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QUADRATURE
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Abstract. The problem of estimating the trace of matrix functions appears in applications
ranging from machine learning, scientific computing, to computational biology. This paper presents
an inezpensive method to estimate the trace of f(A) for cases where f is analytic inside a closed
interval and A is a symmetric positive definite matrix. The method combines three key ingredients,
namely, the stochastic trace estimator, Gaussian quadrature, and the Lanczos algorithm. As examples,
we consider the problems of estimating the log-determinant (f(¢) = log(t)), the Schatten p-norms
(f(t) = tP/?), the Estrada index (f(t) = et) and the trace of matrix inverse (f(t) = t~1). We establish
multiplicative and additive error bounds for the approximations obtained by this method. In addition,
we present error bounds for other useful tools such as approximating the log-likelihood function in the
context of maximum likelihood estimation of Gaussian processes. Numerical experiments illustrate
the performance of the proposed method on different problems arising from various applications.

1. Introduction. The problem of estimating the trace of matrix functions ap-
pears frequently in applications of machine learning, signal processing, scientific
computing, statistics, computational biology and computational physics [6, 17, 39, 37,
20, 30, 33, 2, 26]. Developing fast and scalable algorithms to perform this task has
long been a primary focus of research in these fields. An important instance of the
trace estimation problem is that of approximating log(det(A)), the log-determinant of
a positive definite matrix A. Log-determinants of covariance and precision matrices
play an important role in Gaussian processes and Gaussian graphical models [37, 39].
Log-determinant computations also appear in applications such as kernel learning [14],
discrete probabilistic models [1], Bayesian Learning [35], spatial statistics [4] and
Markov field models [45, 26, 9].

Another instance of the trace estimation problem in applications is that of esti-
mating Schatten p-norms, particularly the nuclear norm, since this norm is used as
the convex surrogate of the matrix rank. The Schatten p-norms appear in convex opti-
mization problems, e.g., in the context of matrix completion [10], in differential privacy
problems [27], and in sketching and streaming models [33, 2]. On the other hand, in
uncertainty quantification and in lattice quantum chromodynamics [30, 46], it is neces-
sary to estimate the trace of the inverse of covariance matrices. Moreover, estimating
the Estrada index (trace of exponential function) is another illustration of the problem.
Other applications include protein indexing [17], statistical thermodynamics [18] and
information theory [11].

For a symmetric matrix A € R"*" with an eigen-decomposition A = UAU7T,
with A = diag(\1,...,\,), where A;, i = 1,...,n are the eigenvalues of A, the matrix
function f(A) is defined as f(A) = Uf(A)UT, with f(A) = diag(f(M1),--., f(\)) [28].
Then the trace estimation problems mentioned above can be formulated as follows:
given a symmetric matrix A € R"*"™ compute an approximation of the trace of the
matrix function f(A), i.e.,

(1) tr(f(4) =D f(N),
i=1
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where A\;, i = 1,...,n are the eigenvalues of A, and f is the desired function. A naive
approach for estimating the trace of matrix functions is to compute this trace from
the eigenvalues of the matrix. A popular approach to computing the log-determinant
is to exploit the Cholesky decomposition [22]. Given the decomposition A = LLT, the
log-determinant of A is logdet(A) = 23", log(L;;). Computing the Schatten norms in
a standard way would typically require the singular value decomposition (SVD) of the
matrix. These methods have cubic computational complexity (in terms of the matrix
dimension, i.e., O(n?) cost) in general, and are not viable for large scale applications.
In this paper, we study inexpensive methods for accurately estimating these traces for
large matrices.

Our Contribution. This paper is a study of the method we call the Stochastic
Lanczos Quadrature (SLQ) for approximating the trace of functions of large matrices
[6, 7, 20]. The method combines three key ingredients. First, the stochastic trace
estimator, also called the Hutchinson method [29], is considered for approximating
the trace. Next, the bilinear form that appears in the trace estimator is expressed as
a Riemann-Stieltjes integral, and the Gauss quadrature rule is used to approximate
this integral. Finally, the Lanczos algorithm is used to obtain the weights and the
nodes of the quadrature rule (see Section 3 for details). We establish multiplicative
and additive approximation error bounds for the trace obtained by using the method.
To the best of our knowledge, such error bounds for SLQ have not appeared in the
prior literature. We show that the Lanczos Quadrature approximation has faster
convergence rate compared to popular methods such as those based on Chebyshev
or Taylor series expansions. The analysis can be extended to any matrix functions
that are analytic inside a closed interval and are analytically continuable to an open
Bernstein ellipse [42].

We consider several important trace estimation problems and their applications.
We discuss the log-determinant computation, estimation of the Estrada index, and the
trace of matrix inverse, and show how the SLQ method can be used to approximately
estimate these quantities rapidly. We also adapt our method for fast estimation of the
nuclear norm and Schatten-p norms of large matrices. In addition, we establish error
bounds for the approximation of log-likelihoods in the context of maximum likelihood
estimation of Gaussian processes. Several numerical experiments are presented to
demonstrate the superiority of the proposed method over existing methods in practice.

Related Works and Comparison. A plethora of methods have been developed
in the literature to deal with trace estimation problems. In the following, we discuss
some of the works that are closely related to SLQ, particularly those that invoke the
stochastic trace estimator. The stochastic trace estimator has been employed for a
number of applications in the literature, for example, for estimating the diagonal of a
matrix [8], for counting eigenvalues inside an interval [16], for approximating the score
function of Gaussian processes [41], and for estimating the numerical rank [43, 44].
For the log-determinant computation, a few methods have been proposed, which
also invoke the stochastic trace estimator. These methods differ in the approach
used to approximate the log function. Article [26] used the Chebyshev polynomial
approximations for the log function. The log function was approximated using the
Taylor series expansions in [47]. Article [9] provided an improved analysis for the
log-determinant computations using these Taylor series expansions. Aune et. al
[4] adopted the method proposed in [24] to estimate the log function. Here, the
Cauchy integral formula of the log function is considered and the Trapezoidal rule is
invoked to approximate the integral. This method is equivalent to using a rational



FAST ESTIMATION OF tr(f(A)) 3

approximation for the function. The method requires solving a series of linear systems
and is generally expensive. The functions can also be approximated by means of least
squares polynomials as proposed in [13].

Not many fast algorithms are available in the literature to approximate the nuclear
norm and Schatten-p norms; see [33, 2] for discussions. Article [25] extends the idea of
using Chebyshev expansions developed in [16, 26] to approximate the trace of various
matrix functions including Schatten norms, the Estrada index and the trace of matrix
inverse. Related articles on estimating the trace of matrix inverse and other matrix
functions are [46, 12].

A key objective of this work is to demonstrate how the powerful Lanczos algo-
rithm can be employed to solve trace estimation problems for matrix functions. The
Lanczos method has clear advantages over the above mentioned methods such as
Chebyshev expansions, Taylor series expansions and rational function approximations.
To understand the pros and cons of the Lanczos method, let us first examine the
three classes of techniques that are commonly used, namely the Lanczos method,
polynomial approximation methods, and rational approximation methods. Most of the
polynomial and rational approximation methods require as input an interval containing
the spectrum of the matrix. One advantage of the Lanczos method is that there exists
no such requirement. In fact, the Lanczos algorithm itself is often used to estimate
the spectrum interval. On the other hand, a disadvantage of the Lanczos method
is that it requires to store the Lanczos vectors and to re-orthogonalize these vectors
in practice. Polynomial approximation methods are more economical in terms of
storage. In terms of convergence, in Section 4, we show that the convergence rate
obtained by the Lanczos method is better than those reached by any polynomial
(Chebyshev or Taylor series) approximations. Such a faster convergence comes from
the fact that the Lanczos method applied to computing a bilinear form of a matrix
admits a quadrature interpretation, where the weight function in the quadrature is
matrix dependent. On the other hand, the convergence of polynomial approximation
methods does not depend on the matrix. As a result it is easy to estimate a-posteriori
errors by analyzing only the function. For example, all that is needed to get the error
for the exponential function is to have an idea of the error made in approximating
the exponential by the given polynomial in an interval containing the spectrum of A.
Such a-posteriori error estimates do not require any computations with the matrix
A. This is in contrast with the Lanczos approach for which such errors are generally
not as straightforward. There are no known good extensions of the a-posteriori error
estimates given in [40] for the Lanczos approach to more general functions than the
exponential. Finally, rational approximations (see, e.g., [24]) usually converge the
fastest. However, a major disadvantage of this approach is that we need to solve a
number of shifted linear systems. This is expensive in general, and prohibitive in many
realistic cases.

The polynomial approximation methods mentioned earlier may use several different
strategies to obtain a good polynomial: Taylor series expansions [47], Chebyshev
expansions [25], and least squares approximations [13]. The Taylor series approach
converges too slowly and is usually not appealing. Chebyshev is a good choice in many
scenarios but if the function has a steep derivative, then the expansion may need an
extremely large number of terms to achieve a good approximation. In the extreme case,
if there is a discontinuity (e.g., the sign/step function), then Chebyshev expansions
exhibit the Gibbs phenomenon. The least squares approach [13, 12] addresses this
issue by first approximating the function by using a spline, where more knots are
placed around the areas with larger derivatives, and then in turn approximating the
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spline by a least squares polynomial. However, we show that the Lanczos method
converges faster than any polynomial methods. Section 5 also illustrates the superior
performance of the Lanczos method compared to the methods presented in [26, 47]
via several numerical experiments.

Outline. The outline of the paper is as follows: Section 2 is a discussion of the
various applications that lead to estimating the trace of matrix functions. Section 3
describes the Stochastic Lanczos Quadrature method in detail. A modified approach of
the SLQ method that is more suitable for the Schatten norm estimation is also given.
This alternate approach is appropriate when the input matrix has a large number of
singular values close to zero, is non-symmetric, or even rectangular. Section 4 lays
out the theoretical analysis for the SLQ method. The analysis is applicable for any
function that is analytic inside a closed interval and analytically continuable to an open
Bernstein ellipse. We establish the approximation error bounds for the computation
of different matrix function traces mentioned in Section 2 using the SLQ method.
Section 5 presents numerical experiments.

2. Applications. This section is a brief survey of applications that require the
computation of the trace of matrix functions. Such calculations arise in different ways
in many disciplines and what follows is just a small set of representative applications.
Much more information can be obtained by following the cited references.

2.1. Log-determinant. As previously mentioned, the log-determinants have
numerous applications in machine learning and related fields. The logarithm of the
determinant of a given positive definite matrix A € R™*" is equal to the trace of the
logarithm of the matrix, i.e.,

log det(A) = tr(log(A)) = 2": log(As).

So, estimating the log-determinant of a matrix is equivalent to estimating the trace of
the matrix function f(A4) = log(A).

Suppose the positive definite matrix A has its eigenvalues inside the interval
[Amins Amax], then the logarithm function f(t) = log(¢) is analytic over this interval.
When computing the log-determinant of a matrix, the case Apin = 0 is obviously
excluded, where the function has its singularity. The Lanczos algorithm requires the
input matrix to be symmetric. If A is non-symmetric, we can either consider the matrix'
AT A, since log det(AT A) = 2log | det(A)| or use the Golub-Kahan-bidiagonalization
algorithm described later.

2.2. Log-likelihood. The problem of computing the likelihood function occurs
in applications related to Gaussian processes [37]. Maximum Likelihood Estimation
(MLE) is a popular approach used for parameter estimation when high dimensional
Gaussian models are used, especially in statistical machine learning. The objective
in parameter estimation is to maximize the log-likelihood function with respect to a
hyperparameter vector &:

) lop(= | €) = —5= 7 S(6) 12 — 1 logdet S(€) — & log(2r),

IThe matrix product need not be formed explicitly since the Lanczos algorithm requires only
matrix vector products.
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where z is the data vector and S(€) is the covariance matrix parameterized by €. The
second term (log-determinant) in (2) can be computed by using the SLQ method.
We observe that the first term in (2) resembles the quadratic form that appears in
the trace estimator, and it can be also computed by using the Lanczos Quadrature
method. That is, we can estimate the term 2" S(¢) ™!z using m steps of the Lanczos
algorithm applied to z/||z|| as the starting vector, then compute the quadrature rule
for the inverse function f(¢) = ¢!, and rescale the result by ||z|%. In section 4, we
give further details on this and present the error bounds for the log-likelihood function
estimation by the SLQ method.

2.3. Computing the Schatten p-norms. Another important problem that
arises in applications is the estimation of the nuclear norm and the Schatten p-norms
of large matrices (a few applications were mentioned earlier). Given an input matrix
X € R the nuclear norm of X is defined as || X|. = Y_,_, 0;, where o; are the
singular values of X and r is its rank. Suppose we define a positive semidefinite matrix
Aas’ A=XTX or A= XXT. Then, the nuclear norm of X can be expressed as

s T
Xl =D o= VA,
i=1 i=1

where the \;’s are the eigenvalues of A. Hence, we can consider the symmetric positive
semidefinite matrix A = X ' X, and compute the nuclear norm of X as

1X ][« = tx(£(A)); f(t) = VL.

To estimate the above trace, we can invoke the SLQ method described in this work.
Generally, the Schatten p-norm of a general matrix X is defined as

B r ) 1/p7 r /2 1/p
IXIp=(>_o?) =(D_A :
=1

i=1

Hence, Schatten p-norms (the nuclear norm being a special case with p = 1) are
the traces of matrix functions of A with f(t) = #*/2, and they can be computed
inexpensively using the SLQ method. Note that the functions f(t) = t*/? have
singularity at zero. Input matrices whose Schatten norms we seek are likely to have
singular values equal or close to zero (low rank or numerically low rank). However, we
explain in section 4.5 that such input matrices can be easily handled with a simple
modification before applying SLQ.

2.4. Trace of a matrix inverse and the Estrada index. Other frequent
matrix function trace estimation problems include estimating the trace of matrix
inverse and the Estrada index. As the name indicates, the matrix inverse trace
estimation problem amounts to computing the trace of the inverse function f(t) = ¢~}
of a positive definite matrix A € R"*"™, whose eigenvalues lie in the interval [Amin, Amax]
with Apin > 0.

Estimation of the Estrada index of graphs is popular in computational biology. This
problem accounts to estimating the trace of the exponential function, i.e., f(t) = exp(t).
Note that, here the matrix A is the adjacency matrix of a graph, which need not be
positive definite in general. However, the matrix exp(A) is always positive definite
and our method and theory are applicable in this case. In addition, resolvent-based
centrality measures, see [31, 3] involve a resolvent matrix of the form R(a) = (I—aA)™!
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where « is a (small) parameter and in this context the matrix R(«) involved is always
positive definite. The inverse, exponential, and resolvent functions, are analytic in the
appropriate intervals of interest. Therefore, we can extend the analysis presented in
this paper to obtain approximation error bounds.

2.5. Other applications. The stochastic Lanczos quadrature method has been
employed in the literature for a few related trace estimation problems before. One
of the methods proposed by Ubaru et. al [44] for estimating the numerical rank of
large matrices is equivalent to the SLQ method discussed here. The function f for
this numerical rank estimation problem turns out to be a step function with a value of
one above an appropriately chosen threshold. That is, the numerical rank of a matrix
is the trace of an appropriate step function of the matrix. The article also proposes an
approach to choosing this threshold based on the spectral density of the matrix.

An interesting related problem, which is mentioned in [25], is testing the positive
definiteness of a matrix. This problem is also equivalent to estimating the trace of a
step function of the matrix, with a value of one in a different interval. However, note
that the step function has a discontinuity at the point of inflexion (the point where it
goes from zero to one) and hence we cannot apply the analysis developed in this paper
directly. Also, the degree or the number of Lancozs steps required might be very high
in practice. A workaround of this issue, proposed in [25] (also mentioned in [44]), is to
first approximate the step function by a shifted and scaled hyperbolic tangent function
of the form f(t) = (1 + tanh(at)), where a is an appropriately chosen constant, and
then approximate the trace of this surrogate function f (t).

Another problem where SLQ was previously used was in approximating the spectral
density of a matrix [34]. The spectral density, also known as Density of States (DOS)
of a matrix, is a probability density distribution that measures the likelihood of finding
eigenvalues of the matrix at a given point on the real line. Being a distribution,
the spectral density of a matrix can we written as a sum of delta functions of the
eigenvalues of the matrix. That is, the spectral density is defined as

i&(f — i),

where § is the Dirac distribution or Dirac d-function. Lin et. al [34] demonstrated
how the Lanczos algorithm can be used to approximately estimate the spectral density
(equivalent to the SLQ method). The idea is to replace the delta function by a
surrogate Gaussian blurring function. Then, the spectral density is approximated by
estimating the trace of this blurring function using the Lanczos algorithm.

S|

¢(t) =

3. Stochastic Lanczos Quadrature. The Lanczos Quadrature method was
developed by Gene Golub and his collaborators in a series of articles [21, 6, 7, 20].
The idea of combining the stochastic trace estimator with the Lanczos Quadrature
method appeared in [6, 7] for estimating the trace of the inverse and the determinant
of matrices. Given a symmetric positive definite matrix?> A € R"*" we wish to
compute the trace of the matrix function f(A), i.e., the expression given by (1),
where we assume that the function f is analytic inside a closed interval containing
the spectrum of A. To estimate the trace, we invoke the stochastic trace estimator
[29], which is a Monte Carlo type method that uses only matrix vector products. The

2This matrix may be the sample covariance matrix of the input data matrix X, or may also be
the form X TX or XX for the given general rectangular matrix X.
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attractiveness of this method is that it is inexpensive compared to the methods based
on the computing of all eigenvalues of the matrix. The method estimates the trace
tr(f(A)) by generating random vectors u;, ! = 1, ..., n,, with Rademacher distribution
(vectors with +1 entries of equal probability), forming unit vectors v; = wu;/||u;||2, and
then computing the average over the samples v, f(A)v;:

Q Br(7(A) = 23w fAya
V=1

Hutchinson originally proposed to use vectors with +1 entries of equal probability
(Rademacher distribution) without scaling. It has since been shown that vectors from
any other random distributions of zero mean and unit covariance also work [8, 5].
Strictly speaking, the prior results [5, 38] on which our bounds in Section 4 are based,
compute the approximation as ||u||3 - v;" f(A)vy, rather than n - v, f(A)v;. However,
for Rademacher vectors, ||u||3 = n. For other random vectors, in expectation the two
approaches are the same, as long as E[ulul—r] = I. Hence, for computing the trace we
only need to estimate the scalars of the form v ' f(A)v, and the explicit computation
of f(A) is never needed.

The scalar (quadratic form) quantities v f(A)v are computed by transforming
them to a Riemann-Stieltjes integral, and then employing the Gauss quadrature rule
to approximate this integral. Consider the eigen-decomposition of A as A = QAQ .
Then, we can write the scalar product as,

(4) T f(Aw=v"QF(N)QTv = wa)ui

where p; are the components of the vector QTv. The above sum can be considered as
a Riemann-Stieltjes integral given by,

n

b
) =T F (e =Y fOuid = [ foduce)

i=1

where the measure pu(t) is a piecewise constant function defined as

0, ift <a= A\,
(6) M(t): Z;;lliui7 if Ai—l St<)\17 122,,77/,
Z?:l Hi, ifb=A\, < t,

assuming that the eigenvalues A; are ordered nondecreasingly. Next, the integral can
be estimated using the Gauss quadrature rule [23]

b m
(7) / FOdu(t) ~ S wnf6n),
a k=0

where {wy} are the weights and {6;} are the nodes of the (m + 1)-point Gauss
quadrature, which are unknowns and need to be determined. We wish to remark that
the Riemann-Stieltjes integral, as well as the Gauss quadrature considered here, do
not require A to be positive definite, see [20].

An elegant way to compute the nodes and the weights of the quadrature rule is to
use the Lanczos algorithm [20]. For a given real symmetric matrix A € R"*" and a
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starting vector wg of unit 2-norm, the Lanczos algorithm generates an orthonormal basis
Wit for the Krylov subspace Span{wg, Awy, ..., A™wo} such that W, 1 AW, 11 =
Tint1, where Ty, yq is an (m 4+ 1) x (m + 1) tridiagonal matrix. For details see [22].
The columns wy, of W,,,1 are related as

wi = pr—1(A)wp, k=1,...,m,

where pj are the Lanczos polynomials. The vectors wy are orthonormal, and we can
show that the Lanczos polynomials are orthogonal with respect to the measure p(t) in
(6); see Theorem 4.2 in [20]. Therefore, the nodes and the weights of the quadrature
rule in (7) can be computed as the eigenvalues and the squares of the first entries of
the eigenvectors of T;,,+1. Then, we can approximate the quadratic form (4) as,

8) oTF Ao Y R f(0r) with 77 = [ef wi]”,
k=0

where (0, yr),k =0,1,...,m are eigenpairs of T},,+1 by using v as the starting vector
wo. Note that the above quadrature formula in (8) is equal to el f(Tp,11)e1,, i-e.,
Yoo TS (k) = (f(Trm+1))1,1,- Using this expression we can compute the quadrature
by other methods (depending on f) than the eigendecomposition, see, e.g, [28]. Thus,
the trace of matrix function f(A) can be computed as,

ONERTCIES (Zwﬁ”ff(e,i”)) = LS (),

n
V=1 \k=0 V=1

O]

where (91(;), 7. ),k =0,1,...,m are eigenvalues and the first entries of the eigenvectors

of the tridiagonal matrix T,gfl_l corresponding to the starting vectors v;,l =1,...,n,.
This method is far less costly than computing the eigenvalues of the matrix A for the
purpose of computing the trace via (1). The Stochastic Lanczos Quadrature algorithm

corresponding to this procedure is summarized in Algorithm 1.

Algorithm 1 Trace of a matrix function by SLQ using the Lanczos algorithm

Input: SPD matrix A € R™*", function f, degree m and n.

Output: Approximate trace T' of f(A).

for [ =1 ton, do
1. Generate a Rademacher random vector u; and form unit vector v; = wu;/||ug||2
2. T = Lanczos(A4, v;,m + 1); that is, apply m + 1 steps of Lanczos to A with v
as the starting vector.
3. [Y,0] = eig(T) and compute 7, = [e] yi] for k =0,...,m
4. T+ ZZL:O T,ff(ﬁk)

end for

Output ' = L.

In section 4, we establish error bounds for this approach for functions analytic
inside a closed interval. We show that the convergence rate of Quadrature methods is
faster than other polynomial expansion methods, e.g., Chebyshev approximation.

Golub-Kahan Bidiagonalization. In computing Schatten p-norms, when the input
matrix X has a large number of singular values close to zero, the Lanczos algorithm
might encounter numerical issues. In such scenarios, it is advantageous to use the
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Golub-Kahan Bidiagonalization (G-K-B) algorithm [19] on X in place of the Lanczos
algorithmon A = X" X or A = XX . For the connections between the two algorithms,
see, e.g., [20]. Suppose By, 41 is the bidiagonal matrix obtained by the G-K-B algorithm,
then the matrix T,,+1 = B;'; +1Bm41 will be the Lanczos Jacobi matrix corresponding
to X T X [20]. The singular values ¢y, of By, 1 are such that ¢, = /0y, for k =0,...,m,
where 6, are the eigenvalues of T,,+1. Thus, the Shatten p-norms (corresponding
to the p-th power of the square root function) can be computed using the singular
values of the bidiagonal matrix B,,11 obtained from m steps of the G-K-B algorithm.
Similarly, traces of functions of non-Hermitian matrices can also be computed using
this algorithm. Algorithm 2 presents a version of the SLQ method that uses the G-K-B
bidiagonalization.

Algorithm 2 Trace of a matrix function by SLQ using the G-K-B algorithm

Input: X € R™" function f (with A= XTX, f: f(t) = f(t?)), m and n,.
Output: Approximate trace I' of f(A).
for { =1 ton, do
1. Generate a Rademacher random vector u; and form unit vector v; = u;/||w||2
2. B = GKB(X,v;,m + 1); that is, apply m + 1 steps of GKB to X with v; as
the starting vector.
3. [U, ®] = svd(B) and compute 73, = [e] uz] for k =0,...,m
4T D45 2 o).
end for
Output I' = %1".

n

Computational Cost. Since we apply m steps of Lanczos or the G-K-B algo-
rithm for n, different starting vectors, the cost of the Stochastic Lanczos Quadrature
method will be O((nnz(A)m + nm?)n,), where nnz(A) is the number of nonzeros
in A. The additional cost O(nm?) is the orthogonalization cost inside the Lanczos
algorithm. Assuming full reorthogonalization, if we choose degree m, then we need to
re-orthogonalize m vectors of length n. Typically both m and n, are much smaller
than the matrix dimension n. Hence, the method will be very inexpensive for large
sparse matrices.

The Lanczos algorithm has an additional storage cost compared to polynomial
approximation methods. We need to store the orthogonalized vectors of the Krylov
subspace inside the Lanczos algorithm. This storage depends on whether partial or full
reorthogonalization is used. However, since the degree m is very small, we can use full
orthogonalization inside the Lanczos algorithm and this additional storage cost will be
negligible. That is, at each step of the algorithm, the new vector is orthogonalized
with respect to all the previous Lanczos vectors, which requires storing of these
vectors for orthogonalization. Note that, under exact arithmetic there is no need for
reorthogonalization, but due to numerical issues a partial or full reorthogonalization is
needed in practice.

The computations for both the Chebyshev and the Lanczos methods can be done
in parallel across the different starting vectors. This is an obvious coarse-grained
parallelism but it also is the most effective in practice. The use of MPI will be helpful
here and communication is minimal. Finer-grain parallelism can also happen within
each starting vector (such as in a threaded implementation). In this case, Chebyshev
is advantageous, as it requires no (or very few) global reductions. Communication
takes place only for matrix-vector multiplications and it is mostly local for sparse
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matrices. Chebyshev does not need vector norm computation, and hence there is no
global synchronization. Lanczos, on the other hand, needs global synchronization for
computing inner products, norms, and for the reorthogonalization. However, since the
number of Lanczos steps required (degree m in both cases) is small, such finer-grained
parallelism is typically not necessary.

4. Analysis. In this section, we present multiplicative error bounds for approx-
imating the trace of a matrix function using SLQ. Additive error bounds are also
established for the log-determinant approximation of a positive definite matrix and the
log-likelihood function estimation. The nuclear norm and Schatten-p norms estimation
of a general matrix is discussed in the latter part of the section. First, we give the
following definition: A Bernstein ellipse E, is an ellipse on the complex plane with
focii at —1,1 and major semi-axis (p + p~1)/2, with p > 1 [42]. It can be viewed as
a mapping of the circle C(0, p) (center at zero and radius p) using the Joukowsky
transform (z + 271)/2. Hence we can have two values of p that are inverses of each
other, which give the same ellipse. Following is our main result:

THEOREM 4.1. Consider a symmetric positive definite matric A € R™*™ with
eigenvalues in [Amin, Amax] and condition number & = Amax/Amin- Let f be a function
analytic in [Amin, Amax] and be either positive or negative (i.e., does not cross zero)
inside this interval. Denote by my the absolute minimum value of f in the interval.
Assume that f is analytically continuable in an open Bernstein ellipse E, encompassing
the interval, with foci Amin, Amax and sum of the two semi-azxes p, such that |f(z)| < M,
for all z € E,. Let €,7 be constants in (0,1). Then for SLQ parameters satisfying:

o« m> %log (4M9(Amxfxmm)

em,(p?—1)
e 1, > (24/2)log(2/n) number of starting Rademacher vectors,
the output I' of the Stochastic Lanczos Quadrature method is such that:

) /log(p) number of Lanczos steps, and

(10) Pr[|tr<f<A>>—r| < cler(f)| > 1-n.

In particular for p = (\/k+1)/(\/k—1), for which the function of interest is analytic in-
side E,, we have m > (y/k/4)log(K/e), with K = (Amax —Amin) (VE—1)?M,/(v/Emy).

To prove the theorem, we first derive error bounds for the Lanczos Quadrature
approximation (which gives the convergence rate), using the facts that an (m+1)-point
Gauss Quadrature rule is exact for any 2m+ 1 degree polynomial and that the function
is analytic inside an interval and is analytically continuable in a Bernstein ellipse. We
then combine this bound with the error bounds for the stochastic trace estimator to
obtain the above result.

4.1. Convergence rate for the Lanczos Quadrature. In order to prove
Theorem 4.1, we first establish the convergence rate for the Lanczos Quadrature
approximation of the quadratic form. Recall that the quadratic form v f(A)v can
be written as a Riemann Stieltjes integral I, as given in (5). Let I,, denote the
(m + 1)-point Gauss Quadrature rule that approximates the integral I, given by

I’m = Zwkf(ek)7
k=0

where {wy} are the weights and {0y} are the nodes, computed by using m + 1 steps of
the Lanczos algorithm. The well known error analysis for the Gauss Quadrature rule
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is given by [20],

B f(2m+2)(o br m 2
(1) 1ol = Gy | 11600 o,

for some a < { < b. However, this analysis might not be useful for our purpose, since
the higher derivatives of both the logarithm and the square root function become
excessively large in the interval of interest. Hence, in this work, we establish improved
error analysis for the Lanczos Quadrature approximations, using some classical results
developed in the literature, with the fact that functions of interest are analytic over a
certain interval. We begin with the following result.

THEOREM 4.2. Let a function g be analytic in [—1,1] and analytically continuable
in the open Bernstein ellipse E, with foci £1 and sum of major and minor azis equal
to p > 1, where it satisfies |g(z)| < M,. Then the (m + 1)-step Lanczos Quadrature
approrimation satisfies

4M,
(p? = 1)p*m

Proof. We follow a similar argument developed in [36] that estimates the error of
Gaussian quadratures for a Riemann integral. The result and the proof strategy are
usually covered in standard textbooks, e.g., [42, Thm. 19.3]. In our case, the integral
is a Riemann-Stieltjes integral with respect to a specific measure given in (6). As a
result, the bound admits the same rate but with a different constant.

For the given function g that is analytic over the interval [—1,1], consider the
2m + 1 degree Chebyshev polynomial approximation of g(t), i.e.,

(12) = I| <

2m-+1

Py = Y a;T5(t) = g(t).

J=0

We know that the (m + 1)-point Gauss Quadrature rule is exact for any polynomial of
degree upto 2m + 1, see [20, Thm. 6.3] or [42, Thm. 19.1]. This can also be deduced
from the error term in (11). Hence, the error in integrating g is the same as the error
in integrating g — Ps,,. Thus, we have

|I*Im‘ = |I(9*P2m) *Im(gfp2m)| < |I(9*P2m>| + |Im(gfp2m)‘

A £ s £ 500)

j=2m+2 j=2m+2
< EII%mHEH+MAEﬂ
j=2m+2

Next, we obtain bounds for the three terms inside the summation above.

If the function ¢ is analytic in [—1, 1] and analytically continuable in the Bernstein
ellipse E,, then for the Chebyshev coefficients we have from Theorem 8.1 in [42] and
eq. (14) in [36],

. P
|a]| S Pj .

Next, for the Quadrature rule I,,,(T;), we have

m

Ln(Ty) = > miT50k) < D |11 T5(00)] < 1.
k=0 k=0
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The last inequality results from the fact that, for f(¢) = 1, the quadrature rule is exact,
and the thus integral is equal to 1 (v;' f(A)v; = v v; = 1). Therefore, the weights 772
must sum to 1. The maximum value of T} inside the interval is 1. Finally, in order to
bound the Riemann-Stieltjes integral I(7}), we use the following:

I(T}) = 0T TH(A)0 < Aax(T5(4)) = 1,

by the min-max theorem and ||v|| = 1. Therefore,
— 2M
=TI < Y =L[+1]
j=2m+2

Since the Gauss quadrature rule is a symmetric rule [36], the error in integration of
T;(t) for any odd j will be equal to zero. Thus, we get the result in the theorem

AM,

I —Ip| < 52—
(p? = 1)p>™ O

REMARK 1. The convergence rate for the Chebyshev polynomial approzimation
of an analytic function is O(1/p™); see Theorem 8.2 in [42]. Hence, the Lanczos
Quadrature approximation is twice as fast as the Chebyshev approzimation. Moreover,
it is known that the Gauss quadrature has the maximal polynomial order of accuracy
[42].

Theorem 4.2 holds for functions that are analytic over [—1,1]. The functions
considered in this paper such as logarithm, exponential and square root functions are
analytic over [Amin, Amax) for Amin > 0. Hence, we need to use the following transform
to get the right interval.

If f(x) is analytic on [Amin, Amax], then

g(t) _ f [(Amax;)\min) t+ ()\max;Amin>:|

is analytic on [—1, 1]. If we denote the error in the Quadrature rule for approximating
the integral of function f as E(f), then we have

B(f) = (P52 ) ().

The function g will have its singularity at tg = o = _%' Hence, we choose the
ellipse E, with the semimajor axis length of |a| where g is analytic inside. Then, the

convergence rate p will be
VE+1
VE-—1

The sign is chosen such that p > 1. From theorem 4.2, the error E(g) < 4M,/[(p* —
1)p?™], where |g(z)| < M, inside E,. Hence, the error E(f) will be

E(f) o )\max - )\min 4-Z\4p o (>\max - )\min)(\/E - 1)2Mp
a 2 (P2 = Dp*m 2y/kp*m ’
with p defined as above. Thus, for a function f that is analytic on [Amin, Amax] and
Cp = 2Mp(>\max - )\min)/(p2 - 1) = (Amax - Amin)(\//z - 1)2Mp/(2\//2)7 we have

oTH (A = 3 2 (0| < 2.
k=0 p

p=ata?-1= > 1.

(13)
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4.2. Approximation error of the trace estimator. The quadratic form
v f(A)v for which we derived the error bounds in the previous section comes from the
Hutchinson trace estimator. Let us denote this estimator as try, (A) = - v Ay
The convergence analysis for the stochastic trace estimator was developed in [5], and
improved in [38] for sample vectors with different probability distributions. We state

the following theorem which is proved in [38].

THEOREM 4.3. Let A be an n x n symmetric positive semidefinite matriz and
v, =1,...,ny be random starting vectors sampled from the Rademacher distribution
and scaled to a unit 2-norm. Then, with n, > (6/2)log(2/n), we have

Prltrn, (A) —tr(A)| <eltr(A)]] > 1—n.

The above theorem can be used to bound the trace of any matrix function f(A), if
the function is either positive or negative inside the spectrum interval. Therefore, the
theorem holds for the square root function, its powers, and the exponential. However,
for the logarithm function, different scenarios occur depending on the spectrum, which
will be discussed later. Let I' be the output of the Stochastic Lanczos Quadrature
method to estimate the trace of such functions, given by

ny m

(14) r==% <Z<T£”)2f<e,i”>> .

V=1 \k=0
We need the following lemma.

LEMMA 4.4. Let A € R™*™ be a symmetric positive definite matriz with eigenvalues
in [Amins Amax] and condition number k = Amax/Amin, and f be an analytic function in
this interval with | f(z)| < M,, for all z inside a Bernstein ellipse E, that encompasses
the interval. Then, the following inequality holds:

ez, (f(A4)) ~T| < 2

where p = (i + 1)/(iE = 1) and Cp = 2M,(hmax = Amin)/ (6 = 1) = O —
Amin)(\/g - 1)2Mp/<2\/g)
Proof. The lemma follows from the equation (13). We have

SO F Ay - S IO
V=1

n
1
=1

[trn, (f(4)) =T

IN

D Lol f(Aye — I
=1

n.,
< ﬂ Z Cp _ nC'p .
= ny pt p2m p2m

n
Dy

Now, we are ready to prove Theorem 4.1. Based on the condition of m,

K 4 1
log — < Rl <2mlog ks .
e~ Vk VE—1

Therefore,
K C
— < p*™ and hence Tp <
€ pm

fmin(A)’

N ™
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where frin(A) = my is the absolute minimum of the function in the interval [Amin, Amax]-
This gives us the lower bound on the degree m in the Theorem. Then, from Lemma
4.4 we have

(15) [£7, (F(4)) = T| < T fuin(N) < Slex(F(A)).
From Theorem 4.3, we have
(16) Pr [[6x((4)) — tra, (F(A)] < Slex(F(A)]] 21—,

Combining the above two inequalities (15) and (16) leads to the result in Theorem 4.1:

1= < Pr [Jox(f(4)) - tra, (F(A)] < Slex(7(4)]

< Pr [[6(F(4)) — tra, (F(A)| + [txa, (F(A) =TI < Slex(F(AD] + 5 lex(F(A)]]
< Prfex(f(4) — T| < efex(£(A)]].

For comparison, note that for Chebyshev approximations [26], the required degree
of the polynomial is m = ©(y/klog£) and for Taylor approximations [9], m =
O(rlog £). Recall from Remark 1, the Lanczos algorithm is superior to the Chebyshev
expansions because the former approximation converges twice as fast as does the latter.
Clearly, the Lanczos approximation also converges faster than the Taylor approximation.
Theorem 4.1 can be used to establish the error bounds for approximating the log-
determinants and the Schatten p-norms. The quality and the complexity of the
algorithms depend on the condition number &, since matrix function approximations
become harder when matrices become more ill-conditioned, which requires higher
degree approximations.

4.3. Bounds for Log-determinant. For the logarithm function, we encounter
three different scenarios depending on the spectrum of the matrix. The first case
is when Apax < 1, log(A) is negative definite and the log-determinant will always
be negative. Thus, the conditions of Theorem 4.1 are satisfied. Similarly, Theorem
4.1 holds in the second case when Api, > 1, since log(A) is positive definite. In the
third case when A, < 1 and Apax > 1, however, we cannot obtain multiplicative
error bounds of the form given in Theorem 4.1, since the log function will cross zero
inside the interval. In the worst case, the log-determinant can be zero. One simple
workaround to avoid this case is to scale the matrix such that its eigenvalues are
either all smaller than 1 or all greater than 1; however, such an approach requires the
computation of the extreme eigenvalues of A. The following corollary gives additive
error bounds without scaling; it holds for any SPD matrix.

COROLLARY 4.5. Givene,n € (0,1), a SPD matriz A € R™*™ with its eigenvalues
in [Amin, Amax), and condition number K = Amax/Amin, for SLQ parameters:
e m > (v3r/4)log(Ky /) number of Lanczos steps, and
e n, > (24/¢2)log(1 + k))%log(2/n) number of starting vectors,
where Ky = 5klog(2(k +1))/v2k + 1, we have

(17) Pr| [logdet(A) —T| <en| >1-—mn,

where I" is the output of the Stochastic Lanczos Quadrature method for log-determinant
computation.
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Proof. The proof of the Corollary is on the similar lines as the proof of Theorem 4.1.
In the logarithm case, Theorem 4.2 still holds, however, we need to choose a smaller
ellipse (smaller «) since the log function goes to infinity near the singularity. We

choose a = (k + 1)/, then p = (\/2.% +1+4+1)/(vV2k+1—1). For theorem 4.3, we

consider the fact that, if B = + oo, then

log det A = logdet B + nlog(Amax + Amin)-

Since the matrix B has its eigenvalues inside (0, 1), the logarithm function is negative
and we hence can apply Theorem 4.3 with f(A) = log (ﬁ), and then add and
subtract nlog(Amax + Amin) to get an inequality of the form (16). To compute the
parameters in Theorem 4.2, we consider this function f(t) = log m , and

the ellipse £, where the function is analytic with p as defined above. Then, we have
p?—1=(4v2k+1)/(vV2k+1—1)% and M, is computed as,

1 < 1 2 2
ngfg;l og(Z)\_zrgfgj (logz])* +

= /(log |1/2k[)2 + 72 < 5log(2(x + 1))

M,

The first inequality comes from the fact |log(z)| = |log |z|+iarg(z)| < +/(log|z])2 + =2.
The ellipse E, is defined with foci at 1/(x + 1) and x/(k + 1). The maximum occurs
at end point zp = 1/(2k). As in the proof of Theorem 4.1, we have

B(f) = </€—1) 2M, < Emlog(?(n—i-l)).

k+1) (p2—1)p>™ = 22k + 1p2
The K value is obtained by setting

n5klog(2(k + 1)) L En
2v/2k + 1p? -2

The lower bound for my is simplified using the fact +/2x +1 < v/3x. We can then
conclude the corollary using |log det B| < nlog(l + x) and choosing € = ¢/ log(1 + &)
in Theorem 4.3. |

4.4. Bounds for Log-likelihood function. Recall the log-likelihood function
defined in (2). The log-determinant term in it can be bounded as above. The first
term 2" S(¢)"!z is computed using the Lanczos quadrature method with z/||z|| as
the starting vector for the Lanczos algorithm. The following corollary gives the error
bound for the log-likelihood function estimation by SLQ, which follows from Theorem
4.1 and Corollary 4.5.

COROLLARY 4.6. Given a data vector z € R", a covariance matriz S(§) € R™*™
with hyperparameter £ and its eigenvalues in [Amin, Amax|, and constants e,n € (0,1),
for SLQ pammeters

e my > (V3r/4) log(Kl/s) ma > (V3k/4)log(K2/¢) and
o n, > (24/£%)(log(1 + x))*log(2/n),
where K is defined in Corollary 4.5 and Ko = ||2]|?(k — 1)(v2k — 1 —1)?/1/2k — 1,

we have

(18) Pr|flogp(z [§) —T|<e(n+1)| >1—mn,
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where I' = —I'y —T'y — § log(27), I'y is the output of SLQ with parameters my and n,
and Ty is the output of the Lanczos Quadrature method for approzimating z' S(€)~1z
with my steps of Lanczos and scaled by ||z||.

Proof. To prove the Corollary, we obtain bounds for the two quantities I'y and I's.
We bound the log-determinant term I'y obtained by SLQ using Corollary 4.5. Bounds
of T'y, the Lanczos quadrature approximation of z " S(¢)~!z, can be computed using
Theorem 4.2 as follows. We again need to choose a smaller ellipse £, where the function
is analytic, since the function f(t) =t¢~! also goes to infinity near singularity. We set
a=r/(k—1),then p = (k++2k —1)/(k—1) and p?> =1 = (4/2r — 1)/(v/2k — 1—1)%
For the inverse function, the maximum must occur on the real line, particularly at —«

for g(z) or at Amin/2 for f(z), so, M, = 2/Amin. Then,
(k—1)(vV25 —1—1)2

E =
(f) T o
We will have a scaling ||z]|2. We get the bounds by setting ||z||2E(f) < e. d

We can also compute the error bounds for approximating the trace of matrix
inverse by SLQ using the above proof.

4.5. Schatten p-norms estimation. When estimating the nuclear and Schatten
p-norms, we encounter the following issue when approximating the square root function.
In order to obtain strong theoretical results (exponential convergence) for a given
function f(t), the function must be analytic in the spectrum interval. However, the
square root function is non-differentiable at t = 0. This will be a major stumbling
block for rank-deficient matrices since the interval of eigenvalues now contains zero.

Shifting the Spectrum. To overcome the issue, we propose the following remedy,
which is based on the key observation, proper to the computation of nuclear norm,
that the small and zero singular values do not contribute much to the norm itself. In
other words, the nuclear norm of a matrix depends mainly on the top singular values.

The idea is then to shift the spectrum of the matrix by a small § > 0 such that
no eigenvalues of the matrix A are equal to zero. That is, we replace A by A + 61,
such that the eigenvalues of the new shifted matrix are A\; + §. For the square root
function, the error is given by,

]
VA+ o=V = —F————.
* VAi+ 0+ VA

Hence, the error in the large eigenvalues will be small. The error in the nuclear norm
will be

n

(19) VAT Y VA=Y et

For the shifted matrix, the eigenvalues will be in the interval [§, Apmax + 6]. Now,
theorem 4.1 holds in this interval (square root function will be positive) and we can
obtain the approximation error bounds. The error due to shifting is small, and can
also be corrected using the Taylor series expansion of the square root function (details
omitted). Algorithm 2 will be better suited for nuclear norm estimation.

Bounds for Schatten p-norms. To summarize, if the input matrix has full rank
(Amin > 0), then Theorem 4.1 is directly applicable, since the square root function is
positive and analytic in the interval. For rank deficient matrices (has zero singular
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TABLE 1
Computational Cost and memory requirements
Method degree m Cost, Memory
SLQ > (% log £) | O((nnz(A)m + nm?)n,) | O(nnz(A) + nm?)
Chebyshev | > (yklogZ) | O(nnz(A)mny) + Tepe O(nnz(A) + n)
Taylor O(klog %) O(nnz(A)mny) + Tegt O(nnz(A) +n)
Cholesky - O(n?) O(n?)

values), we will encounter the above problem, and we need to shift the spectrum by .
From (19), we can upper bound the error due to shifting by nv/d. Thus, the shift § is
chosen such that this error due to shifting is at most || X||b. Here, the value of || X||,
can be taken to be roughly poly(n). We can then compute || X]||, of the shifted matrix
using SLQ. We have the following general result.

COROLLARY 4.7. Given ,m € (0,1), a matriz X € R4™ with its singular values
i [Omins Omax], we consider the SPD matriz A = XT X (not formed explicitly) with its
condition number k = o2, /o2, for SLQ parameters:
o m > (\/k/4)log(Ks/e) number of Lanczos steps, and
o n, > (24/¢%)log(2/n) number of starting vectors,

2 /2.2
()P 2 (521
where K3 = U"““(K"Jr}g =1 e have

(20) Pr| [[IX]Ip —T?| <ellX|[p] =1 -,

where T is the output of the Stochastic Lanczos Quadrature method for Schatten p
norm computation.

Proof. Theorem 4.1 gives the above error bound. We consider the function
f(t) = /2 applied to A = X7 X (not formed explicitly). We can also consider the
G-K-B algorithm. We choose p = (v/k + 1)/(v/k — 1) as in the theorem since g(t) is

analytic inside the ellipse E,. Then, my = ob, and M, = (02, + OIZHin)P/27 since
the maximum occurs at the right end of the ellipse. Substituting these values in the

theorem, we get the above result. ]

Comparison of bounds. Here we compare the theoretical results of our SLQ method
with the Chebyshev and the Taylor methods. Table 1 lists the theoretical worst case
degree m, the computational costs, and the memory requirements for the three methods
along with the Cholesky factorization method. Here T,,; refers to the cost to compute
the extreme eigenvalues of the matrix.

As mentioned earlier, SLQ has an improved dependency on the condition number
of the matrix compared to other methods, i.e., the theoretical worst case degree m
required is the smallest. However, the SLQ method requires an additional cost of
nm? compared to the Chebyshev method. The degree m required in practice for SLQ
is typically small hence, this additional cost is usually negligible. But, there might
be cases where the additional cost might not be negligible, for e.g., when nnz(A) is
small and the function f to be approximated has large derivatives requiring a larger
m. However, in most cases in practice, SLQ yields more accurate results and requires
much smaller degree m compared to the other methods as illustrated in the following
section. Both the Chebyshev and the Taylor methods require computation of the
extreme eigenvalues of the matrix which requires an additional cost, and this cost
depends on the spectrum of the matrix. Note that computing the smallest eigenvalue
accurately is usually difficult for data matrices that have very small spectral gap.
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Comparison nv=100 Comparison m=50, nv=30
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F1G. 1. Performance comparison between SLQ, Chebyshev and Taylor series expansions: (a)
Relative error vs. degree m, (b) Relative error vs. condition number of the matrices, (c) runtime
comparison against Cholesky decomposition and (d) estimation and standard error vs. number of
starting vectors.

5. Numerical Experiments. In this section, we present several examples to
illustrate the performance of the SLQ method in various applications. First, we evaluate
its performance for log-determinant computation of large matrices, and compare the
performance against other related stochastic methods.

In the first experiment (Figure 1(a)), we compare the relative errors obtained by
the SLQ method for different degrees chosen, and compare it against the stochastic
Chebyshev [26] (implemented by the authors) and the stochastic Taylor series expan-
sions method [47]. We consider the sparse matrix california (a graph Laplacian
matrix) of size 9664 x 9664, nnz ~ 10° and x ~ 5 x 10* from the University of Florida
(UFL) sparse matrix collection [15]. The number of starting vectors n, = 100 in all
three cases. The figure shows that our method is superior in accuracy compared to the
other two methods. With just a degree of around 50, we get 4 digits of accuracy, while
Chebyshev expansions give only 1-2 digits of accuracy and Taylor series expansions
are very inaccurate for such low degrees.

In the second experiment, we evaluate the performance of our method with respect
to the condition number of the matrix. We consider a Hadamard® matrix H of size

3A Hadamard matrix is chosen since its eigenvalues are known apriori and is easy to generate.
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TABLE 2
Description of matrices used for the erperiments
Matrices Applications Size
California Web search 9664
qpband Optimization 20000
thermomechTC Thermal 102158
boneS01 Model reduction 127224
ecology?2 2D/3D 999999
Erdos992 undirected graph 6100
deter3 linear programming 7047
FA Pajek network graph 10617

8192 and form the test matrix as HDH ", where D is a diagonal matrix with entries
such that the desired condition number is obtained. Figure 1(b) plots the relative
errors obtained by the three stochastic methods for the log-determinant estimations of
the matrices with different condition numbers. The degree and the number of starting
vectors used in all three cases were m = 50 and n, = 30. Again, we observe the
superior accuracy of SLQ.

In the third experiment, we compare the runtime of the three algorithms for log-
determinant estimation of large sparse matrices. The matrices have used 10% nonzeros
in each row. An example Matlab code is the following: N=20000; rho = 10/N; A =
sprand(N,N,rho); A = A’*A + lmin*speye(N). These are the same matrices used
in Fig. 1 of [25]. We also include the runtime for the Cholesky decomposition. For
a fair comparison, we chose m = /k for the Chebyshev method, m = \/k/2 for
SLQ and m = 44/k for Taylor series (will be less accurate since we need m =~ k for
similar accuracy). Figure 1(c) plots the runtime of the four algorithms for different
matrix sizes. We observe that the runtime of the SLQ method is equal to or less
than the runtime of the Chebyshev method. Note also that, both Chebyshev and
Taylor methods require computation of the extreme eigenvalues. The relative errors
we obtained by SLQ in practice are also lower than that obtained by the Chebyshev
method. These two methods are both significantly faster than the one based on
Cholesky. All experiments were conducted using Matlab on an Intel core i-5 3.3 GHz
machine. All timings are reported using cputime function. Comparisons with Schur
complement methods and rational approximations can be seen in Fig. 1 of [25], where
it is shown that the Chebyshev method is superior to these two methods. Hence, we
compare SLQ with only the Chebyshev method in the following experiments.

For very large matrices (~ 10% and above), it is impractical to compute the exact
log-determinants. To gauge the approximation quality, we approximate the estimator
variance by using sample variance and show the standard errors. Figure 1(d) plots
the log-determinants estimated and the error bars obtained for different number of
starting vectors for the matrix webbase—1M (Web connectivity matrix) of size 10% x 106
obtained from the UFL database [15]. For Lanczos Quadrature, we chose degree
m = 30, and for Chebyshev m = 60. The width of the error bars gives us a rough
idea of how close the estimation might be to the trace of f(A) approximated by the
respective methods. The theoretical results for the four methods were listed in Table 1.

Table 3 gives some additional comparison results between Chebyshev expansions
and SLQ methods on some large real datasets. All matrices were obtained from the
University of Florida (UFL) sparse matrix collection [15] and are sparse. A description

Reproducing the experiment will be easier.
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TABLE 3

Log-determinant computation of real datasets from UFL matriz collection with ny = 30.

Matrices Exact logdet | Chebyshev Expansions Lanczos Quadrature
m Estimate | time | m | Estimate | time
California —35163 150 | —31657.9 1.02 | 55 | —35112.3 1.55
gpband 5521 70 5480.1 0.95 | 30 5517.0 0.28
thermo. —b46787 75 | —546640.3 | 7.76 | 25 | —546793.9 | 7.34
boneS01 1.1093e6 150 4.119¢6 26.15 | 35 1.104€6 17.59
ecology2 3.3943e6 60 3.3946€6 70.8 | 30 3.3949¢€6 75.24

Lanczos Approximation nv=30 Lanczos Approximation deg=50
8000 8000
2 — Estimated sum 2
= 7900 - --Exact sum 2 7800
> >
& 7800 g
3 3 7600
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'EJ 7700 D
g ; g 7400 — Estimated Avg
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Degree (5 —> 50) Number of vectors (1 —> 30)

Fic. 2. The nuclear norm estimated by SLQ for the example ukerbel matriz (left) as a
function of degree m and (right) as a function of number of starting vectors ny.

of the matrices from the UFL collection that are used in the following experiments is
given in Table 2. Some of these matrices were also used in [9] as test matrices. The
exact log-determinmants of the matrices are listed in the third column. For the first
two matrices, their singular values are also available in the UFL database (logdet
were computed using them). For the remaining matrices, the exact log-determinants
are reported in [9], where the authors used Cholesky decomposition to obtain these
values. For the Chebyshev method, we increment the degree m until either we achieve
2-3 digits of accuracy or m = 150. For SLQ, we increment the degree m (number
of Lanczos steps) until we achieve 3-4 digits of accuracy. The degrees used and the
log-determinants estimated by these two methods are listed in the table along with
the time taken (averaged over 5 trials) by these algorithms. In all experiments, the
number of starting vectors n, = 30.

We observe that, in all cases, results obtained by SLQ are way more accurate than
the Chebyshev method. Also, SLQ requires at least 2-3 times lower degree m than
Chevbyshev method to achieve more accurate results. In addition, we note that the
stochastic trace estimator, in general, performs much better than what the worst case
analysis in Theorem 4.3 suggests. We get reasonably accurate trace estimation for
n, ~ 30 — 50. Also, it is important to note that the Stochastic Chebyshev and Taylor
series methods require computation of the largest and the smallest eigenvalues of the
matrix. The computational time reported in the table does not include this additional
cost of computing the extreme eigenvalues.

Nuclear Norm. Next, let us consider the estimation of the nuclear norm of a
matrix for examining the effects of the parameters m and n, in the SLQ performance.
We consider the matrix ukerbel of size 5981 x 5981 from the UFL database. The
performance of the SLQ method in approximately estimating the sum of singular
values of this matrix is given in figure 2.
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TABLE 4
Estimation of the sum of singular values of various matrices
Matrices m | Exact Sum | Estimated Sum | Time (secs) | SVD time
Erdos992 40 3292.06 3294.5 1.05 876.2 secs
deter3 30 16518.08 16508.46 1.62 1.3 hrs
California | 100 3803.74 3803.86 8.32 4.17 mins
FA 150 1306.79 1312.8 23.13 1.5 hrs
gqpband 60 26708.14 26710.1 0.35 2.9 hrs
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Fi1c. 3. Estimation and prediction for a Gaussian random field. (a) The random field. (b)
Training data (non-white pizels) for parameter estimation. (c) Log-likelihood; the horizontal axis
denotes the length-scale parameter. (d) Prediction by using the estimated parameter.

The left figure plots the estimated nuclear norm for different number of Lanczos
steps m used, with the number of starting vectors n, = 30 (black solid line). The
right figure plots the approximate nuclear norm computed using Lanczos Quadrature
obtained for different starting vectors v;, the cumulative average (black solid line) for
Lanczos Quadrature of degree m = 50. The nuclear norm estimated for degree m = 50
and n, = 30 was 7640.62. The exact sum of singular values is 7641.44.

Finally, we employ our SLQ algorithm 2 with G-K-B for the nuclear norm estima-
tion of real datasets. Table 4 lists the approximate nuclear norm estimated by our
method for a set of matrices from various applications. All matrices were obtained
from the UFL database [15] and are sparse (listed in Table 2). We increment the degree
m (number of G-K-B steps) until we achieve 3-4 digit accuracy. The degree used and
the approximate sum obtained are listed in the table along with the exact sum and the
time taken (averaged over 5 trials) by our algorithm. In all experiments, the number of
starting vectors n, = 30. In addition, we also list the time taken to compute only the
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Original Data

F1c. 4. GMRF interpolation for COgz data. Top: Original data with missing values. Bottom:
GMRF interpolated values with parameter £ = 0.2.

top 2000 singular values of each matrices (computed using MATLAB’s svds function
which relies on ARPACK) in order to provide a rough illustration of the potential
computational gain of our algorithm over partial SVD.

Stability. In general, we found that the stability of the Lanczos algorithm will not
be an issue here, as long as full reorthogonalization is done (since m is small). If partial
orthogonalization is used, we might encounter some stability issues. For a matrix
which has many eigenvalues close to zero (possibly ill conditioned), particularly for
the Schatten p-norm applications, the Lanczos algorithm might encounter numerical
issues. In these scenarios, it is advantageous to use the Golub-Kahan Bidiagonalization
(G-K-B) algorithm which will is a numerically safer approach. For example, for the
matrix California (Table 3, row 3) of size 9664 which has rank = 1647 (has 8017
zero singular values), the Lanczos algorithm with m = 50 applied to X7 X gives a
tridiagonal matrix with a few (2 or 3) negative eigenvalues. The GKB algorithm will
not have this issue, and gives more accurate estimation of the nuclear norm than the
Lanczos algorithm.

Mazimum Likelihood estimation for GRF. We now test our method for maximum
likelihood (ML) estimation of Gaussian Random Fields (GRF). To illustrate the use of
log-determinant calculation in GRFs, we simulate one such field by using the Wendland
covariance function [37] with smoothness ¢ = 0 on a 900 x 1200 grid (n = 1.08 x 10°);
see fig. 3(a). To better demonstrate the fine details of this highly non-smooth data,
we have zoomed into the middle 300 x 400 grid and shown only this part. Next, we
randomly sample ten percent of the data and used them to estimate the length scale of
the function. These training data are the non-white pixels in fig. 3(b). We compute a
local log-likelihood curve (as in (2)) shown in fig. 3(c) using SLQ with different values
for the hyperparameter, which suggests a peak at 50. That is, MLE estimates using
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SLQ suggests the hyperparameter value to be 50. This coincides with the true value
used for simulation. The log-determinants therein were computed using 100 Lanczos
steps and 100 random vectors. Because the covariance matrix is multilevel Toeplitz, the
matrix-vector multiplications were carried out through circulant embedding followed
by FFT, which resulted in an O(nlogn) cost [22]. With the estimated length scale, we
perform a prediction calculation for the rest of the data (white pixels in fig. 3(b)) and
show the predicted values, together with the ten percent used for training, in fig. 3(d).
We observe that the pattern obtained from the predicted values appears quite similar
to the original data pattern. The relative difference between fig. 3(a) and fig. 3(d) is
0.27.

Spatial Analysis using GMRF for COy data. We consider the Gaussian Markov
Random field (GMRF) [39] parameter estimation problem for real spatial data with
missing entries. We use a global dataset of column-integrated COy obtained from
http://niasra.uow.edu.au/cei/webprojects/UOW175995.html. The values of column-
integrated CO9 are on a grid of 1.25° longitude by 1° latitude, which results in a
total of 288 x 181 = 52,128 grid cells (matrix size) on the globe [32]. The dataset
has 26,633 observations. We assume GRMF model for the data and use maximum
likelihood estimation to predict the remaining (missing) values. For the GMRF
field, we considered the spatial autoregressive (SAR) model, i.e., the precision matrix
is defined as G(£) = &*C + €2G1 + G2, where matrices C,G; and Go define the
neighborhood (four, eight and 16 neighbors, respectively) and are sparse [39]. We
obtain ML estimates using the SLQ method to choose the optimal parameter £. That is,
we sweep through a set of values for £ and estimate the log-likelihood for the data given
by logp(z | €) = logdet G(&) — 2T G(&)z — 5 log(2m), and determine the parameter &
that maximizes the log-likelihood. Figure 4(top) shows the sparse observations of the
CO- data across the globe. The GMRF interpolation with the parameter £ = 0.2 is
given in fig. 4(bottom).

6. Conclusions. In this paper, we studied an inexpensive technique which we
called the stochastic Lanczos quadrature (SLQ) to approximately compute the trace
of matrix functions tr(f(A)). We derived approximation error bounds for the method,
and showed that it converges faster than any polynomial approximation methods.
We also established error bounds for approximating useful quantities such as the log-
likelihood function. Numerical experiments demonstrated the superior performance of
SLQ in practice.
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