
IPC:	A	Benchmark	Data	Set	for	Learning	with	Graph-
Structured	Data									https://github.com/IBM/IPC-graph-data
Patrick Ferber 1,2, Tengfei Ma 3, Siyu Huo 3, Jie Chen 3,4, Michael Katz 3. 1 University of Basel, 2 Saarland University, 3 IBM Research, 4 MIT-IBM Watson AI Lab

Purpose
• Benchmarking graph methods (e.g., graph kernels, GNNs)
• Offering a large-scale data set complementary to current benchmarks

• Leveling up computational challenges for graph methods

Data	Set	Summary
• IPC has two self-contained versions---grounded and lifted---from the

same set of planning problems

• Both versions are directed graphs. The lifted version is acyclic
• Each version contains 2,439 graphs (train/val/test = 2,008/286/145)

• Each graph has 17 numeric target values
• Graph nodes are equipped with one-hot features
• Graph generator and labeling (target values) are computer

programmed; hence, the data set can be extended if needed

Characteristics	and	Implications
• The graphs are significantly larger than other benchmarks (39% in IPC-

grounded and 63% in IPC-lifted have > 1k nodes)

• The largest graph is the memory bottleneck in GNN training.
• Graph sizes are highly skewed

• What does it mean by saying “a graph with 10 nodes is similar to
another one with 100k nodes?”

• Similar to other data sets, the IPC graphs are not necessarily connected.

• However, the main connected component generally dominates.
• The graphs have a moderate diameter

• Does diameter affects the number of GNN layers?
• The lifted graphs are the most sparse.

Background	on	Planning
• The data set is based on tasks in International Planning Competitions.
• The goal of cost-optimal planning is to produce provably cost-optimal

solutions within a time limit.
• There exists many cost-optimal planners. Which one to use?

• To answer the question, we set a portfolio of 17 planners, construct a
graph for each planning problem, and apply graph classification.

• We construct two graph versions:

• Problem Description Graph (called grounded representation)
• Abstract Structure Graph (called lifted representation)

• We use the problems in IPC 2018 as the test set and those in prior-year
competitions as the training/validation set.

Graph	Size	
Distribution

Example	Use
• Multilabel classification: For each planning task (graph), predict which

planners (targets) solve the task within time limit.

• Refined problem: Because only one planner is needed, it suffices to
choose the one with the lowest probability of timeout.

• Accuracy results. Left: using the split provided by the data set. Right:
using random train/val re-split on IPC-lifted.

Graph	Construction

IPC: A Benchmark Data Set for Learning with Graph-Structured Data

(a) Problem (in PDDL) (b) Grounded graph (c) Lifted graph

Figure 1. An example planning task (described by using PDDL) and the constructed graphs.

lation into a SAS+ language (Bäckström & Nebel, 1995).
In SAS+, a task ⇧ = hV,O,A, s0, s?i consists of finite-
domain variables, ground operators, ground axioms, initial
state, and the goal.

Our data set consists of two graphical representations per
planning task. These representations losslessly encode the
information in the planning task and are often used for the
computation of structural symmetries (Shleyfman et al.,
2015). The graph obtained from the grounded representa-
tion SAS+ is called the problem description graph (PDG)
(Pochter et al., 2011). We present here the definition ex-
tended to support conditional effects and axioms and refer
the reader to Sievers et al. (2019a) for further details.

Definition 1 Let ⇧ = hV,Vd,O,A, sd, s0, s?i be a SAS+

task. The problem description graph of ⇧ is the digraph
hN,Ei with nodes

N = {n0, n?}[{nv | v 2 V}[Nf [NO [{na | a 2 A},

where Nf = {nd
v | v 2 V , d 2 dom(v)} and NO = {no |

o 2 O} [{ne
o | o 2 O, e 2 effs(o)}, and edges

E = E0 [E? [Ev [Ea [Eo, where

E0 = {hn0, nd
vi | s0[v] = d}

E? = {hng, nd
vi | v 2 vars(s?), s?[v] = d}

Ev = {hnv, nd
vi | d 2 dom(v)}

Ea = {hna, nd
vi | a 2 A, v 2 vars(pre(a)), pre(a)[v] = d}

[{hna, nd
vi | a 2 A, var(a) = v, val(a) = d}

Eo = {hno, nd
vi | o 2 O, v 2 vars(pre(o)), pre(o)[v] = d}

[{hno, ne
oi | e 2 effs(o)}

[{hnd
v, n

e
oi | hc, ·, ·i 2 effs(o), v 2 vars(c), c[v] = d}

[{hne
o, n

d
vi | h·, v, di 2 effs(o)}.

The graph obtained from the lifted PDDL representations
is called the abstract structure graph (ASG) (Sievers et al.,
2019b). Planning tasks in PDDL can be naturally modeled
as abstract structures, which, in turn, can be represented
as graphs. In what follows we present the definitions of
abstract structures and abstract structure graphs, referring
the reader to Sievers et al. (2019b) for further details.

Definition 2 (Sievers et al., 2019b) Let S be a set of sym-
bols, where each s 2 S is associated with a type t(s). The
set of abstract structures over S is inductively defined as
follows:

• each symbol s 2 S is an abstract structure, and

• for abstract structures A1, . . . , An, the set
{A1, . . . , An} and the tuple hA1, . . . , Ani are
abstract structures.

Using the language L of a PDDL task ⇧, each part of ⇧
can inductively be defined as an abstract structure, with the
symbols of L forming the basic abstract structures. Finally,
abstract structures can be naturally turned into a graph.

Definition 3 (Sievers et al., 2019b) Let A be an abstract
structure over S. The abstract structure graph ASGA is a
digraph hN,Ei, defined as follows.

• N contains a node A for the abstract structure A.
If N contains a node for A0 = {A1, . . . , An} or
A0 = hA1, . . . , Ani, it also contains the nodes for
A1, . . . , An.

• For every set (sub-)structure A0 = {A1, . . . , An} there
are edges A0

! Ai for i 2 {1, . . . , n}.

• For every tuple (sub-)structure A0 = hA1, . . . , Ani,
the graph contains auxiliary nodes nA0

1 , . . . , nA0

n , an
edge A0

! nA0

1 , and edges nA0

i�1 ! nA0

i for 1 < i  n.
For each component Ai, there is an edge nA0

i ! Ai.

Note that the edges in ASGs are from the abstract structures
to their sub-structures, which results in acyclic graphs.

In both PDG and ASG, the node features are one-hot ac-
cording to the self-explanatory node type indicated in the
above definitions.

The aim in classical planning is to find a sequence of ground
operators that, if applied to the initial state, will necessarily
transform it into a goal state. Such a sequence is called a

Method Grounded Lifted
CNN 73.1% 86.9%
GCN 80.7% 87.6%

GG-NN 77.9% 81.4%

Method Domain Splits Random Splits
CNN 82.1% (6.6%) 86.1% (5.5%)
GCN 85.6% (5.5%) 87.2% (3.5%)

GG-NN 76.6% (5.8%) 74.4% (2.7%)

IPC-grounded IPC-lifted REDDIT-
MULTI-12k

REDDIT-
BINARY COLLAB NCI1 DD PROTEINS ENZYMES MUTAG

Type directed DAG undirected undirected undirected undirected undirected undirected undirected undirected
#Graphs 2,439 2,439 11,929 2,000 5,000 4,110 1,178 1,113 600 188

Total #Nodes 6,233,856 9,816,948 4,669,116 859,254 372,474 122,747 334,925 43,471 19,580 3,371
Max #Nodes 87,140 238,909 3,782 3,782 492 111 5,748 620 126 28
Mean (Std)

#Nodes
2555.9

(6099.0)
4025.0

(14507.6) 391.4 (428.7) 429.6 (554.1) 74.5 (62.3) 29.9 (13.6) 106.5 (284.3) 39.1 (45.8) 32.6 (15.3) 18.0 (4.6)

Mean (Std)
Ave Degree 12.3 (131.0) 2.9 (35.1) 4.7 (27.6) 4.6 (41.3) 132.0 (158.5) 4.3 (1.6) 10.1 (3.4) 7.5 (2.3) 7.6 (2.3) 4.4 (1.5)

Mean (Std)
#CC 1.09 (0.61) 1.14 (0.49) 2.81 (2.65) 2.48 (2.47) 1 (0) 1.19 (0.57) 1.02 (0.18) 1.08 (0.52) 1.24 (3.61) 1 (0)

Mean (Std)
Diameter 8.2 (2.3) 17.1 (1.5) 10.9 (3.1) 9.7 (3.1) 1.9 (0.3) 13.3 (5.1) 19.9 (7.7) 11.6 (7.9) 10.9 (4.8) 8.2 (1.8)

IPC: A Benchmark Data Set for Learning with Graph-Structured Data

(a) IPC-grounded (b) IPC-lifted (c) REDDIT-MULTI-12k (d) REDDIT-BINARY (e) COLLAB

(f) NCI1 (g) DD (h) PROTEINS (i) ENZYMES (j) MUTAG

Figure 2. Box plot of the graph size distribution. The orange bar marks the median; the red cross the mean.

(a) IPC-grounded (b) IPC-lifted (c) REDDIT-MULTI-12k (d) REDDIT-BINARY (e) COLLAB

(f) NCI1 (g) DD (h) PROTEINS (i) ENZYMES (j) MUTAG

Figure 3. Box plot of the diameter distribution. The orange bar marks the median; the red cross the mean.

IPC: A Benchmark Data Set for Learning with Graph-Structured Data

(a) IPC-grounded (b) IPC-lifted (c) REDDIT-MULTI-12k (d) REDDIT-BINARY (e) COLLAB

(f) NCI1 (g) DD (h) PROTEINS (i) ENZYMES (j) MUTAG

Figure 2. Box plot of the graph size distribution. The orange bar marks the median; the red cross the mean.

(a) IPC-grounded (b) IPC-lifted (c) REDDIT-MULTI-12k (d) REDDIT-BINARY (e) COLLAB

(f) NCI1 (g) DD (h) PROTEINS (i) ENZYMES (j) MUTAG

Figure 3. Box plot of the diameter distribution. The orange bar marks the median; the red cross the mean.

• For Problem Description Graph, see Sievers, S., Katz, M., Sohrabi, S.,
Samulowitz, H., and Ferber, P. Deep learning for cost-optimal planning:
Task-dependent planner selection. In Proc. AAAI 2019.

• For Abstract Structure Graph, see Sievers, S., Röger, G., Wehrle, M., and
Katz, M. Theoretical foundations for structural symmetries of lifted
PDDL tasks. In Proc. ICAPS 2019.

