree at most i such that φi(A)b is progressively
a better approximation to Akb as i increases.

In this paper, we investigate the Lanczos algorithm as a means
to compute a sequence of vectors {si} (or {ti}) which pro-
gressively approximate Ab. This technique does not use explicit
polynomials, but it shares the advantages of polynomial filtering
techniques: easy-to-update recurrence formulas and low cost
relative to the direct SVD. Both approximating sequences ({si}
and {ti}) rapidly converge to Ab in the major singular directions
of A, achieving the same goal as that of the truncated SVD which
preserves the major singular components. Hence when i = k, the
vector si or ti is a good alternative to the filtered mat-vec product
Akb.

More appealingly, the proposed technique can be split into
a preprocessing phase and a query response phase, where a
query vector b is involved only in the second phase. In contrast,
polynomial filtering techniques cannot be naturally separated
in two phases. Hence, the proposed technique will certainly
outperform polynomial filtering techniques in common practical
situations where many queries are to be processed.

Note that the Lanczos algorithm is a commonly used method
for large symmetric eigenvalue problems and sparse SVD prob-
lems. As it turns out, this approach puts too much emphasis
on individual singular vectors and is relatively expensive (see,
e.g. [13], and the discussions in Section IV-B). We exploit the
Lanczos algorithm to efficiently compute the filtered mat-vec
products without explicitly computing the singular components of
the matrix. Therefore, when computational efficiency is critical,
this technique may be a favorable alternative to the best rank-k
approximation.

A. Related work

The proposed usage of the Lanczos algorithm belongs to a
broad class of methods, the so-called Krylov subspace methods.
Blom and Ruhe [14] suggested the use of the Golub-Kahan
bidiagonalization techique [15], which also belongs to this class,
for information retrieval. While it is well-known that the Golub-
Kahan bidiagonalization and the Lanczos algorithm are closely
related, we highlight the differences between these two techniques
and note the contributions of this paper in the following:

1) The framework described in this paper could be considered
an extension of that of [14]. The method in [14] is equiva-
lent to a special case of one of our approximation schemes
(the left projection approximation). In particular the method
in [14] used the normalized query as the initial vector.
This means that the construction of the Krylov subspace
in their method would normally be repeated anew for each
different query, which is not economical. In contrast, our
method constructs the Krylov subspace only once as the
preprocessing phase.

2) The method in [14] generated two sets of vectors that essen-
tially replaced the left and right singular vectors. In contrast,
we generate only one set of (Lanczos) vectors. This saving
of storage can be critical for large scale problems.

3) We strengthen the observation made in [14] that the dif-
ference between Ab and the approximation vector (si)
monotonically decreases, by proving rigorously that this dif-
ference decays very rapidly in the major singular directions
of A. Illustrations are provided to relate the convergence
behavior of the method based on the good separation of
the largest singular values (eigenvalues) in Section VII.

4) Several practical issues which were not discussed in [14],
are explored in detail. These include the choice of the
approximation schemes depending on the shape of the
matrix, and other practical choices related to memory versus
computational cost trade-offs.

5) The technique described in this paper has a broad variety
of applications and is not limited to information retrieval.
Indeed it can be applied whenever the problem can be
formulated as a filtered mat-vec multiplication. This paper
presents two such applications.

B. Organization of the paper

The symmetric Lanczos algorithm is reviewed in Section II, and
the two proposed Lanczos approximation schemes are introduced
in Section III. Section IV provides a detailed analysis of the
convergence of the proposed techniques and their computational
complexities. Section V discusses how to incorporate entry scal-
ing into the approximation vectors. Applications of the proposed
approximation schemes to information retrieval and face recogni-
tion are illustrated in Section VI. Finally, extensive experiments
are shown in Section VII, followed by concluding remarks in
Section VIII.

II. THE SYMMETRIC LANCZOS ALGORITHM

Given a symmetric matrix M ∈ Rn×n and an initial unit vector
q1, the Lanczos algorithm builds an orthonormal basis of the
Krylov subspace

Kk(M, q1) = range{q1, Mq1, M2q1, . . . , Mk−1q1}.
The Lanczos vectors qi, i = 1, . . . , k computed by the algorithm
satisfy the 3-term recurrence

βi+1qi+1 = Mqi − αiqi − βiqi−1

with β1q0 ≡ 0. The coefficients αi and βi+1 are computed
so as to ensure that 〈qi+1, qi〉 = 0 and ‖qi+1‖ = 1. In exact
arithmetic, it turns out that qi+1 is orthogonal to q1, . . . , qi so the
vectors qi, i = 1, . . . , k form an orthonormal basis of the Krylov
subspace Kk(M, q1). An outline of the procedure is illustrated in
Algorithm 1. The time cost of the procedure is O(kn2). If the
matrix is sparse, then the cost reads O(k(nnz + n)), where nnz

is the number of nonzeros of M .
If Qk = [q1, . . . , qk] ∈ Rn×k, then an important equality which

results from the algorithm is

QT
k MQk = Tk =

2
6666664

α1 β2

β2 α2 β3

. . .
. . .

. . .
βk−1 αk−1 βk

βk αk

3
7777775

. (4)

An eigenvalue θ of Tk is called a Ritz value, and if y is an
associated eigenvector, Qky is the associated Ritz vector. As k

increases more and more Ritz values and vectors will converge
towards eigenvalues and vectors of M [2], [16].

3

Algorithm 1 The Lanczos Procedure
Input: M , q1, k

Output: q1, . . . , qk+1, αi’s, βi’s
1: Set β1 ← 0, q0 ← 0.
2: for i← 1, . . . , k do
3: wi ←Mqi − βiqi−1

4: αi ← 〈wi, qi〉
5: wi ← wi − αiqi

6: βi+1 ← ‖wi‖2
7: if βi+1 = 0 then
8: stop
9: end if

10: qi+1 ← wi/βi+1

11: end for

A. Re-orthogonalization

It is known that in practice the theoretical orthogonality of
the computed Lanczos vectors qi’s is quickly lost. This loss
of orthogonality is triggered by the convergence of one or
more eigenvectors [17]. There has been much research devoted
to re-instating orthogonality. The simplest technique is to re-
orthogonalize each new vector against each of the previous basis
vectors. This amounts to adding the following line of pseudocode
immediately after line 5 of Algorithm 1:

wi ← wi −
Pi−1

j=1

˙
wi, qj

¸
qj .

This additional full re-orthogonalization step increases the
computational cost of the Lanczos procedure (by roughly k2n/2

computations), but the advantages are that all the qi’s are guar-
anteed to be numerically orthogonal, and any subsequent process
relying on the orthogonality is more rigorous.

It is important to add here that there are other more cost-
effective re-orthogonalization procedures known. These pro-
cedures are not considered in this paper for simplicity, but
they should be considered in any realistic implementation of
the Lanczos-based technique. The best-known practical alterna-
tive to full re-orthogonalization is partial re-orthogonalization
which consists of taking a re-orthogonalization step only
when needed [18]–[20]. Another technique is the selective re-
orthogonalization approach which exploits the fact that loss of
orthogonality is seen only in the direction of the converged
eigenvectors [17]. Using one of these approaches should lead to
a considerable reduction of the cost of the Lanczos procedure,
especially for situations requiring a large number of steps.

III. LANCZOS APPROXIMATION

The Lanczos algorithm which we briefly discussed above can
be exploited in two ways to efficiently approximate the filtered
mat-vec Akb without resorting to the expensive SVD.

A. Left projection approximation

The first approach is to apply the Lanczos procedure to the
matrix M = AAT , resulting in the equality

QT
k AAT Qk = Tk. (5)

We define the sequence

si := QiQ
T
i Ab, (6)

where si is the orthogonal projection of Ab onto the subspace
range(Qi). By this definition, the vector si can be easily updated
from the previous vector si−1:

si = si−1 + qiq
T
i Ab. (7)

The sequence {si} is a progressive approximation to Ab as
i increases. We call this the left projection approximation, as
the projection operator QiQ

T
i operates on the left hand side

of A. (This is to be distinguished from the later definition of
the right projection approximation.) In the course of the process
to compute the sequence, the matrix M need not be explicitly
formed. The only computation involving M is the mat-vec on
line 3 of Algorithm 1. This computation can be performed as

wi ← A(AT qi)− βiqi−1.

An analysis to be discussed shortly, will show that when i =

k, the vector sk is a good approximation to Akb. Algorithm 2
summarizes the steps to compute sk.

Algorithm 2 Left projection approximation
Input: A, b, q1, k

Output: sk

1: Apply Algorithm 1 on M = AAT to obtain Lanczos vectors
q1, . . . , qk, with line 3 modified to wi ← A(AT qi)−βiqi−1.

2: s̃← Ab

3: s0 ← 0

4: for i← 1, . . . , k do
5: si ← si−1 + 〈s̃, qi〉 qi

6: end for

Note that the computation of sk in Algorithm 2 can equivalently
be carried out as a sequence of mat-vec products, i.e., as Qk ×
(QT

k × (A× b)). The algorithm presents the computation of sk in
the update form as this reveals more information on the sequence
{si}.

B. Right projection approximation

A second method consists of applying the Lanczos algorithm
to the matrix M̄ = AT A, resulting in the relation:

Q̄T
k AT AQ̄k = T̄k. (8)

We now define the sequence

ti := AQ̄iQ̄
T
i b, (9)

and call this the right projection approximation to Ab. The vector
ti is related to ti−1 by

ti = ti−1 + Aq̄iq̄
T
i b. (10)

Similar to the left projection approximation, the matrix M̄ does
not need to be explicitly formed, and the vector tk is also a good
approximation to Akb (shown later). Algorithm 3 summarizes the
steps to compute tk.

Again, note that lines 2–6 of the algorithm are equivalent to
computing tk directly by tk = A× (Q̄k × (Q̄T

k × b)).

4

Algorithm 3 Right projection approximation
Input: A, b, q̄1, k

Output: tk
1: Apply Algorithm 1 on M̄ = AT A to obtain Lanczos vectors

q̄1, . . . , q̄k, with line 3 modified to w̄i ← AT (Aq̄i)− βiq̄i−1.
2: t̃0 ← 0

3: for i← 1, . . . , k do
4: t̃i ← t̃i−1 + 〈b, q̄i〉 q̄i

5: end for
6: tk ← At̃k

IV. ANALYSIS

A. Convergence

The reason why sk and tk are good approximations to Akb is
the fact that the sequences {si} and {ti} both rapidly converge
to Ab in the major left singular directions of A. This fact implies
that sk and tk, when projected to the subspace spanned by the
major left singular vectors of A, are very close to the projection
of Ab if k is sufficiently large. Since the goal of performing a
filtered mat-vec Akb in data analysis applications is to preserve
the accuracy of Ab in these directions, the vectors sk and tk are
good alternatives to Akb. The rapid convergence is analyzed in
the next.

Let uj be the j-th left singular vector of A. The rapid
convergence of the sequence {si} can be shown by establishing
the inequality

˛̨˙
Ab− si, uj

¸˛̨ ≤ cj ‖Ab‖T−1
i−j(γj), (11)

for i ≥ j, where cj > 0 and γj > 1 are constants independent
of i, and Tl(·) is the Chebyshev polynomial of the first kind of
degree l. In other words, the difference between Ab and si, when
projected on the direction uj , decays at least with the same order
as T−1

i−j(γj). The detailed derivation of this inequality is shown
in the Appendix. It can be similarly shown that

˛̨˙
Ab− ti, uj

¸˛̨ ≤ σj c̄j ‖b‖T−1
i−j(γ̄j) (12)

for constants σj > 0, c̄j > 0 and γ̄j > 1. Again, this inequality
means that ti converges to Ab in the major left singular directions
uj of A as i increases.

The Chebyshev polynomial Tl(x) for x > 1 is defined as

Tl(x) := cosh(l arccosh(x)) =
1

2

“
elλ + e−lλ

”

where λ = arccosh(x). When l is large the magnitude of e−lλ is
negligible, hence

Tl(x) ≈ 1

2
elλ =

1

2

`
exp(arccosh(x))

´l
.

Thus given x, the Chebyshev polynomial Tl(x) grows in a manner
that is close to an exponential in l. The base exp(arccosh(x)) is
strictly larger than one when x > 1. In other words, the previous
approximation vectors si (or ti) converge geometrically, i.e., as
κl with κ < 1. The convergence factor κ can be close to one, but
is away from one in situations when there is a good separation
of the largest singular values of A. In such situations which are
often satisfied by practical applications, si and ti can converge
very fast to Ab in the major left singular directions of A.

B. Computational complexities

Compared with the truncated SVD, the two Lanczos ap-
proximation schemes are far more economical both in memory
usage and in time consumption (for the preprocessing phase).
This section analyzes the computational complexities of these
algorithms and the results are summarized in Table I. We assume
that the matrix A is of size m× n with nnz non-zero elements.
The situation when A is non-sparse is not typical, thus we
omit the analysis for this case here.1 Section IV-D has further
discussions on the trade-offs between space and time in practical
implementations.

In practice, both Algorithms 2 and 3 are split into two phases:
preprocessing and query response. The preprocessing phase con-
sists of the computation of the Lanczos vectors, which is exactly
line 1 of both algorithms. The rest of the algorithms computes
sk (or tk) by taking in a vector b. Multiple query vectors b can
be input and different query responses sk (or tk) can be easily
produced provided that the Lanczos vectors have been computed
and saved. Hence the rest of the algorithms, excluding line 1,
constitutes the query response phase.

Since Algorithms 2 and 3 are very similar, it suffices to
show the analysis of Algorithm 2. In the preprocessing phase,
this algorithm computes two sparse mat-vec products (once for
multiplying qi by AT , and once for multiplying this result by
A) and performs a few length-m vector operations during each
iteration. Hence with k iterations, the time cost is O(k(nnz+m)).
The space cost consists of the storage of the matrix A and all the
Lanczos vectors, thus it is O(nnz + km).

The bulk of the preprocessing phase for computing Akb lies
in the computation of the truncated SVD of A. A typical way
of computing this decomposition is to go through the Lanczos
process as in (5) with k′ > k iterations, and then compute the
eigen-elements of Tk′ . Usually the number of Lanczos steps k′

is far greater than k in order to guarantee the convergence of the
first k Ritz values and vectors. Hence the costs for the truncated
SVD, both in time and space, involve a value of k′ that is much
larger than k. Furthermore, the costs have an additional factor for
performing frequent eigen-decompositions and convergence tests.

For Algorithm 2, the query response phase involves one sparse
mat-vec (Ab) and k vector updates. Hence the total storage cost
is O(nnz + km), and to be more exact, the time cost is nnz +

2km. On the other hand, the filtered mat-vec product Akb can
be computed in three ways: (a) Uk(UT

k (Ab)); (b) A(Vk(V T
k b));

or (c) Uk(Σk(V T
k b)). Approach (a) requires O(nnz + km) space

and nnz + 2km time, approach (b) requires O(nnz + kn) space
and nnz + 2kn time, while approach (c) requires O(k(m + n))

space and k(m + n) time. Depending on the relative size of k

and nnz/n (or nnz/m), the best way can be chosen in actual
implementations.

To conclude, the two Lanczos approximation schemes consume
significantly fewer computing resources than the truncated SVD
in the preprocessing phase, and they can be as economical in
the query response phase. As a remark, due to the split of the
algorithms into these two phases, the storage of the k Lanczos
vectors {qi} (or {q̄i}) is an issue to consider. These vectors
have to be stored permanently after preprocessing, since they are
needed to produce the query responses. As will be discussed later

1Roughly speaking, if nnz is replaced by m · n in the big-O notations
we will obtain the complexities for the non-sparse case. This is true for the
algorithms in this paper.

5

TABLE I
COMPARISONS OF COMPUTATIONAL COSTS.

Left approx. Right approx. Trunc. SVDa

preprocessing space O(nnz + km) O(nnz + kn) O(nnz + k′m + Ts) or O(nnz + k′n + Ts)

preprocessing time O(k(nnz + m)) O(k(nnz + n)) O(k′(nnz + m) + Tt) or O(k′(nnz + n) + Tt)

query space O(nnz + km) O(nnz + kn) O(nnz + km) or O(nnz + kn) or O(k(m + n))

query time nnz + 2km nnz + 2kn nnz + 2km or nnz + 2kn or k(m + n)

a Ts (resp. Tt) is the space (resp. time) cost for eigen decompositions of tridiagonal matrices and convergence
tests. These two costs are both complicated and cannot be neatly expressed using factors such as nnz, k′,
m and n. Also, note that k′ > k and empirically k′ is a few times larger than k.

in Section IV-D, computational time cost can be traded for the
storage of these k vectors.

C. Which approximation to use?

As the above analysis indicates, the choice of which approxi-
mation scheme to use largely depends on the relative size of m

and n, i.e., on the shape of the matrix A. It is clear that sk is a
better choice when m < n, while tk is more appropriate when
m ≥ n. The approximation qualities for both schemes are very
close; see the experimental results in Section VII-A.

D. Other implementations

Trade-offs exist between computational efficiency and storage
requirement which will lead to different implementations of
Algorithms 2 and 3. These choices depend on the practical
situation at hand.

a) Avoiding the storage of the Lanczos vectors: When m

or n is large, the storage requirement of the k Lanczos vectors
can not be overlooked. This storage can be avoided by simply
regenerating the Lanczos vectors on the fly as efficiently as
possible when they are needed. A common practice is that,
after preprocessing, only the initial vector q1 and the tridiagonal
matrix Tk are stored. At the query response phase, the qi’s are
regenerated by applying the Lanczos procedure again, without
performing lines 4 and 6 (of Algorithm 1). This way of proceeding
requires additional sparse mat-vecs and saxpies but not inner
products. The storage is significantly reduced from k vectors to
only 3 vectors (q1, and the main- and off-diagonal of Tk). Note
that since re-orthogonalization is usually performed the storage
of the qi’s is needed at least during the preprocessing phase as
it is not practical to re-recompute the qi’s for the purpose of re-
orthogonalization.

b) Avoiding the storage of the matrix: The matrix A occurs
throughout the algorithms. The presence of A in the query
response phase may be undesirable in some situations for one
or more of the following reasons: (a) A is not sparse, so storing a
full matrix is very costly; (b) mat-vec operations with a full matrix
are expensive; (c) one mat-vec operation may not be as fast as
a few vector operations (even in the sparse mode). It is possible
to avoid storing A after the preprocessing phase. Specifically, in
the left projection approximation, the update formula (7) can be
written in the following form:

si = si−1 +
D
b, AT qi

E
qi. (13)

Instead of storing A, we can store the k intermediate vectors
{AT qi}, which are byproducts of the preprocessing phase. This

will result in a query response without any mat-vec opera-
tions. Similarly, in the right projection approximation, update
formula (10) can be rewritten as:

ti = ti−1 + 〈b, q̄i〉 (Aq̄i). (14)

The vectors {Aq̄i}, byproducts of the preprocessing phase, are
stored in place of A.

In summary, depending on the relative significance of space
and time in practical situations, the two approximation schemes
can be flexibly implemented in three different ways. From low
storage requirement to high storage requirement (or from high
tolerance in time to low tolerance in time), they are: (a) Storing
only the initial vector q1 (or q̄1) and regenerating the Lanczos
vectors in the query response phase; (b) the standard Algorithm 2
(or Algorithm 3); (c) storing two sets of vectors {qi} and {AT qi}
(or {q̄i} and {Aq̄i}) and discarding the matrix A.2 In all situations
these alternatives are far more efficient than those based on the
truncated SVD.

V. ENTRY SCALING

As indicated in the discussions of the two sample applications
in Section I, it is usually necessary to scale the entries of the
filtered mat-vec product. This amounts to dividing each entry of
the vector Akb by the norm of the corresponding row of Ak. In
parallel, in the proposed Lanczos approximations, we may need
to divide each entry of the approximation vector sk = QkQT

k Ab

(resp. tk = AQ̄kQ̄T
k b) by the norm of the corresponding row

of QkQT
k A (resp. AQ̄kQ̄T

k). This section illustrates a way to
compute these row norms in a minimal cost. Similar to the
computation of sk and tk, the row norms are computed in an
iterative update fashion.

For the left projection approximation, define η
(i)
j to be the norm

of the j-th row of QiQ
T
i A, i.e.,

η
(i)
j =

‚‚‚eT
j QiQ

T
i A
‚‚‚ . (15)

It is easy to see that η
(i)
j is related to η

(i−1)
j by

“
η
(i)
j

”2
= eT

j QiQ
T
i AAT QiQ

T
i ej

= eT
j QiTiQ

T
i ej

= eT
j (Qi−1Ti−1QT

i−1 + αiqiq
T
i

+ βiqiq
T
i−1 + βiq

T
i−1qi)ej

=
“
η
(i−1)
j

”2
+ αi(qi)

2
j + 2βi(qi)j(qi−1)j , (16)

2Depending on the relative size of k and nnz/n (or nnz/m), method (c)
may or may not need more storage than (b). In any case, method (c) should
run faster than (b).

6

where (v)j means the j-th element of vector v. Hence the row
norms of QkQT

k A, η
(k)
j , j = 1, . . . , m, can be computed using

the update formula (16) in the preprocessing phase. Specifically,
the following line of pseudocode should be added immediately
after line 4 of Algorithm 1:

“
η
(i)
j

”2
←
“
η
(i−1)
j

”2
+ αi(qi)

2
j + 2βi(qi)j(qi−1)j .

For the right projection approximation, define η̄
(i)
j to be the

norm of the j-th row of AQ̄iQ̄
T
i , i.e.,

η̄
(i)
j =

‚‚‚eT
j AQ̄iQ̄

T
i

‚‚‚ . (17)

It is easy to see that η̄
(i)
j is related to η̄

(i−1)
j by

“
η̄
(i)
j

”2
= eT

j AQ̄iQ̄
T
i AT ej

= eT
j (AQ̄i−1Q̄T

i−1AT + Aq̄iq̄
T
i AT)ej

=
“
η̄
(i−1)
j

”2
+ (Aq̄i)

2
j . (18)

This update formula helps efficiently compute the row norms of
AQ̄kQ̄T

k , that is, η̄
(k)
j , j = 1, . . . , m, in the preprocessing phase.

The specific modification to Algorithm 1 is the insertion of the
following line of pseudocode immediately after line 3:

“
η̄
(i)
j

”2
←
“
η̄
(i−1)
j

”2
+ (Aq̄i)

2
j .

The computation of row norms η
(k)
j ’s (resp. η̄

(k)
j ’s) using

update formula (16) (resp. (18)) requires minimal resources and
will not increase the asymptotic space/time complexities of the
preprocessing phase in Algorithm 2 (resp. Algorithm 3).

VI. APPLICATIONS

We have briefly discussed two sample applications—LSI and
eigenfaces—in Section I. For the sake of completeness, we
summarize in this section how the Lanczos approximation with
entry scaling can be applied in these two applications as an
effective alternative to the traditional approach based on the
truncated SVD.

The traditional SVD approach computes the filtered mat-vec
product Akb and divides each entry of this vector by the norm of
the corresponding row of Ak to obtain the ranking scores. In LSI,
Ak is the transpose of the best rank-k approximation of the term-
document matrix, i.e., XT

k , and b is a query q. In eigenfaces, Ak

is the transpose of the best rank-k approximation of the training
set matrix, i.e., FT

k , and b is a test image p.
In the proposed Lanczos approximation, we compute sk or tk in

place of Akb, depending on the relative size of the two dimensions
of the matrix A. If m < n, we compute sk as an alternative to Akb

using Algorithm 2. Meanwhile we compute the row norms η
(k)
j

for j = 1, . . . , m. Then we divide the j-th entry of sk by η
(k)
j for

all j to obtain the ranking scores. On the other hand, if m ≥ n,
we compute tk as an alternative to Akb using Algorithm 3 and
also compute the scalars η̄

(k)
j for j = 1, . . . , m. Then we divide

the j-th entry of tk by η̄
(k)
j for all j hence the similarity scores

are obtained.

VII. EXPERIMENTAL RESULTS

The goal of the extensive experiments to be presented in this
section is to show the effectiveness of the Lanczos approximation
schemes in comparison to the truncated SVD-based approach.
Most of the experiments were performed in Matlab 7 under a
Linux workstation with two P4 3.00GHz CPUs and 4GB memory.
The only exception was the experiments on the large data set
TREC, where a machine with 16GB of memory was used.

A. Approximation quality

This section shows the convergence behavior of the sequences
{si} and {ti}, and the qualities of sk and tk in approximating the
filtered mat-vec product Akb. The matrices used for experiments
were from the data sets MED, CRAN, and NPL, which will be
introduced in the next section. We respectively label the three
matrices as AMED, ACRAN, and ANPL.

Figure 1 shows the convergence behavior of {si} and {ti} in
the major left singular directions u1, u2 and u3 of the matrix
AMED. The vertical axis corresponds to residuals

˛̨˙
Ab− si, uj

¸˛̨

(or
˛̨˙

Ab− ti, uj

¸˛̨
). As shown by (a) and (c), if no re-

orthogonalization was performed, the {si} and {ti} sequences
diverged starting at around the 10-th iteration, which indicated
that loss of orthogonality in the Lanczos procedure appeared
fairly soon. Hence it is necessary that re-orthogonalization be
performed in order to yield accurate results. Plots (b) and (d)
show the expected convergence pattern: the residuals rapidly fell
towards the level of machine epsilon (≈ 10−16).

To show convergence results on more matrices, we plot in
Figure 2 the residual curves for ACRAN and ANPL. For all cases
re-orthogonalization was performed. Note that the shapes of the
two matrices are different: ACRAN has more columns than rows
while for ANPL the opposite is true. Figure 2 implies two facts:
(a) The approximation sequences converged in all three directions,
with u1 being the fastest direction; (b) the approximations did not
differ too much in terms of rate of convergence or approximation
quality. The first fact can be further investigated by plotting the
eigenvalue distribution of the matrices M = AAT as in Figure 3.
The large gap between the first two eigenvalues explains the quick
convergence in the u1 direction. The second fact is guaranteed
by the similar residual bounds (c.f. inequalities (11) and (12)).
It further shows that approximation quality is not a factor in the
choice of left or right projection.

For k = 300, we plot in Figure 4 the residuals˛̨˙
A300b− s300, uj

¸˛̨
(or

˛̨˙
A300b− t300, uj

¸˛̨
) over the j-th left

singular directions for j = 1, . . . , 300. All the plots exhibit a sim-
ilar pattern: A300b and s300 (or t300) were almost identical when
projected onto the first 100 singular directions. This indicates that
sk and tk can be good alternatives to Akb, since they preserve the
quality of Akb in a large number of the major singular directions.

B. LSI for information retrieval

1) Data sets: Four data sets were used in the experiments.
Statistics are shown in Table II.

a) MEDLINE and CRANFIELD3: These are two early and
well-known benchmark data sets for information retrieval. Their
typical statistics is that the number of distinct terms is more than
the number of documents, i.e., for the matrix A (or equivalently
XT), m < n.

3ftp://ftp.cs.cornell.edu/pub/smart/

7

20 40 60 80 100

10
−15

10
−10

10
−5

10
0

iteration i

re
si

du
al

u
1

u
2

u
3

(a) Left proj., w/o re-orth.

20 40 60 80 100

10
−15

10
−10

10
−5

10
0

iteration i

re
si

du
al

u
1

u
2

u
3

(b) Left proj., with re-orth.

20 40 60 80 100

10
−15

10
−10

10
−5

10
0

iteration i

re
si

du
al

u
1

u
2

u
3

(c) Right proj., w/o re-orth.

20 40 60 80 100

10
−15

10
−10

10
−5

10
0

iteration i

re
si

du
al

u
1

u
2

u
3

(d) Right proj., with re-orth.

Fig. 1. Convergence of the {si} (resp. {ti}) sequence to the vector Ab in the major singular directions u1, u2 and u3. Matrix: AMED.

20 40 60 80 100

10
−15

10
−10

10
−5

10
0

iteration i

re
si

du
al

u
1

u
2

u
3

(a) ACRAN: left proj.

20 40 60 80 100

10
−15

10
−10

10
−5

10
0

iteration i

re
si

du
al

u
1

u
2

u
3

(b) ACRAN: right proj.

20 40 60 80 100

10
−15

10
−10

10
−5

10
0

iteration i

re
si

du
al

u
1

u
2

u
3

(c) ANPL: left proj.

20 40 60 80 100

10
−15

10
−10

10
−5

10
0

iteration i

re
si

du
al

u
1

u
2

u
3

(d) ANPL: right proj.

Fig. 2. Convergence of the {si} (resp. {ti}) sequence to the vector Ab in the major singular directions u1, u2 and u3. Matrices: ACRAN, ANPL. All with
re-orthogonalization.

x
0

y

· · ·

λ1

8.30λ2

λ3

(a) AMED.

x
0

y

· · ·

λ1

12.33λ2

λ3

(b) ACRAN.

x
0

y

· · ·

λ1

207.42λ2

λ3

(c) ANPL.

Fig. 3. Eigenvalue distribution of M = AAT on the real axis, where AT is the term-document matrix.

50 100 150 200 250 300
10

−20

10
−15

10
−10

10
−5

10
0

major left singular direction j

re
si

du
al

(a) AMED: left proj.

50 100 150 200 250 300
10

−20

10
−15

10
−10

10
−5

10
0

major left singular direction j

re
si

du
al

(b) ACRAN: left proj.

50 100 150 200 250 300
10

−20

10
−15

10
−10

10
−5

10
0

major left singular direction j

re
si

du
al

(c) ANPL: right proj.

Fig. 4. Differences between A300b and s300 (or t300) in the major left singular directions. For the first one hundred directions, the differences have decreased
to almost zero, while for other less significant directions the differences have not dropped to this level.

b) NPL3: This data set is larger than the previous two, with
a property that the number of documents is larger than the number
of distinct terms, i.e., m > n. Including the above two, these three
data sets have the term-document matrices readily available from
the provided links, so we did not perform additional processing
on the data.

c) TREC4: This is a large data set which is popularly used
for experiments in serious text mining applications. Similar to
NPL, the term-document matrix extracted from this data set has

4http://trec.nist.gov/data/docs eng.html

more documents than distinct terms, i.e., m > n. Specifically, the
whole data set consists of four document collections (Financial
Times, Federal Register, Foreign Broadcast Information Service,
and Los Angeles Times) from the TREC CDs 4 & 5 (copyrighted).
The queries are from the TREC-8 ad hoc task56. We used
the software TMG [21] to construct the term-document matrix.
The parsing process included stemming, deleting common words
according to the stop-list provided by the software, and removing

5Queries: http://trec.nist.gov/data/topics eng/
6Relevance: http://trec.nist.gov/data/qrels eng/

8

words with no more than 5 occurrences or with appearances
in more than 100,000 documents. Also, 125 empty documents
were ignored. This resulted in a term-document matrix of size
138232 × 528030. For the queries, only the title and description
parts were extracted to construct query vectors.

TABLE II
INFORMATION RETRIEVAL DATA SETS.

MED CRAN NPL TREC
terms 7,014 3,763 7,491 138,232
docs 1,033 1,398 11,429 528,030
queries 30 225 93 50
ave terms/doc 52 53 20 129

2) Implementation specs: The weighting scheme of all the
term-document matrices was term frequency-inverse document
frequency (tf-idf). Due to the shapes of the matrices, for MED-
LINE and CRANFIELD we used the left projection approxi-
mation, and for NPL and TREC we used the right projection
approximation. Full re-orthogonalization in the Lanczos process
was performed. The filtered mat-vec product Akb was computed
as Uk(UT

k (Ab)) or A(Vk(V T
k b)), depending on the relative sizes

of m and n. We implemented the partial SVD based on the
Lanczos algorithm and Ritz values/vectors [22, Section 3.1]. We
did not use the Matlab command svds for two reasons. (a) The
Matlab function svds uses a different algorithm. In order to
conform to the computational complexity analysis in Section IV-
B, we used the algorithm mentioned in the analysis. (b) While the
algorithm used by the Matlab function svds is able to accurately
compute the smallest singular components, it consumes too many
resources in both storage and time. We chose to implement
one that was both lightweight and accurate for largest singular
components, since the smallest components were not our concern.

3) Results: Figure 5 plots the performance of the Lanczos
approximation applied to the MEDLINE, CRANFIELD and NPL
data sets, compared with that of the standard LSI (using the
truncated SVD approach). These plots show that the accuracy
obtained from the Lanczos approximation is comparable to that
of LSI,7 while in preprocessing the former runs an order of
magnitude faster than the latter. The accuracy is measured using
the 11-point interpolated average precision, as shown in (a), (b)
and (c). More information is provided by plotting the precision-
recall curves. These plots are shown using a specific k for each
data set in (d), (e) and (f). They suggest that the retrieval accuracy
for the Lanczos approximation is very close to that of LSI,
sometimes even better. As shown in (g), (h) and (i), the Lanczos
approximation is far more economical than the SVD-based LSI.
It can be an order of magnitude faster than the truncated SVD
which, it should be recalled, was re-implemented for better
efficiency. The average query times for the two approaches, as
shown in plots (j), (k) and (l), are (almost) identical, which
conforms to the previous theoretical analysis. Note the efficiency
of the query responses—in several or several tens of milliseconds.
Plot (l) does show small discrepancies in query times between
the two approaches. We believe that the differences were caused
by the internal Matlab memory management schemes that were
unknown to us. If in the experiments the Lanczos vectors (Q̄k)
and the singular vectors (Vk) had been precomputed and reloaded

7Note that by “comparable”, we mean that the accuracies obtained from
the two methods do not greatly differ. It is not necessary that the difference
between the accuracies is not statistically significant.

rather than being computed on the fly, the query times would have
been identical for both approaches.

We also performed tests on the large data set TREC. Since we
had no access to a fair environment (which requires as much as
16GB working memory and no interruptions from other users) for
time comparisons, we tested only the accuracy. Figure 6 shows
the precision-recall curves at different k’s (400, 600 and 800)
for the two approaches. As illustrated by the figure, the Lanczos
approximation yielded much higher accuracy than the truncated
SVD approach. Meanwhile, according to the rigorous analysis in
Section IV-B, the former approach should consume much fewer
computing resources and be more efficient than the latter.

C. Eigenfaces for face recognition

1) Data sets: Three data sets were used in the experiments.
Statistics are shown in Table III.

a) ORL8: The ORL data set [23] is small but classic. A
dark homogeneous background was used at the image acquisition
process. We did not perform any image processing task on this
data set.

b) PIE9: The PIE data set [24] consists of a large set of
images taken under different poses, illumination conditions and
face expressions. We downloaded the cropped version from Deng
Cai’s homepage10. This version of the data set contains only five
near frontal poses for each subject. The images had been non-
uniformly scaled to a size of 32× 32.

c) ExtYaleB11: Extended from a previous database, the ex-
tended Yale Face Database B (ExtYaleB) [25] contains images for
38 human subjects. We used the cropped version [26] that can be
downloaded from the database homepage. We further uniformly
resized the cropped images to half of their sizes. The resizing can
be conveniently performed in Matlab by using the command

img_small = imresize(img, .5, ’bicubic’)

without compromising the quality of the images.

TABLE III
FACE RECOGNITION DATA SETS.

ORL PIE ExtYaleB
subjects 40 68 38
imgs 400 11,554 2,414
img size 92× 112 32× 32 84× 96

2) Implementation specs: In the eigenfaces technique, each
image is vectorized to a column, whose elements are pixel values.
All the images have a single gray channel, whose values range
from 0 to 255. We divided them by 255 such that all the pixel
values were no greater than 1. We split a data set into training
subset and test subset by randomly choosing a specific number of
images for each subject as the training images. Different numbers
were experimented with and this will be discussed shortly. As
in the previous information retrieval experiments, the choice of
left or right projection depended on the shape of the training

8http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html

9http://www.ri.cmu.edu/projects/project 418.html
10http://www.cs.uiuc.edu/homes/dengcai2/Data/

FaceData.html
11http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/

ExtYaleB.html

9

50 100 150 200
0.5

0.55

0.6

0.65

0.7

0.75

k

av
er

ag
e

pr
ec

is
io

n

lanczos tsvd term matching

(a) MED: average precision.

50 100 150 200 250 300
0.36

0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

k
av

er
ag

e
pr

ec
is

io
n

lanczos tsvd term matching

(b) CRAN: average precision.

450 500 550 600 650 700 750 800
0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

0.26

0.265

k

av
er

ag
e

pr
ec

is
io

n

lanczos tsvd term matching

(c) NPL: average precision.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

recall

pr
ec

is
io

n

lanczos
tsvd

(d) MED: precision-recall (k = 240).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

recall

pr
ec

is
io

n

lanczos
tsvd

(e) CRAN: precision-recall (k = 320).

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

recall

pr
ec

is
io

n

lanczos
tsvd

(f) NPL: precision-recall (k = 800).

50 100 150 200
0

2

4

6

8

10

12

k

pr
ep

ro
ce

ss
in

g
tim

e

lanczos
tsvd

(g) MED: preprocessing time (seconds).

50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

k

pr
ep

ro
ce

ss
in

g
tim

e

lanczos
tsvd

(h) CRAN: preprocessing time (seconds).

450 500 550 600 650 700 750 800
0

50

100

150

200

250

300

350

400

k

pr
ep

ro
ce

ss
in

g
tim

e

lanczos
tsvd

(i) NPL: preprocessing time (seconds).

50 100 150 200
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
x 10

−3

k

av
er

ag
e

qu
er

y
tim

e

lanczos
tsvd

(j) MED: average query time (seconds).

50 100 150 200 250 300
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

−3

k

av
er

ag
e

qu
er

y
tim

e

lanczos
tsvd

(k) CRAN: average query time (seconds).

450 500 550 600 650 700 750 800
0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

k

av
er

ag
e

qu
er

y
tim

e

lanczos
tsvd

(l) NPL: average query time (seconds).

Fig. 5. (Information retrieval) Performance tests on MEDLINE, CRANFIELD and NPL.

10

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

recall

pr
ec

is
io

n

lanczos
tsvd

(a) k = 400.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

recall

pr
ec

is
io

n

lanczos
tsvd

(b) k = 600.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

recall

pr
ec

is
io

n

lanczos
tsvd

(c) k = 800.

Fig. 6. (Information retrieval) Performance tests on TREC: precision-recall curves at different k’s.

set matrix, and full re-orthogonalization was performed for the
Lanczos approximation approach. In the truncated SVD approach
we used the same SVD function as the one implemented for
information retrieval.

3) Results: Error rates of the two approaches are plotted in
Figure 7. For each data set, we used different numbers of images
for training. The training sets are roughly 40%, 60% and 80%

of the whole data set. As shown by the figure, for all the data
sets and all the training sizes we experimented with, the Lanczos
approximation yielded accuracy that is very close to that of the
truncated SVD. These results confirm that the Lanczos approach
can be a good alternative to the traditional eigenfaces method.

The advantage of the Lanczos approximation lies in its effi-
ciency. Figure 8 plots the preprocessing times and query times
of the two approaches. As can be seen in the figure, in the
preprocessing phase the Lanczos approach is faster than the
truncated SVD approach by a factor of 3 or more. However this
gain in efficiency is not as large as that seen in the information
retrieval experiments. This is due to the fact that the matrix
is not sparse in this case. The dense mat-vec multiplication
occupies a larger fraction of the computing time. Nevertheless,
the Lanczos approximation approach always outperforms the
traditional truncated SVD approach in time.

VIII. CONCLUSIONS

We have explored the use of the Lanczos algorithm as a
systematic means of computing filtered mat-vec products. The
goal of the method is to obtain a sequence of vectors which
converges rapidly towards the exact product in the major left
singular directions of the matrix. The main attraction of the
algorithm is its low cost. Extensive experiments show that the
proposed method can be an order of magnitude faster than the
standard truncated SVD approach. In addition, the quality of
the approximation in practical applications, such as information
retrieval and face recognition, is comparable to that obtained from
the traditional approach. Thus, the proposed technique can be
applied as a replacement to the SVD technique in any application
where a major computational task is to compute a filtered mat-
vec, i.e., the product of a low-rank approximation of a matrix by
an arbitrary vector.

An avenue of future research following this work, is to study
how the proposed Lanczos approximation, compared with the
truncated SVD approach, affects the final quality for a certain
application, in a statistical manner. For information retrieval, the

quality of a technique could be based on the precision, i.e., how
close the actual relevant documents are to the top of the computed
rank list. Although we have proposed a technique to effectively
approximate the ranking scores, how the final precisions vary
away from those computed using the standard LSI approach is
inconclusive. Similarly, for face recognition, the accuracy depends
on only the top image in the rank list. It is possible to consider for
what conditions the top scores obtained from both the Lanczos
technique and the truncated SVD technique appear on the same
image, thus the two approaches produce exactly the same result.

APPENDIX

PROOF OF THE CONVERGENCE OF THE APPROXIMATION

VECTORS

Before the proof, we introduce a known result on the rate
of convergence of the Lanczos algorithm. Saad [27] provided a
bound on the angle between the j-th eigenvector φj of M and
the Krylov subspace range(Qk):

‚‚‚(I −QkQT
k)φj

‚‚‚
‚‚QkQT

k φj

‚‚ ≤ Kj

Tk−j(γj)

‚‚‚(I −Q1QT
1)φj

‚‚‚
‚‚Q1QT

1 φj

‚‚ , (19)

where

γj = 1 + 2
λj − λj+1

λj+1 − λn
, Kj =

(
1 j = 1Qj−1

i=1
λi−λn
λi−λj

j 6= 1
,

λj is the j-th eigenvalue of M , and Tl(x) is the Chebyshev
polynomial of the first kind of degree l. Assuming that φj has
unit norm, we simplify the inequality into the following form:

‚‚‚(I −QkQT
k)φj

‚‚‚ ≤ cjT
−1
k−j(γj), (20)

where cj is some constant independent of k. Inequality (20)
indicates that the difference between any unit eigenvector φj and
the subspace span(Qi) decays at least with the same order as
T−1

i−j(γj).
We now analyze the difference between Ab and si in the left

singular directions of A. Recall that A has the SVD A = UΣV T ,
hence M = AAT = UΣΣT UT , which means that the uj’s are

11

10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
4 train

k

er
ro

r
ra

te

lanczos
tsvd

(a) ORL: error rate (4 train).

10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
6 train

k

er
ro

r
ra

te

lanczos
tsvd

(b) ORL: error rate (6 train).

10 20 30 40 50 60 70 80
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
8 train

k

er
ro

r
ra

te

lanczos
tsvd

(c) ORL: error rate (8 train).

20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
70 train

k

er
ro

r
ra

te

lanczos
tsvd

(d) PIE: error rate (70 train).

20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
100 train

k

er
ro

r
ra

te

lanczos
tsvd

(e) PIE: error rate (100 train).

20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
130 train

k

er
ro

r
ra

te

lanczos
tsvd

(f) PIE: error rate (130 train).

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
30 train

k

er
ro

r
ra

te

lanczos
tsvd

(g) ExtYaleB: error rate (30 train).

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
40 train

k

er
ro

r
ra

te

lanczos
tsvd

(h) ExtYaleB: error rate (40 train).

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
50 train

k

er
ro

r
ra

te

lanczos
tsvd

(i) ExtYaleB: error rate (50 train).

Fig. 7. (Face recognition) Performance tests on ORL, PIE and ExtYaleB: error rate.

eigenvectors of M . Then applying (20),

˛̨˙
Ab− si, uj

¸˛̨
=
˛̨
˛
D
(I −QiQ

T
i)Ab, uj

E˛̨
˛

=
˛̨
˛
D
(I −QiQ

T
i)uj , Ab

E˛̨
˛

≤
‚‚‚(I −QiQ

T
i)uj

‚‚‚ ‖Ab‖
≤ cj ‖Ab‖T−1

i−j(γj).

This gives the convergence rate of the approximation vector si to
the vector Ab along the direction uj .

We can similarly give a bound on the difference between Ab

and ti in the direction uj :
˛̨˙

Ab− ti, uj

¸˛̨
=
˛̨
˛
D
A(I − Q̄iQ̄

T
i)b, uj

E˛̨
˛

=
˛̨
˛
D
(I − Q̄iQ̄

T
i)b, AT uj

E˛̨
˛

= σj

˛̨
˛vT

j (I − Q̄iQ̄
T
i)b
˛̨
˛

≤ σj

‚‚‚(I − Q̄iQ̄
T
i)vj

‚‚‚ ‖b‖ .

Note that M̄ = AT A = V ΣT ΣV T , hence vj is the j-th eigen-
vector of M̄ . So we can also bound the term

‚‚‚(I − Q̄iQ̄
T
i)vj

‚‚‚
by Chebyshev polynomial, yielding the result

˛̨˙
Ab− ti, uj

¸˛̨ ≤ σj c̄j ‖b‖T−1
i−j(γ̄j).

This provides the convergence rate of the approximation vector
ti to the vector Ab in the direction uj .

12

10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

k

pr
ep

ro
ce

ss
in

g
tim

e

lanczos
tsvd

(a) ORL: preprocessing time (6 train).

20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

k

pr
ep

ro
ce

ss
in

g
tim

e

lanczos
tsvd

(b) PIE: preprocessing time (100 train).

50 100 150 200
0

5

10

15

20

25

30

35

40

45

50

k

pr
ep

ro
ce

ss
in

g
tim

e

lanczos
tsvd

(c) ExtYaleB: preprocessing time (40 train).

10 20 30 40 50 60 70 80
5.44

5.46

5.48

5.5

5.52

5.54

5.56

5.58

5.6
x 10

−3

k

av
er

ag
e

qu
er

y
tim

e

lanczos
tsvd

(d) ORL: query time (6 train).

20 40 60 80 100 120 140 160

0.0172

0.0173

0.0173

0.0174

0.0175

0.0175

0.0175

0.0176

0.0176

k

av
er

ag
e

qu
er

y
tim

e

lanczos
tsvd

(e) PIE: query time (100 train).

50 100 150 200
0.028

0.0282

0.0284

0.0286

0.0288

0.029

0.0292

0.0294

0.0296

0.0298

k

av
er

ag
e

qu
er

y
tim

e

lanczos
tsvd

(f) ExtYaleB: query time (40 train).

Fig. 8. (Face recognition) Performance tests on ORL, PIE and ExtYaleB: time (in seconds).

REFERENCES

[1] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[2] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins,
1996.

[3] S. C. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. A.
Harshman, “Indexing by latent semantic analysis,” J. Am. Soc. Inf. Sci.,
vol. 41, no. 6, pp. 391–407, 1990.

[4] M. W. Berry and M. Browne, Understanding Search Engines: Mathe-
matical Modeling and Text Retrieval. SIAM, June 1999.

[5] M. Turk and A. Pentland, “Face recognition using eigenfaces,” in
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 1991, pp. 586–591.

[6] D. I. Witter and M. W. Berry, “Downdating the latent semantic indexing
model for conceptual information retrieval,” The Computer J., vol. 41,
no. 8, pp. 589–601, 1998.

[7] H. Zha and H. D. Simon, “On updating problems in latent semantic
indexing,” SIAM J. Sci. Comput., vol. 21, no. 2, pp. 782–791, 1999.

[8] M. Brand, “Fast low-rank modifications of the thin singular value
decomposition,” Linear Algebra Appl., vol. 415, no. 1, pp. 20–30, 2006.

[9] J. E. Tougas and R. J. Spiteri, “Updating the partial singular value
decomposition in latent semantic indexing,” Comput Statist. Data Anal.,
vol. 52, no. 1, pp. 174–183, 2007.

[10] E. Kokiopoulou and Y. Saad, “Polynomial filtering in latent semantic
indexing for information retrieval,” in Proceedings of the 27th annual
international ACM SIGIR conference on Research and development in
information retrieval, 2004, pp. 104–111.

[11] J. Erhel, F. Guyomarc, and Y. Saad, “Least-squares polynomial filters for
ill-conditioned linear systems,” University of Minnesota Supercomputing
Institute, Tech. Rep., 2001.

[12] Y. Saad, “Filtered conjugate residual-type algorithms with applications,”
SIAM J. Matrix Anal. Appl., vol. 28, no. 3, pp. 845–870, August 2006.

[13] M. W. Berry, “Large scale sparse singular value computations,” Interna-
tional Journal of Supercomputer Applications, vol. 6, no. 1, pp. 13–49,
1992.

[14] K. Blom and A. Ruhe, “A Krylov subspace method for information
retrieval,” SIAM J. Matrix Anal. Appl., vol. 26, no. 2, pp. 566–582,
2005.

[15] G. Golub and W. Kahan, “Calculating the singular values and pseudo-
inverse of a matrix,” SIAM J. Numer. Anal., vol. 2, no. 2, pp. 205–224,
1965.

[16] Y. Saad, Numerical Methods for Large Eigenvalue Problems. Halstead
Press, New York, 1992.

[17] B. N. Parlett, The symmetric eigenvalue problem. Prientice-Hall, 1998.
[18] R. M. Larsen, “Efficient algorithms for helioseismic inversion,” Ph.D.

dissertation, Dept. Computer Science, University of Aarhus, Denmark,
October 1998.

[19] H. D. Simon, “Analysis of the symmetric Lanczos algorithm with
reorthogonalization methods,” Linear Algebra Appl., vol. 61, pp. 101–
131, 1984.

[20] ——, “The Lanczos algorithm with partial reorthogonalization,” Math-
ematics of Computation, vol. 42, no. 165, pp. 115–142, 1984.

[21] D. Zeimpekis and E. Gallopoulos, TMG: A MATLAB toolbox for
generating term document matrices from text collections. Springer,
Berlin, 2006, pp. 187–210.

[22] M. W. Berry, “Large-scale sparse singular value computations,” Interna-
tional Journal of Supercomputer Applications, vol. 6, no. 1, pp. 13–49,
1992.

[23] F. Samaria and A. Harter, “Parameterisation of a stochastic model for
human face identification,” in 2nd IEEE Workshop on Applications of
Computer Vision, 1994.

[24] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and
expression database,” IEEE Trans. Pattern Anal. Machine Intell., vol. 25,
no. 12, pp. 1615–1618, 2003.

[25] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many:
Illumination cone models for face recognition under variable lighting
and pose,” IEEE Trans. Pattern Anal. Machine Intell., vol. 23, no. 6, pp.
643–660, 2001.

[26] K. Lee, J. Ho, and D. Kriegman, “Acquiring linear subspaces for face
recognition under variable lighting,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 27, no. 5, pp. 684–698, 2005.

[27] Y. Saad, “On the rates of convergence of the Lanczos and the block-
Lanczos methods,” SIAM J. Numer. Anal., vol. 17, no. 5, pp. 687–706,
October 1980.

