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Abstract

High order relational data (i.e. multi-type data), such as audience-movies-
casts and authors-publications-journals, are ubiquitous in everyday life. Mining
the structure of such data is an important tool to help reveal cluster informa-
tion on each contributing entity of the data. This paper addresses this problem
by using hypergraphs to model the data. A hypergraph describes interrelation-
ships among various types of the data entities simultaneously. It is a general-
ization of graphs that model only pairwise relationships. A spectral theory of
hypergraphs is discussed, and a simultaneous clustering technique is advocated
based on spectral hypergraph partitioning. This co-clustering technique can be
considered a higher order generalization of that obtained from bipartite graphs
with the help of the SVD. Experiments show that the proposed co-clustering
technique effectively unravels the structure of the data tensor, and can also
improve on other data mining techniques, e.g., those in collaborative filtering.

1 Introduction

The co-clustering of heterogeneous data (multi-type data, high order relational
data), is an important task in various data mining applications. Traditional cluster-
ing methods partition a data set in subsets according to the general principle that
data within the same subset should be as similar as possible, while data belonging
to different subsets should be as dissimilar as possible. If the data has numerical
feature representations, the clustering task is equivalent to partitioning the rows of
the data matrix, where each row represents a data record. On the other hand, if the
feature representation of the data is unknown, but a relational graph among them
can be conveniently constructed, or if it is naturally available, we can partition the
graph to achieve a clustering of the data.

Traditional clustering tasks consider only homogeneous data which are of a single
type. In practice, it is not uncommon that the data is heterogeneous, meaning that
it involves several interrelated types. Real-life examples include documents-words
in the text-mining scenario, where a word is related to a document by the number
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of its occurrences in the document, and audience-movies-casts in the film rating
(collaborative filtering) scenario, where an audience gives a rating to a film that
is cast by several actors/actresses. The task of co-clustering is to simultaneously
cluster the different types of entities. It is possible to cluster each type separately,
but this approach would miss the potential leveraging that could be obtained from
the interrelationships among different types.

The co-clustering of bi-type heterogeneous data has been widely investigated in
the context of matrix approximation [12, 7, 3, 1], where the rows and the columns
represent two types of entities, with matrix entries representing the relationships
(proximities) between them. Such methods view the data matrix as a probability
distribution, and the objective is to optimally approximate the matrix while pre-
serving the cluster sums and/or other quantities such as marginals. The matrix rep-
resentation of bi-type data has also been interpreted as a bipartite graph [11, 31, 26],
where the rows represent a partite set and the columns the other. Hence, the co-
clustering problem becomes a graph cut problem, and spectral graph partitioning
techniques can be neatly applied to simultaneously cluster the two partite sets.

In recent years, co-clustering of data with more than two types of entities has at-
tracted increasing attention. A natural generalization of bi-type methods for multi-
type data is to consider the pairwise relationships between every two types [4, 22, 23].
The model behind this is a k-partite graph representation [16, 21], and traditional
graph partitioning techniques are applied. Meanwhile, ideas that consider the in-
terrelationships among all the entity types have been explored in [2, 6]. In this
context, the data is modeled as a tensor which is a high order generalization of
matrices. Each mode of the tensor represents a type of entities, and tensor entries
encode the relations among entities of all the types. Banerjee et al. [2] extended
the matrix approximation framework [3] to tensors and proposed a probabilistic ap-
proach for tensor approximation by minimizing the Bregman divergence. Chen et
al. [6] modeled the data tensor as a graph via the clique expansion method [18] and
cast the co-clustering problem as a graph cut problem.

In this paper, we interpret the data tensor as a hypergraph and propose a co-
clustering method based on spectral hypergraph partitioning. For data analysis,
the concept of hypergraphs was initially proposed in [32] and found applications
in [30, 20]. We discuss a spectral theory of hypergraphs from the angle of hy-
pergraph Laplacians, in parallel the spectral graph theory [8]. We also generalize
several widely used spectral graph partitioning techniques (ratio cut [19], normal-
ized cut [29], min-max cut [13]) to hypergraphs under a unified framework. Since
a data tensor is associated with a hypergraph, the co-clustering of a tensor can be
naturally performed by hypergraph partitioning.

The following contributions are made in this paper: (a) The (normalized) Lapla-
cian matrix is defined, based on which a spectral theory of hypergraphs is devel-
oped. (b) Several spectral graph partitioning techniques are generalized for hyper-
graphs in a unified framework, under which the Rayleigh quotient plays an impor-
tant role. (c) For applications, a co-clustering method based on the hypergraph
model is proposed. This method can be considered a high-order generalization of
the co-clustering method [11, 31] of bi-type data, and is much more efficient than
high-order tensor approximation methods [10, 9].
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The rest of the paper is organized as follows. Section 2 presents the spectral
theory of hypergraphs based on the Laplacian matrix, and Section 3 develops the
spectral hypergraph partitioning techniques. In Section 4 we propose a co-clustering
technique using the hypergraph model. Several experiments are reported in Sec-
tion 5 to show the effectiveness of the proposed technique, and remarks are given in
Section 6.

2 Hypergraph Laplacian

A hypergraph G = (V,E) consists of a vertex set V and a hyperedge set E, where
each hyperedge e ∈ E is a non-empty subset of V . In other words, E ⊂ 2V . An
undirected graph is a special case of hypergraphs, since each edge contains exactly
two vertices, i.e., |e| = 2. A weighted hypergraph G = (V,E,w) is a hypergraph in
which a nonnegative weight w(e) is associated with every hyperedge e. Figure 1(a)
shows an example of a weighted hypergraph.
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Figure 1: An example weighted hypergraph and its bipartite graph interpretation.

A hyperedge e ∈ E is incident to a vertex v ∈ V if v is an element of e. The
(weighted) degree of a vertex v is the sum of the weights of hyperedges incident to
v:

d(v) :=
∑

v∈e,e∈E

w(e), (1)

and the diagonal matrix D where D(v, v) = d(v) for all v ∈ V is usually called the
degree matrix. The degree of a hyperedge e is the number of vertices it contains:

δ(e) := |e|. (2)

A path in a hypergraph is a sequence of vertices v1, v2, . . . , vn such that there exists
a hyperedge incident to both vi and vi+1 for i = 1, 2, . . . , n − 1. A hypergraph is
connected if there is a path between every pair of vertices. A hypergraph G′(V ′, E′)
is called a sub-hypergraph of G(V,E) if V ′ ⊂ V and E′ ⊂ E. A connected component
of a hypergraph G is a maximal connected sub-hypergraph of G.
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In what follows, the spectral properties of a hypergraph will rely largely on a
|V | × |V | matrix Ψ, whose elements are defined as

ψ(u, v) :=

{
0 if @e ∈ E s.t. {u, v} ⊂ e,∑

{u,v}⊂e,e∈E w(e)/δ(e) otherwise.
(3)

Note that this definition includes the case u = v. Intuitively, ψ(u, v) is a “weight”
between a pair of vertices u and v. Thus, it is the sum of the weights of hyperedges
incident to both u and v, with each weight amortized by the degree of the hyperedge.
A property is that for Ψ, the column/row sum is equal to the degree of the vertex
that column/row corresponds to:∑

u∈V

ψ(u, v) ≡
∑
u∈V

ψ(v, u) = d(v). (4)

In a way Ψ is simlar to the weighted adjacency matrix (affinity matrix) A of a
graph. Nevertheless, there are some significant differences. Thus, the diagonal of Ψ
is always nonzero (unless the hypergraph contains no hyperedges). Indeed, when a
graph is interpreted as a hypergraph,

Ψ =
D + A

2
. (5)

The Laplacian of the hypergraph is defined as

L := D − Ψ, (6)

and the normalized Laplacian is

∆ := D−1/2LD−1/2 = I − D−1/2ΨD−1/2, (7)

where I is the identity matrix. They have properties that reveal the connectivity of
the hypergraph, in parallel those of the (normalized) Laplacians of graphs.

Theorem 1. The Laplacian L and normalized Laplacian ∆ of a hypergraph have
the following properties:

1. Both L and ∆ are symmetric positive semi-definite.

2. The smallest eigenvalue(s) of L (and ∆) is 0.

3. The multiplicity of the eigenvalue 0 of L (and ∆) is one if and only if the
hypergraph is connected. In such a case, the corresponding eigenvector of L is
1 (the vector of all ones), and that of ∆ is the diagonal of D1/2.

4. The multiplicity of the eigenvalue 0 of L (and ∆) is k if and only if the
hypergraph has k connected components.

5. Let Lgraph (resp. ∆graph) denote the Laplacian (resp. normalized Laplacian) of
a graph G, and let Lhypergraph (resp. ∆hypergraph) denote the hypergraph Lapla-
cian (resp. normalized Laplacian) when G is interpreted as a hypergraph, then

Lhypergraph =
1
2
Lgraph and ∆hypergraph =

1
2
∆graph.
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Proof. 1. By the definition of L, we have for any vector x,

xT Lx =
1
2

∑
u,v∈V

ψ(u, v)(x(u) − x(v))2 ≥ 0. (8)

Hence L is symmetric positive semi-definite, and so is ∆.

2. By (4) and (6), we have L1 = 0. Since L is positive semi-definite, 0 is the
smallest eigenvalue. The argument also holds for ∆ since ∆(D1/21) = 0.
Indeed, for the special eigenvalue 0, the eigenvector(s) z of L and eigenvector(s)
z′ of ∆ are related by z′ = D1/2z.

3. The equality xT Lx = 0 holds iff for each pair of vertices u and v, either
ψ(u, v) = 0 or x(u) = x(v). For an initial vertex u, and all the vertices v such
that ψ(u, v) 6= 0 (i.e., there is a hyperedge incident to both u and v), we have
x(v) = x(u). A hypergraph “traversal” procedure similar to the breadth first
search of a graph will make x(v) = x(u) for all v ∈ V , if the hypergraph is
connected.

On the other hand, if the hypergraph has k > 1 connected components, where
the i-th component corresponds to the vertex subset Vi, then there are k
mutually orthogonal vectors zi, where

zi(v) =

{
1 if v ∈ Vi

0 if v /∈ Vi,
(9)

satisfying Lzi = 0.

4. Let the vertex set V be partitioned into subsets Vi, i = 1, . . . , k, where a pair
of vertices are inside the same partition if and only if there is a path between
the two vertices. Then xT Lx can be written as

xT Lx =
1
2

k∑
i=1

∑
u,v∈Vi

ψ(u, v)(x(u) − x(v))2.

A same previous argument shows that for x 6= 0, xT Lx = 0 iff x(u) = ξi for
some ξi ∈ R − {0} and all u ∈ Vi, i = 1, . . . , k. Such vectors x lie on the
space spanned by the vectors z1, . . . , zk in the form (9). This subspace has
dimension k.

5. The two equalities immediately follow from (5).

A weighted hypergraph G(V,E,w) can be interpreted as a weighted bipartite
graph Gb (cf. Figure 1(b)), where V and E are the two partite sets, and there is an
edge between v ∈ V and e ∈ E if e is incident to v in the hypergraph. The edge
weights are defined as

h(v, e) := w(e)/δ(e) for v ∈ e, (10)

which are the elements of the matrix H ∈ R|V |×|E| (h(v, e) = 0 if v /∈ e).
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Therefore, the weighted adjacency matrix of Gb is

Ab =
[

0 H
HT 0

]
. (11)

Note that the matrix Ψ, which simulates the “adjacency matrix” of the hypergraph,
can also be expressed in terms of H:

Ψ = HΩ−1/2ΛΩ−1/2HT , (12)

where both Ω ∈ R|E|×|E| and Λ ∈ R|E|×|E| are diagonal, with diagonal elements equal
to w(e) and δ(e), respectively. The matrix Ψ can be considered the product of H and
HT , up to an internal scaling. From this view point, the eigenvalue decompositions
of Ab and Ψ are almost equivalent. A consequence is that the spectral properties of
a hypergraph and those of its bipartite graph interpretation are closely related. The
following theorem states a precise relationship between the normalized Laplacian ∆
of G and that (∆b) of Gb for a special case.

Theorem 2. Let Ĥ = Φ−1/2HΩ−1/2, where both Φ ∈ R|V |×|V | and Ω ∈ R|E|×|E|

are diagonal, with diagonal elements equal to the row sums (ψ(v, v)) and the column
sums (w(e)) of H, respectively. If the hyperedge degrees are the same, then:

1. When µ 6= 0, ∆ has an eigenvector z corresponding to eigenvalue 1− µ if and
only if ∆b has an eigenvector

[
z

ĤT z/
√

µ

]
corresponding to eigenvalue 1 − √

µ

and an eigenvector
[

z
−ĤT z/

√
µ

]
corresponding to eigenvalue 1 +

√
µ.

2. ∆ has an eigenvector z corresponding to eigenvalue 1 if and only if ∆b has an
eigenvector

[ y

ĤT z

]
corresponding to eigenvalue 1 for some y satisfying ĤT y =

0.

Proof. Let the hyperedge degrees δ(e) = c for all e. Then, ∆b = I −
[

0 Ĥ
ĤT 0

]
and

∆ = I − D−1/2HΩ−1/2ΛΩ−1/2HT D−1/2

= I − (cΦ)−1/2HΩ−1/2(cI)Ω−1/2HT (cΦ)−1/2

= I − ĤĤT .

Therefore, when µ 6= 0,

ĤĤT z = µz ⇐⇒
[

0 Ĥ

ĤT 0

] [
z

±ĤT z/
√

µ

]
= ±√

µ

[
z

±ĤT z/
√

µ

]
.

Now consider the case µ = 0. If ĤĤT z = 0 for some z 6= 0, Ĥ does not have full
row-rank, hence there exists a y 6= 0 such that ĤT y = 0. Thus

[
0 Ĥ

ĤT 0

] [ y

ĤT z

]
= 0.

The other direction is trivial.

The requirement that the hyperedge degrees are the same can be satisfied in a
special case where the hypergraph is induced from a data tensor; see Section 4.
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3 Spectral Hypergraph Partitioning

We first consider partitioning the vertex set V into two disjoint subsets S and Sc:{
S ∩ Sc = ∅,
S ∪ Sc = V.

(13)

The case of partitioning into k disjoint subsets will be discussed in Section 3.2. In
different areas, the terminology “cut” is used to mean “partitioning”. We will use
these two words interchangeably in this paper. Recall that for graphs, some optimal
cuts are defined such that the cut size, balanced by the sizes of the two partitions,
are minimized. In order to generalize such cuts for hypergraphs, we need to define
some related concepts for “sizes”.

Given a cut as in (13), the boundary of the cut, denoted as ∂S, is the set of
hyperedges that cross the two partitions, i.e.,

∂S := {e ∈ E | e ∩ S 6= ∅, e ∩ Sc 6= ∅}. (14)

We define the volume of the boundary as

vol(∂S) :=
∑
u∈S

∑
v∈Sc

ψ(u, v). (15)

This definition is consistent with that of the cut size of a graph. In the graph case,
vol(∂S) reduces to 1

2

∑
e∈∂S w(e), which is just half of the cut size defined for a

graph.
We define a general objective function

c(S) :=
vol(∂S)

weight(S)
+

vol(∂S)
weight(Sc)

, (16)

where weight(·) is a generic weight function1 defined for a vertex v ∈ V , and thus
for vertex subsets such as S:

weight(S) :=
∑
v∈S

weight(v). (17)

The objective function (16) characterizes how an optimal partitioning of a given
hypergraph should look like: the volume of the boundary vol(∂S) is minimized, while
the “sizes” of S and Sc are balanced; otherwise, a small weight(S) or weight(Sc)
will make c(S) prohibitively large. The generic function weight(·) can be defined
in a number of ways. Remarkably, however it is defined, the objective value c(S)
coincides with a Rayleigh quotient.

Theorem 3. Let a column vector q have elements

q(v) :=

{
+

√
η2/η1 if v ∈ S,

−
√

η1/η2 if v ∈ Sc,
(18)

1One shall not confuse the “weight” weight(v) of a vertex v with the “weighted degree” d(v) of
the vertex, or the “weight” w(e) of a hyperedge e.
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where η1 = weight(S) and η2 = weight(Sc), then

c(S) =
qT Lq

qT Wq
, (19)

where W is the diagonal matrix with diagonal elements equal to weight(v)’s. We
call q the partition vector.

Proof. Directly computing the two parts of the quotient, we have

qT (D − Ψ)q =
η2

η1

∑
u∈S

d(u) −
∑

u,u′∈S

ψ(u, u′)

 + 2
∑

u∈S,v∈Sc

ψ(u, v)

+
η1

η2

 ∑
v∈Sc

d(v) −
∑

v,v′∈Sc

ψ(v, v′)


=

η2

η1

∑
u∈S,v∈Sc

ψ(u, v) + 2
∑

u∈S,v∈Sc

ψ(u, v) +
η1

η2

∑
u∈S,v∈Sc

ψ(u, v)

=
(η1 + η2)2

η1η2

∑
u∈S,v∈Sc

ψ(u, v),

and
qT Wq =

η2

η1

∑
u∈S

weight(u) +
η1

η2

∑
v∈Sc

weight(v) = η1 + η2.

Hence
qT Lq

qT Wq
=

(
1
η1

+
1
η2

) ∑
u∈S,v∈Sc

ψ(u, v) = c(S).

With Theorem 3, we now define several optimal cuts for hypergraphs.

Definition 1. The ratio hypergraph cut is one that minimizes the objective function
c(S) with weight(v) = 1, i.e., the objective function is

cr(S) :=
vol(∂S)

|S|
+

vol(∂S)
|Sc|

. (20)

The above definition implies that the matrix W in Theorem 3 is simply the
identity matrix I. Hence,

cr(S) =
qT Lq

qT q
.

Definition 2. The normalized hypergraph cut is one that minimizes the objective
function c(S) with weight(v) = d(v), i.e., the objective function is

cn(S) :=
vol(∂S)∑
u∈S d(u)

+
vol(∂S)∑
v∈Sc d(v)

. (21)
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The above definition implies that the matrix W in Theorem 3 is the matrix D.
Hence,

cn(S) =
qT Lq

qT Dq
.

Definition 3. The min-max hypergraph cut is one that minimizes the objective
function c(S) with weight(v) =

∑
v′∈P ψ(v′, v) = d(v) −

∑
u/∈P ψ(u, v) for v ∈ P ,

i.e., the objective function is

cm(S) :=
vol(∂S)

[
∑

u∈S d(u)] − vol(∂S)
+

vol(∂S)
[
∑

v∈Sc d(v)] − vol(∂S)
. (22)

3.1 Spectral Relaxation

Theorem 3 implies that the problem of finding an optimal hypergraph cut can be
reduced to computing a vector q in the form (18) which minimizes the quotient (19).
However, this is a combinatorial optimization problem that is NP-complete [17].
From standard results in linear algebra, minimizing the quotient qT Lq/qT Wq over
real vectors q, is equivalent to finding the bottom eigenvector of the matrix pencil
(L,W ). Hence, we apply this heuristic and relax the optimization problem to the
following:

min
q∈R|V |

qT Lq

qT Wq
, (23)

whose solution is used to provide an approximate optimal partitioning.
According to the properties of the Laplacian (cf. Theorem 1), under the as-

sumption that the hypergraph is connected, the smallest eigenvalue of L is zero,
with corresponding eigenvector 1. This vector minimizes (23), but it provides no
information on how to perform the partitioning. Hence, we resort to the second
smallest eigenvector z of the matrix pencil (L,W ), and use z to determine an ap-
proximate optimal partitioning. In the graph case, if W is the identity, then z is
the second smallest eigenvector of the graph Laplacian, and is called the Fiedler
vector [14, 15].

The simplest way to partition the hypergraph is according to the signs of the
elements of z [32]:

S = {v ∈ V | z(v) ≥ 0} and Sc = {v ∈ V | z(v) < 0}.

If this results in very unbalanced subsets, another criterion may be to exploit the
median of z to separate the set:

S = {v ∈ V | z(v) ≥ median} and Sc = {v ∈ V | z(v) < median}.

Perhaps a more sophisticated approach is to replace the median in the above criterion
by an optimal “cut-point”, which yields

S = {v ∈ V | z(v) ≥ cut-point} and Sc = {v ∈ V | z(v) < cut-point}.

The cut-point is chosen from the set of candidates {z(v) | v ∈ V } that minimizes
the original objective function [13]. Finally, taking a dimensionality reduction view-
point, we can consider the elements of z as a one-dimensional embedding of the
vertices, and run a 2-means algorithm on z to obtain a clustering [11].
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3.2 Generalization to k-way Partitioning

For a k-way partitioning of the hypergraph:{
S1, S2, . . . , Sk mutually disjoint,
S1 ∪ S2 ∪ · · · ∪ Sk = V,

(24)

we define the notion of the boundary between Si and Sc
i

∂Si = {e ∈ E | e ∩ Si 6= ∅, e ∩ Sc
i 6= ∅},

and the volume of this boundary

vol(∂Si) =
∑
u∈Si

∑
v∈Sc

i

ψ(u, v).

The above two expressions are essentially generalizations of (14) and (15) to the
case of more than two partitions.

Hence, the cost function (16) for a 2-way partitioning is naturally generalized
for the k-way case:

c(S1, . . . , Sk) :=
k∑

i=1

vol(∂Si)
weight(Si)

, (25)

and a similar result to Theorem 3 can be established.

Theorem 4. Let a matrix Q ∈ R|V |×k be defined as

Q(v, i) :=

{
1/

√
ηi if v ∈ Si,

0 else,
(26)

where ηi = weight(Si), then

c(S1, . . . , Sk) = tr(QT LQ) and QT WQ = I, (27)

where W is the diagonal matrix with diagonal elements equal to weight(v)’s.

The proof of Theorem 4 is straightforward, hence omitted here. This theorem
indicates that minimizing the objective function c(S1, . . . , Sk) is equivalent to finding
a matrix Q in the form (26) that minimizes the trace of QT LQ.

Similar to the 2-way case, this optimization problem can be relaxed to

min
QT WQ=I

tr(QT LQ), (28)

which has a unique solution (denoted as Z) up to any orthogonal transformation,
where Z is formed by the bottom k eigenvectors of the matrix pencil (L,W ). A
popular practice, derived from the graph case [24], is to consider each row of Z
as a data item, and to run a k-means algorithm on this set of items to obtain a
k-clustering (k-way partitioning of the hypergraph).

The above solution Z has a natural interpretation in terms of manifold learning.
Imagine that there is a set of high dimensional data points, which are sampled
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from a manifold and are associated with a relational hypergraph. We perform
dimensionality reduction on these data samples using the (hypergraph) Laplacian
eigenmaps method [5]. Then Z is the low dimensional embedding of the original
manifold.2 A good k-clustering of Z in some sense implies a reasonable clustering
of the original high dimensional data, hence a suitable partitioning of the associated
hypergraph.

4 Tensor Co-Clustering

A tensor is a multidimensional array of data whose elements are referred by using
multiple indices, each of which represents a mode of the tensor. The number of
indices required is called the order of the tensor. Hence, a matrix (order-2 tensor)
is a special case of tensors since it uses two indices; the first and second modes
correspond to matrix rows and columns, respectively.

Similar to the matrix-bipartite-graph analogy, an order-n tensor can be mod-
eled as a hypergraph where each hyperedge contains exactly n vertices. For now
we restrict our discussion to the case n = 3 for simplicity. To be specific, let a
tensor w ∈ R|V1|×|V2|×|V3| have elements w(v1, v2, v3), where v1 ∈ V1, v2 ∈ V2, and
v3 ∈ V3. The set V , as the union of disjoint sets V1, V2 and V3, is the vertex set,
and every hyperedge connects exactly one vertex from each of V1, V2, and V3. If all
the w(v1, v2, v3) entries are nonnegative, they can be considered weights of the cor-
responding hyperedges. Formally, an order-3 nonnegative tensor w ∈ R|V1|×|V2|×|V3|

induces a special weighted hypergraph G(V,E,w) for some disjoint “virtual” sets
V1, V2 and V3, where V = V1 ∪ V2 ∪ V3, E = V1 × V2 × V3, and w(v1, v2, v3) is the
weight for a hyperedge e = {v1 ∈ V1, v2 ∈ V2, v3 ∈ V3}.

This hypergraph model of the data tensor shares similarities with the tri-partite
graph model [21], which also uses V as the vertex set, with each Vi as a partite set.
However, the hypergraph has hyperedges connecting exactly one vertex from each Vi,
with each hyperedge having a single weight, while the tri-partite graph has edges
connecting vertices from only two partite sets. In other words, the hypergraph
models interrelationships among all the vertex subsets Vi’s, while the tri-partite
graph models only pairwise relationships between the Vi’s. Hence, one can view
hypergraphs as natural and convenient models for data tensors.

Extending the idea of co-clustering the rows and columns of a data matrix which
is modeled as a bipartite graph [11, 31], we can simultaneously cluster all the modes
of a data tensor which is modeled as a hypergraph.

4.1 Structure of the Laplacian

Due to the special structure of the hypergraph (induced from a data tensor), its
Laplacian is also structured. By splitting D and Ψ into blocks according to the

2A subtle difference is that the method of Laplacian eigenmaps proposed in [5] does not use the
eigenvector corresponding to the smallest eigenvalue 0.
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vertex subsets V1, V2 and V3, the Laplacian reads

L = D − Ψ =

D1 − Ψ11 −Ψ12 −Ψ13

−Ψ21 D2 − Ψ22 −Ψ23

−Ψ31 −Ψ32 D3 − Ψ33

 , (29)

where the Ψij blocks have elements

ψ11(v1, v1) = 1
3

∑
v2∈V2,v3∈V3

w(v1, v2, v3),

ψ22(v2, v2) = 1
3

∑
v1∈V1,v3∈V3

w(v1, v2, v3),

ψ33(v3, v3) = 1
3

∑
v1∈V1,v2∈V2

w(v1, v2, v3),

ψ12(v1, v2) = ψ21(v2, v1) = 1
3

∑
v3∈V3

w(v1, v2, v3),

ψ13(v1, v3) = ψ31(v3, v1) = 1
3

∑
v2∈V2

w(v1, v2, v3),

ψ23(v2, v3) = ψ32(v3, v2) = 1
3

∑
v1∈V1

w(v1, v2, v3),

(30)

and D1, D2, D3 are all diagonal matrices with diagonal elements

d1(v1) =
∑

v2∈V2,v3∈V3
w(v1, v2, v3),

d2(v2) =
∑

v1∈V1,v3∈V3
w(v1, v2, v3),

d3(v3) =
∑

v1∈V1,v2∈V2
w(v1, v2, v3).

(31)

Hence, the diagonal blocks of L are all diagonal:

D1 − Ψ11 = 2
3D1, D2 − Ψ22 = 2

3D2, D3 − Ψ33 = 2
3D3, (32)

and each (i, j) off-diagonal block encodes the interrelated information between vertex
subsets Vi and Vj . A pictorial description of L is shown in Figure 2.

2

3
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3
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2

3
D3

−Ψ12 −Ψ13

−Ψ23

L =

sym
m
etric

|V1| |V2| |V3|

|V1|

|V2|

|V3|

Figure 2: The structure of the Laplacian of a hypergraph induced from an order-3
data tensor.

4.2 The Co-Clustering Algorithm

Our k-way co-clustering algorithm for a data tensor w consists of three steps:

12



1. Form the Laplacian L and diagonal matrix W .

2. Obtain the k bottom eigenvectors z1, z2, . . . , zk of the matrix pencil (L,W ).
Let Z = [z1, z2, . . . , zk].

3. Use Z to obtain a clustering of each mode of w.

The first step exploits formulas (30) and (31), and the second step needs only an
efficient numerical eigen-solver (more details will be discussed in the next subsec-
tion). The many varieties come from the last step, where, in the graph case, it has
been shown by many practical situations that each approach of defining the final
clustering has pros and cons. The following is a discussion of criteria that work well
in practice.

For a 2-way co-clustering, the eigenvector z1 is ignored. For each vertex u ∈ V ,
we form a clustering

S(u) = {v ∈ V | z2(v) ≥ z2(u)} and Sc
(u) = {v ∈ V | z2(v) < z2(u)}

and compute the cost function c
(
S(u)

)
. By enumerating all the vertices, we obtain

the optimal cut-point z2(u) such that c
(
S(u)

)
is minimized. Thus, the vector z2 is

partitioned in two subsets, and all the modes of w are simultaneously partitioned.
For a general k-way co-clustering, we normalize each row of Z and treat them

as data items. Then we run k-means to obtain a k-clustering of the vertex set V .
Hence, each subset Vi is partitioned in k parts.

Recall that there exist many heuristics to recover the partitioning after Z is
computed. Different approaches may work well for different data sets, and there are
computational cost trade-offs.

4.3 Computing the Eigenvectors

Since the matrix W is diagonal, the most efficient way of computing the eigenvector
z of the matrix pencil (L,W ) is to solve an equivalent eigenvalue problem

(W−1/2LW−1/2)f = λf, with f = W 1/2z. (33)

In the case of ratio hypergraph cut, W = I, hence (33) is simply Lf = λf , whereas
in the case of normalized hypergraph cut, W = D, hence (33) becomes ∆f = λf .

The bottom eigenvectors f can be efficiently computed using the Lanczos pro-
cedure [25]. The dominant cost of this procedure is O(k′ · nnz(L)), where k′ is
the number of Lanczos steps, and nnz(L) is the number of nonzeros of the ma-
trix L. The number of steps/iterations k′ varies according to the matrix, and is
typically a few times of k. The number of nonzeros assumes the form nnz(L) =
O(|V1||V2| + |V1||V3| + |V2||V3|). On one extreme, if |V1|, |V2| and |V3| are the
same, then nnz(L) = 2

3 |V |2 + |V |. On the other extreme, if, say |V1|, is domi-
nant over |V2| and |V3| (such that they can be considered just some constants),
then nnz(L) = O(|V1|) = O(|V |). Hence, the computational cost of computing the
eigenvectors lies somewhere between O(k′|V |) and O(k′|V |2). In particular, if the
Laplacian L is sparse, then it has the number of nonzeros proportional to |V |, thus
the cost is approximately O(k′|V |).

13



4.4 The Order-n Case

Now that the co-clustering technique for an order-3 tensor has been made clear, we
complete this section by briefly summarizing the details for the general order-n case.

An order-n nonnegative tensor w ∈ R|V1|×|V2|×···×|Vn| induces a weighted hyper-
graph G(V,E,w) for some disjoint sets V1, . . ., Vn, where V =

∪n
i=1 Vi, E =

∏n
i=1 Vi,

and w(v1, v2, . . . , vn) is the weight for a hyperedge e = {v1 ∈ V1, v2 ∈ V2 . . . , vn ∈
Vn}.

The Laplacian L of this hypergraph has size |V |× |V |. Split into blocks, it reads

L = D − Ψ =


D1 − Ψ11 −Ψ12 · · · −Ψ1n

−Ψ21 D2 − Ψ22 · · · −Ψ2n
...

...
. . .

...
−Ψn1 −Ψn2 · · · Dn − Ψnn

 , (34)

where each Ψij block has elements

ψij(vi, vj) = ψji(vj , vi) = 1
n

∑
{v1,...,vn}−{vi,vj}w(v1, v2, . . . , vn), (35)

and each Di is a diagonal matrix with diagonal elements

di(vi) =
∑

{v1,...,vn}−{vi}w(v1, v2, . . . , vn). (36)

A pictorial description of L is shown in Figure 3.

n−1

n
D1

n−1

n
D2

. . .

n−1

n
Dn

−Ψ12 · · · −Ψ1n

· · · −Ψ2n

...

L =

sym
m
etric

|V1| |V2| · · · |Vn|

|V1|

|V2|

...

|Vn|

Figure 3: The structure of the Laplacian of a hypergraph induced from an order-n
data tensor.

The co-clustering algorithm is exactly the same as that discussed in Section 4.2.
Again, the cost of computing the eigenvectors is O(k′ ·nnz(L)). The term nnz(L) as-
sumes the form O(

∑
i6=j |Vi||Vj |), which lies somewhere between O(|V |) and O(|V |2).

In particular, when L is sparse, nnz(L) is roughly O(|V |).
It is easy to see that when n = 2, the presented co-clustering algorithm for an

order-n tensor (hypergraph) reduces to the co-clustering algorithm for a bipartite
graph [11, 31], since when the graph is interpreted as a hypergraph, the Laplacian is

14



equivalent to that defined for the graph, up to a constant factor 1
2 (cf. Theorem 1).

Hence, our algorithm can be considered a higher order generalization of that in [11,
31].

5 Experimental Results

This section gives a few experimental results to show the effectiveness of tensor data
co-clustering using the spectral hypergraph partitioning technique. A case study is
also provided to demonstrate that co-clustering can be used to enhance collaborative
filtering. For all experiments the matrix W is set as D, i.e., the co-clusterings are
based on the normalized hypergraph cut.

5.1 Toy Examples

To test the correctness of the tensor co-clustering algorithm, we used two synthetic
order-3 tensors that have clear structures. The data were prepared as follows. First,
a nonnegative tensor ŵ of size 20 × 20 × 20 with random entries (in [0, 1]) was
generated. Then, a tensor w1 was constructed by modifying ŵ on four “opposite
corners”:

w1 ← ŵ,

w1(1 : 8, 1 : 8, 1 : 8) ← ŵ(1 : 8, 1 : 8, 1 : 8) + 10,

w1(9 : 20, 9 : 20, 1 : 8) ← ŵ(9 : 20, 9 : 20, 1 : 8) + 10,

w1(1 : 8, 9 : 20, 9 : 20) ← ŵ(1 : 8, 9 : 20, 9 : 20) + 10,

w1(9 : 20, 1 : 8, 9 : 20) ← ŵ(9 : 20, 1 : 8, 9 : 20) + 10,

and the other tensor w2 was constructed by modifying ŵ at the same locations in a
different way:

w2 ← ŵ,

w2(1 : 8, 1 : 8, 1 : 8) ← ŵ(1 : 8, 1 : 8, 1 : 8) × 10,

w2(9 : 20, 9 : 20, 1 : 8) ← ŵ(9 : 20, 9 : 20, 1 : 8) × 10,
w2(1 : 8, 9 : 20, 9 : 20) ← ŵ(1 : 8, 9 : 20, 9 : 20) × 10,
w2(9 : 20, 1 : 8, 9 : 20) ← ŵ(9 : 20, 1 : 8, 9 : 20) × 10.

It is obvious that the data in w1 has a clear co-clustering—each mode is split between
the 8th and the 9th entry—while the data in w2 may also be split in this way.

Figure 4 shows the second smallest eigenvector z of the Laplacians of the hy-
pergraphs induced from the two tensors. In each of the plot, the horizontal axis
corresponds to the entry values, while the entries are plotted at different heights
simply for better visualizations. Each color corresponds to a mode of the tensor.
For w1, the entries of z are clearly clustered, and indeed, splitting the vector accord-
ing to the signs perfectly recovers the co-clustering as intended by the construction of
the data. For w2, the entry values also form separated clusters, and the co-clustering
according to the vector z well reveals the structure of the tensor. This experiment
shows that our co-clustering algorithm works very well for synthetic examples.
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(a) Data tensor w1.
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(b) Data tensor w2.

Figure 4: Plots of the eigenvectors for two synthetic data tensors (Laplacians).
Horizontal locations correspond to entry values, while the entries are plotted at
different heights for better visualizations. Colors correspond to different modes of
the tensors.

5.2 Knowledge Discovery from Users-Movies-Genres Data

In this subsection, we perform co-clustering on a real-life tensor. The results reveal
interesting information on the data, and show advantages over the spectral bipartite
graph co-clustering technique.

The tested tensor is constructed from the MovieLens data set (million ratings)3.
Based on the standard users-by-movies matrix in the collaborative filtering scenario,
the data is augmented by introducing a third mode—movie genres. Hence we have a
data tensor that represents three types of entities: users, movies, and genres. Each
entry signifies the preference/rating of a user to a movie which belongs to some
genre. The entries take integer values from 1 to 5. To construct a meaningful set
of data, we selected only the movies that belong to either Horror or Children’s.
This resulted in a 5844 users × 588 movies × 17 genres tensor with 377, 480 ratings
(nonzeros), among which 148, 359 are distinct user ratings for certain movies. The
rest are duplicates since each movie may belong to various genres.

We performed a 2-way co-clustering on the tensor and show the results in Fig-
ures 5 and 6(a). For simplicity, the final co-clustering is defined according to the
signs of the eigenvector entries. Indeed, what is important here is their ordering.
Figure 5 shows the results along the movies-by-genres side of the tensor. The movies
are clearly partitioned in two clusters: one for Horror movies and the other for
Children’s. An interesting observation is that the movie genres are also split in two
clusters, depending on whether they are more related to Horror or to Children’s.
The only exception may be the genre War, which lies on the border of the split. It
might be preferred to have War less related to Children’s than Horror. Neverthe-
less, in general we see that the co-clustering gives reasonable results on categorizing
the movies and the genres.

Figure 6(a) gives the co-clustering result along the users-by-movies side of the
3http://www.grouplens.org/
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Figure 5: Co-clustering of the MovieLens tensor: the movies-by-genres side.
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Figure 6: Co-clustering of the MovieLens tensor: the users-by-movies side.
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tensor. As a comparison, we perform a co-clustering on the users-by-movies matrix
based on the bipartite graph model [11, 31] and show the result in 6(b). Intuitively,
a good co-clustering should have the nonzero patterns aggregate to the top-left and
bottom-right corners of the matrix as much as possible. If the clusters are well
defined, the other two corners of the reordered matrix are very sparse. However,
for this data it seems that the clusters have significant overlaps. In this case, the
information provided by the co-clustering of the tensor is more suggestive than that
obtained from the co-clustering on the matrix only.

5.3 A Case Study: Augmented Collaborative Filtering

The role of collaborative filtering is to predict the preference of a customer to a
particular product, given his/her preferences to other products and other customers’
preferences to the same product. In the context of movie rating, a large user-by-
movie matrix is given, where each entry is the rating of a movie given by a specific
user. Typically the matrix is rather sparse, since it may not be possible to ask every
user to rate all the movies in the database. Given the matrix of existing ratings,
the task is to predict some unknown entries.

Co-clustering helps the predictions by identifying strong user-movie connections.
Consider that the sets of users Vu and movies Vm are co-clustered into subsets Vu,1,
. . . , Vu,k and Vm,1, . . . , Vm,k by k-way co-clustering. Then for each i, the subset Vu,i

is strongly tied with Vm,i since they belong to the same (i-th) partition. Hence, it
is very likely that the prediction of a user rating to a movie, based on the training
samples in the submatrix Vu,i×Vm,i, is more accurate than that based on the original
whole matrix. On the other hand, if some user belongs to the Vu,i group but the
movie does not belong to the Vm,i group, we may not be able to make improvements
other than computing predictions based on all the training data we have.

Our augmented collaborative filtering adds one more dimension to the data be-
fore performing co-clustering, which is, the genre dimension. As seen from the
previous subsection, augmenting the matrix data to a tensor helps to obtain a more
meaningful co-clustering. In short, our scheme is the following: We construct the
users-by-movies-by-genres tensor, on which we perform a co-clustering. In particu-
lar, the users are clustered into Vu,1, . . . , Vu,k, and the movies Vm,1, . . . , Vm,k. If
a user u and a movie m belongs to Vu,i and Vm,i respectively for some i, then the
prediction of u’s rating to m is computed based on the training data in Vu,i × Vm,i

only. Otherwise, the rating is computed as usual. Here, we haven’t specified the
“usual” method for predicting. In fact, this scheme works for all the methods we
experimented with.

We used the whole MovieLens data set for tests. We did a 4 : 1 train/test split
and removed empty rows and columns. This resulted in a 6040 users× 3679 movies
matrix. The corresponding tensor in addition has a mode of 18 genres. We per-
formed 3-way co-clusterings, and the collaborative filtering methods were naive aver-
age prediction (the baseline), Pearson correlation [27], and SVD [28]. The prediction
accuracy is measured by the mean-average-error (MAE).

Table 1 shows the MAE of the predictions for entries that belong to the Vu,i×Vm,i

blocks. It can be seen that the predictions of these entries in general are improved
if a specific method is applied on the Vu,i × Vm,i submatrix instead of on the whole
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AVE COR SVD
0.7776 0.7600 0.6883 0.6800 0.7063 0.6955
0.7756 0.7724 0.6976 0.7001 0.7273 0.7218
0.6923 0.6926 0.6412 0.6442 0.6670 0.6583

Table 1: Comparisons of MAE for each Vu,i×Vm,i submatrices. Three methods were
tested: AVE, COR, and SVD. In each sub-table, the left column represents predic-
tions computed based on all the training data, while the right column represents
those computed based on only the data in the Vu,i×Vm,i submatrix. In general, our
scheme (the right column) is better (than the left column).

AVE COR SVD
0.7489 0.7452 0.6834 0.6826 0.7019 0.6976

Table 2: Comparisons of MAE. Three methods were tested: AVE, COR, and SVD.
In each sub-table, the value on the left is the error from no co-clustering, while
the value on the right is that from co-clustering. Co-clustering slightly improves on
these existing methods.

matrix. In particular, for methods that assume an underlying structure of the data
(for example, the SVD method assumes that the data matrix consists of a few rank-
one structures) the co-clustering results better capture this structure. Thus, clusters
are more homogeneous and the methods yield better performance on the small
structural clusters. The final prediction accuracies for the test data, as shown in
Table 2, further convince that the idea of tensor co-clustering can benefit traditional
collaborative filtering.

6 Conclusions

We have presented a co-clustering technique for high order relational data that
assume a tensor form. The method is based on the spectral partitioning of hyper-
graphs, which provide natural models for tensor data. The spectral hypergraph
partitioning techniques introduced in this paper are generalizations of those for
graphs, by virtue of the consistent definitions of (hyper)graph Laplacians. The rich
spectral theories of graphs can thus be seamlessly integrated to hypergraphs, and
hypergraph partitionings inherit the advantages of spectral partitionings, such as
clear objective functions, easy computations, and a natural spectral embedding in-
terpretation. When applied to structural hypergraphs that are induced from data
tensors, the hypergraph partitioning techniques have been shown to be effective in
revealing the underlying cluster structures of the relational data. The proposed
tensor co-clustering technique is a high order generalization of the bi-partite graph
co-clustering technique, and can be applied to enhance other data mining tasks,
such as collaborative filtering.
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