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Abstract
Deep neural networks, while generalize well, are
known to be sensitive to small adversarial pertur-
bations. This phenomenon poses severe security
threat and calls for in-depth investigation of the ro-
bustness of deep learning models. With the emer-
gence of neural networks for graph structured data,
similar investigations are urged to understand their
robustness. It has been found that adversarially
perturbing the graph structure and/or node features
may result in a significant degradation of the model
performance. In this work, we show from a differ-
ent angle that such fragility similarly occurs if the
graph contains a few bad-actor nodes, which com-
promise a trained graph neural network through
flipping the connections to any targeted victim.
Worse, the bad actors found for one graph model
severely compromise other models as well. We call
the bad actors “anchor nodes” and propose an al-
gorithm, named GUA, to identify them. Thorough
empirical investigations suggest an interesting find-
ing that the anchor nodes often belong to the same
class; and they also corroborate the intuitive trade-
off between the number of anchor nodes and the at-
tack success rate. For the dataset Cora which con-
tains 2708 nodes, as few as six anchor nodes will
result in an attack success rate higher than 80% for
GCN and other three models.

1 Introduction
Graph structured data are ubiquitous with examples rang-
ing from proteins, power grids, traffic networks, to social
networks. Deep learning models for graphs, in particu-
lar, graph neural networks (GNN) [Kipf and Welling, 2017;
Hamilton et al., 2017; Veličković et al., 2017] attracted much
attention recently and have achieved remarkable success in
several tasks, including community detection, link prediction,
and node classification. Their success is witnessed by many
practical applications, such as content recommendation [Wu
et al., 2019b], protein interaction [Tsubaki et al., 2018], and
blog analysis [Conover et al., 2011].
∗Contact Author

Deep learning models are known to be vulnerable and
may suffer intentional attack with unnoticeable change of
the data [Zügner et al., 2018]. This observation originated
from early findings by [Szegedy et al., 2014] and [Good-
fellow et al., 2014], who show that images perturbed with
adversarially designed noise can be misclassified, while the
perturbation is almost imperceptible. This minor but inten-
tional change would result in severe consequences socially
and economically. For example, Wikipedia hoax articles can
effectively disguise through modifying their links in a proper
manner [Kumar et al., 2016]. For another example, frauds
may hide themselves through building plausible friendship in
a social network, to confuse the prediction system.

In this work, we study the vulnerability of GNNs and show
that it is possible to attack them if a few graph nodes serve as
the bad actors: when their links to a certain node are flipped,
the node will likely be misclassified. Such attacks are akin
to universal attacks because the bad actors are universal to
any target. We propose a graph universal adversarial attack
method, GUA, to identify the bad actors.

Our work differs from recent studies on adversarial attack
of GNNs [Dai et al., 2018; Zügner et al., 2018; Jin et al.,
2019] in the attack setting. Prior work focuses on poisoning
attacks (injecting or modifying training data as well as labels
to foster a misbehaving model) and evasion attacks (mod-
ifying test data to encourage misclassification of a trained
model). For graphs, these attacks could modify the graph
structure and/or node features in a target-dependent scenario.
The setting we consider, on the other hand, is a single and
universal modification that applies to all targets. One clear
advantage from the attack point of view is that computing
the modification incurs a lower cost, as it is done once for
all. While universal attacks were studied earlier (see, e.g.,
[Moosavi-Dezfooli et al., 2017] who compute a single per-
turbation applied to all images in ImageNet), graph universal
attacks are rarely explored. This work contributes to the liter-
ature a setting and a method that may inspire further study on
defense mechanisms of deep graph models.

Figure 1 illustrates the universal attack setting we consider.
A few bad-actor nodes (4, 5, and 7) are identified; we call
them anchor nodes. When an adversary attempts to attack the
classification of a target node (say, 2), the existing links from
the anchor nodes to the target node are removed while non-
existing links are created. The identification method we pro-



Figure 1: Illustration of GUA. A small number of anchor nodes (4,
5, and 7) is identified. To confuse the classification of a target node
(e.g., 2), their connections to this node are flipped.

pose, GUA, is conducted on a particular classification model
(here, GCN), but the found anchors apply to other models as
well (e.g., DeepWalk, node2vec, and GAT).

As a type of attacks, universal attacks may be preferred
by the adversary for several reasons. First, the anchor nodes
are computed only once and there incurs no extra cost when
attacking individual targets. Second, the number of anchors
can be very small (it is easier to compromise fewer nodes).
Third, attacks are less noticeable when only a limited number
of links are flipped.

The contribution of this work is threefold:
• We propose a novel algorithm for graph universal attack

that achieves high success rate and demonstrates vulnera-
bility of graph deep learning models.

• We demonstrate appealing generalization of the attack al-
gorithm, which finds anchor nodes based on a small train-
ing set but successfully attacks a majority of target nodes.

• We show attractive transferability of the found anchors
(based on GCN) through demonstrating similar attack suc-
cess rates on other graph learning models.

2 Notation and Background
A graph is denoted as G = (V,E), where V is the node set
and E is the edge set. An unweighted graph is represented
by the adjacency matrix A = {0, 1}|V |×|V |. The graph nodes
have d-dimensional features, which collectively form the fea-
ture matrix X , whose dimension is |V | × d.

In GCN [Kipf and Welling, 2017], one normalizes the ad-
jacency matrix into Â = D̃−

1
2 ÃD̃−

1
2 , where Ã = A + I

and D̃ is the diagonal adjusted degree matrix with diagonal
entries D̃ii =

∑|V |
j=1 Ãij . Then, the neural network is

Z = f(A,X) = softmax(ÂReLU(ÂXW (0))W (1)), (1)

where W (0) and W (1) are model parameters. The training of
the parameters uses the cross-entropy loss.

3 Graph Universal Adversarial Attack
Following the notation introduced in the preceding sec-
tion, given the graph adjacency matrix A and node fea-
ture matrix X , we let f(A,X) be the classification model
and let l̂(A,X, i) be the predicted label of node i; that is,
l̂(A,X, i) = arg max f(A,X)i.

Given a trained model f , the goal is for each node i to
modify the adjacency matrixA intoA′ such that l̂(A′, X, i) 6=

l̂(A,X, i). Note that the modified A′ is i-dependent in our
attack setting.

3.1 Attack Vector and Matrix
Let the graph have n nodes. We use a length-n binary vector
p to denote the attack vector to be determined, where 1 means
an anchor node and 0 otherwise. Hence, A′ is a function of
three quantities: the original adjacency matrix A, the target
node i, and the attack vector p.

To derive an explicit form of the function, we extend the
vector p to an n× n matrix P , which starts as a zero matrix,
with the ith row and ith column replaced by the attack vector
p. Thus, the (i, j) element of the attack matrix P indicates
whether the connection of the node pair (i, j) is flipped: 1
means yes and 0 means no.

It is then not hard to see that one may write the function

A′ := g(A, i, p) = (1− P ) ◦A+ P ◦ (10 −A), (2)

where 1 denotes the matrix of all ones and 10 is similar except
that the diagonal is replaced by zero; ◦ means element-wise
multiplication. The term (1 − P ) serves as the mask that
preserves the connections of all node pairs other than those
between the anchors j and the target node i. The term (10 −
A) intends to flip the whole A (except diagonal) but the P in
the front ensures that only the involved (i, j) pairs are actually
flipped. Moreover, one can verify that the diagonal of the new
adjacency matrix remains zero.

For gradient based optimization, the binary elements of the
attack vector p may be relaxed into real values between 0 and
1. In this case, the connections of all node pairs other than
those between the anchors j and the target node i remain the
same. On the other hand, the connections between the in-
volved (i, j) pairs are fractionally changed. The jth element
of p indicates the strength of change.

3.2 Outer Procedure: GUA
Let VL be the training set with known node labels. Given an
attack success rate threshold δ, we formulate the problem as
finding a binary vector p such that

Err(VL) :=
1

|VL|

|VL|∑
i=1

1{l̂(A′, X, i) 6= l̂(A,X, i)} ≥ δ. (3)

To effectively leverage gradient-based tools for adversar-
ial attacks, we perform a continuous relaxation on p so that
it can be iteratively updated. Now elements of p stay in the
interval [0, 1]. The algorithm proceeds as follows. We initial-
ize p with zero. In each epoch, we begin with a binary p and
iteratively visit each training node i. If i is not misclassified
by the current p, we seek a minimum continuous perturbation
∆p to misclassify it. In other words,

∆p = arg min
r
||r||2, s.t. l̂(g(A, i, p+r), X, i) 6= l̂(A,X, i).

(4)
We will elaborate in the next subsection an algorithm to find
such ∆p. After all training nodes are visited, we perform
a hard threasholding at 0.5 and force back p to be a binary
vector. Then, the next epoch begins. We run a maximum
number of epochs and terminate when (3) is satisfied.



The updated p ← p + ∆p found through solving (4), if
unbounded, may be problematic because (i) it may incur too
many anchor nodes and (ii) its elements may be outside [0, 1].
We perform an L2-norm projection to circumvent the first
problem and a clipping between interval [0, 1] to circumvent
the second. The rationale of L2-norm projection is to sup-
press the magnitude of p and encourage that eventually few
entries are greater than 0.5. The maximum number of an-
chor nodes grows quadratically with the projection radius ξ.
A small ξ clearly encourages fewer anchors.

Through experimentation, we find that clipping is crucial
to obtaining a stable result. In a later section, we illustrate
an experiment to show that the attack success rate may drop
to zero in several random trials, if clipping is not performed.
See Figure 2(a).

The procedure presented so far is summarized in Algo-
rithm 1. The algorithm for obtaining ∆p is called IMP (it-
erative minimum perturbation) and will be discussed next.

Algorithm 1 Graph Universal Attack (GUA)
Input: adjacency matrix A, node features X , max epoch, max
iteration max iter, δ, data overshoot
p← 0
while epoch < max epoch do

for i ∈ VL do
A′ ← g(A, i, p)

if l̂(A′, X, i) = l̂(A,X, i) then
∆p, iter ← IMP(A′, i, overshoot,max iter)
p← p+ ∆p
p← L2-norm projection(p)
p← p.clip(0, 1)

end if
end for
p← (p > 0.5) ? 1 : 0
compute Err(VL)
if Err(VL) ≥ δ, break

end while
return p

3.3 Inner Procedure: IMP
To solve (4), we adapt DeepFool [Moosavi-Dezfooli et al.,
2016] to find a minimum perturbation that sends the target
node i to the decision boundary of another class.

Denote by v the minimum perturbation. To find the
closest decision boundary other than that of the original
class pred = l̂(A,X, i), we first select the closest class
k = arg minc6=pred

|∆fc|
‖∆wc‖2 , where ∆fc = f(A,X)i,c −

f(A,X)i,pred and ∆wc = ∇f(A,X)i,c − ∇f(A,X)i,pred.
Then, we update v by adding to it ∆v:

∆v =
|∆fk|
||∆wk||22

∆wk. (5)

We iteratively update v until (1+overshoot)×v successfully
attacks node i, where overshoot is a small factor that ensures
the node passes the decision boundary. We also clip the new
A′ to ensure stability, in a manner similar to the handling of
p in the preceding subsection. The procedure for computing
the minimum perturbation v is summarized in Algorithm 2.

Algorithm 2 Iterative Minimum Perturbation (IMP)
Input: A, node index i, overshoot, max iter
v ← 0
iter ← 0
pred← l̂(A,X, i)
A′ ← A
while l̂(A′, X, i) = pred and iter < max iter do

∆v ← |∆fk|
||∆wk||22

∆wk according to Equation (5)
v ← v + ∆v
A′ ← g(A, i, (1 + overshoot)× v).clip(0, 1)

end while
v ← (1 + overshoot)× v
return v, iter

4 Experiments
In this section, we evaluate thoroughly the proposed attack
GUA through investigating its design details, comparing with
baselines, performing scalability tests, and validating trans-
ferability from model to model. Code is available at https:
//github.com/chisam0217/Graph-Universal-Attack.

4.1 Datasets and settings
We compute the anchor set through attacking the standard
GCN model. The parameters of Algorithms 1 and 2 are:
max epoch = 100, max iter = 20, δ = 0.9, and
overshoot = 0.02. To cope with randomness, experiments
are repeated ten times for each setting. We work with three
commonly used node classification benchmark datasets [Sen
et al., 2008]. Their information is summarized in Table 1.

Table 1: Dataset Statistics. Only the largest connected component
(LCC) is considered.

Statistics Cora Citeseer Pol.Blogs

Nodes(LCC) 2708 3327 1222
Edges(LCC) 5278 4676 16714
Classes 7 6 2
Train/test split 140/1000 120/1000 121/1101
Accuracy(GCN) 81.4% 70.4% 94.3%

4.2 Baseline Methods
Because graph universal attacks were barely studied, we de-
sign four relavant baselines for GUA. The first two are basic
while the last two are more sophisticated.
• Global Random: Each node has a probability Prob to

become an anchor node. In other words, each ele-
ment of the attack vector p is an independent sample of
Bernoulli(Prob).

• Victim-Class Attack (Victim Attack): We sample a pre-
scribed number of anchor nodes without replacement from
nodes of a particular class. This baseline originates from
a finding that the anchor nodes computed by GUA often
belong to the same class (see more details later).

• High-Degree (HD) Global Random: We strengthen the
Global Random baseline by picking random anchors uni-
formly from top 10% nodes with highest degrees.

https://github.com/chisam0217/Graph-Universal-Attack
https://github.com/chisam0217/Graph-Universal-Attack


• Top-Confidence (TC) Victim Attack: The anchor set is
composed of nodes with the highest prediction probability
from the victim class.

Additionally, we compare with Fast Gradient Attack
(FGA) [Chen et al., 2018] and Nettack [Zügner et al., 2018],
both of which are per-node attack methods. They are not uni-
versal attacks. FGA flips edges/non-edges connecting to dif-
ferent nodes depending on the target, while Nettack modifies
not only the edges, but also the node features. We also com-
pare with Meta-Self Attack [Zügner and Günnemann, 2019],
which performs the global attack by perturbing the graph
structure through meta learning.

4.3 Results
The evaluation metric is attack success rate (ASR). Another
quantity of interest is the number of modified links (ML). For
universal attacks, it is equivalent to the anchor set size.

Importance of clipping. As discussed in the design of
GUA, the continuous relaxation of the attack vector p re-
quires clipping throughout optimization. For an empirical
supporting evidence, we show in Figure 2(a) the ASR ob-
tained through executing Algorithm 1 with and without clip-
ping, respectively. Clearly, clipping leads to stabler and su-
perior results. Without clipping, the ASR may drop to zero in
some random trials. The reason is that several entries of p be-
come strongly negative, such that projections result in small
values for all positive entries and subsequent hard threshold-
ing zeros out the whole vector p.

(a) Clipping. (b) Deletion of anchor nodes.

Figure 2: Left: ASRs of using clipping versus not. Right: average
ASR after deleting nodes from the anchor set.

Effect of projection radius. The L2-norm projection ra-
dius is a positive quantity ξ so that the projection of p is
ξ · p/‖p‖2. The number of anchors is implicitly controlled
by the projection radius ξ. Increasing ξ will enlarge the an-
chor set. We treat ξ as a parameter and study its relationship
with the number of anchor nodes and corresponding ASR.
See Table 2. As expected, the average ML (that is equal to
the number of anchor nodes) increases with ξ non-linearly. A
larger anchor set also frequently results in higher ASR, be-
cause of more changes to the graph.

Additionally, the individual result for each trial may sug-
gest even more attractive findings. For example, for the case
of Cora and ξ = 4, the MLs for the ten trials are {5, 9, 10, 7, 8,
9, 9, 9, 6, 7} and the corresponding ASRs are {0.780, 0.875,
0.869, 0.850, 0.866, 0.880, 0.874, 0.813, 0.805, 0.809}. This

Figure 3: The average ASRs on all datasets with respect to projec-
tion radius L2.

result means that as few as six anchor nodes are sufficient to
achieve 80% ASR. The different number of anchors under the
same ξ also corroborates the above statement that the number
of anchors is implicitly controlled by the projection radius ξ.

In Figure 3, we plot the average ASRs with respect to
different L2-norm projection radius. For Cora, Citeseer
and Pol.Blogs, the plateaued ASR is 89.91%, 84.77% and
52.31%, at ξ = 8, ξ = 9 and ξ = 12, respectively.

On the other hand, one also sees that the attacks on
Pol.Blogs are less effective. The reason is that the graph has a
large average degree, which makes it relatively robust to uni-
versal attacks. As observed by [Zügner et al., 2018] and [Wu
et al., 2019a], nodes with more neighbors are harder to attack
than those with fewer neighbors. The higher density of the
graph requires a larger anchor set to achieve high ASR. We
intend to maintain a small anchor set for secretive attacks.
Thus, keeping the other hyperparameters the same, we report
future results by setting ξ = 4, 4, 8 on Cora, Citeseer and
Pol.Blogs, respectively.
Nodes with low connectivity are easier to attack. On
Cora, when ξ = 4, the average degree of successfully at-
tacked nodes is 4.29, while that of failed ones is 7.08. This
result also corroborates the conclusions from [Zügner et al.,
2018], that low-degree nodes are easier to attack. The phe-
nomenon is not surprising since the neighborhoods of low-
degree nodes tend to be dominated by anchors.
Blindly using more anchors does not work. Now that we
have an effective method to compute the anchor nodes, we
investigate whether randomly chosen anchor nodes are simi-
larly effective. In Figure 4, we plot the ASR results of Global
Random. One sees that all ASRs for Cora are below 40%
and for Citeseer below 30%. Such results are way inferior to
those of GUA. Moreover, using hundreds and even a thousand
anchors does not improve the ASR.
Anchors often belong to the same class. With analysis of
the anchors, an interesting finding is that one class dominates.
The average entropies of the anchors’ class distribution on
Cora, Citeseer and Pol.blogs are 0.1, 0.1, and 0, respectively.
This indicates that in most of the cases only one class appears.
One possible reason is that anchors united by the same class
form an overwhelming influence: either to allure a node into
this class through establishing links or kick it out of the class
through eliminating links. Actually, one of our baselines,
Victim-Class Attack, is designed for such a phenomenon.
Wrong classifications often coincide with the anchor class.
A natural conjecture following the above finding is that a tar-



Table 2: Average ML and average ASR under different projection radius ξ.

Cora Citeseer Pol.Blogs

ξ = 3 ξ = 4 ξ = 5 ξ = 3 ξ = 4 ξ = 5 ξ = 3 ξ = 4 ξ = 5 ξ = 8

Avg. ML 4.4 7.9 10.8 3.3 7.7 13.9 2.6 5.3 10 26.6
Avg. ASR(%) 75.60 84.21 83.56 63.67 77.07 80.01 17.68 22.65 30.84 43.06

(a) Cora. (b) Citeseer.

Figure 4: Performance of global random attack, repeated ten times.

get node will be misclassified to the (majority) class of the
anchors. Our experiment on Cora corroborates this conjec-
ture. The results indicate that 96% of the test nodes are mis-
classified to class 6 when all the anchor nodes belong to this
class. An analysis of the dataset shows that each node has
two neighbors on average. Hence, flipping the connections
to the anchor nodes possibly makes the anchor class domi-
nate among the new set of neighbors. Then, classifying into
the anchor class becomes more likely. This result echoes
one mentioned by [Nandanwar and Murty, 2016], who con-
clude that classification of a node is strongly influenced by the
classes of its neighbors; it tends to coincide with the majority
class of the neighbors.

To generalize the above result, we collect the entropy
change of the class distribution before and after attack. On
Cora, Citeseer and Pol.Blogs, the changes are respectively
−1.66, −1.49 and −0.07. For all datasets, the entropy de-
creases, indicating stronger dominance of one class after at-
tack. The decrease is more substantial for Cora and Citeseer
than for Pol.Blogs, which is expected, because the latter has
denser and more varied connections, which eclipse the domi-
nance of the anchor class.

To further illustrate the dominance of the anchor class, we
investigate the ASRs of the nodes from anchor class versus
non-anchor class. The ASRs are strikingly different. For ex-
ample, on Cora, when ξ = 4, the ASR of nodes from the
“anchor class” is 0%, while that of nodes from “non-anchor
class” is 96.5%. Such a phenomenon is expected. In most
cases, flipping the edges with the anchor nodes results in
dominance of the anchor class. Furthermore, we find that
99.9% of the successfully attacked targets are misclassified
into the anchor class, corroborating the theory.

Comparison with baselines. We compare GUA with four
baseline methods explained in Section 4.2, together with two
non-universal attacks and one global attack. Since we cannot
choose the number of anchor nodes for GUA, we obtain this
value based on the results in Table 1 when ξ = 4, 4, 8 on

Cora, Citeseer and Pol.Blogs, respectively. In this case, the
average ML for these datasets is respectively 7.9, 7.7, and
26.6. Therefore, we set the number of anchor nodes for all
baselines, but for Global Random and Meta-Self, to be the
ceiling of these values. For Global Random, Prob is set such
that the expected number of anchor nodes is these values. For
Meta-Self, the MLs are 53, 47 and 167 for Cora, Citeseer
and Pol.Blogs, respectively, which are 1% of the number of
original edges in corresponding datasets.

Table 3: Average ASR. For a fair comparison, all universal attack
methods except Global Random use the same number of anchor
nodes. FGA and Nettack are not universal attacks and we set their
ML per node to be the same as the number of anchor nodes.

Attack Method Cora Citeseer Pol.Blogs

GUA 84.21% 77.07% 43.06%
Global Random 22.00% 26.58% 17.58%
Victim Attack 62.64% 54.47% 32.45%
HD Global Random 26.68% 51.74% 17.28%
TC Victim Attack 79.64% 73.45% 36.09%
FGA (not univ.) 89.70% 84.82% 57.67%
Nettack (not univ.) 86.09% 77.06% 76.91%
Meta-Self (global) 16.21% 30.37% 14.25%

From Table 3, one sees that GUA significantly outper-
forms other universal attack methods. Among them, Top-
Confidence Victim-Class Attack is the most effective, but it is
still inferior to GUA. This result suggests that GUA leverages
more information (in this case, node features) than the class
labels, although we have seen strong evidences that anchor
nodes computed by GUA mostly belong to the same class.

One also sees that GUA is inferior to FGA and Nettack if
only ASR is concerned. FGA and Nettack are not univer-
sal attack methods; they find different anchors for each target
node. Thus, it is possible to optimize the number of anchors
(possibly different for each target) to aim at a certain ASR, or
equivalently, to achieve a better ASR given a certain number
of anchors. However, it is also because they are non-universal
attacks, that the total number of anchors for all targets soars.
For example, FGA modifies links with 1406 anchors on Cora
and 1359 anchors on Citeseer in total. GUA also significantly
outperforms Meta-Self, since it only attacks the graph once,
instead of attacking each node individually.

Effect of removing anchor nodes. Once a set of anchor
nodes is identified, a natural question asks if the set contains
redundancy. We perform the following experiment: we ran-
domly remove a number of anchor nodes and recompute the
ASR. Because on Cora and Citeseer, the average number of
anchor nodes for ξ = 4 is 7.9 and 7.7 respectively, we use an
anchor set of size eight to conduct the experiment. For each
case, we randomly remove 1–7 nodes from the anchor set and



report the corresponding average ASR. The results are shown
in Figure 2(b). From the figure, one sees that the average
ASR gradually decreases to zero as more and more anchor
nodes are removed. This result indicates that there exists no
redundancy in the anchor set. The decease is faster when
more nodes are removed, but the average ASR is still quite
high even when removing half of the nodes. This finding is
another evidence that supports the trade-off between anchor
set size and ASR, in addition to the prior Table 2.

Speeding up training through sampling. The cost of find-
ing the anchors is O(n · |VL| ·max epoch), because in each
epoch the attack vector p is kept being updated through it-
erating |VL| training nodes. For a given graph with fixed n,
we are interested in seeing whether reducing the training set
size affects the attack performance. We randomly sample a
portion of the training set in each epoch and report in Table 4
the resulting ASR. One sees that the ASR barely changes by
using 40% of the data to train each epoch. Further reducing
the size starts to hurt, but even using 5% of the training data,
the ASR drops by only 5% to 13%.

Moreover, GUA is efficient compared to the state-of-art at-
tack method Nettack [Zügner et al., 2018], whose complexity
isO(n2 ·(E ·T +F )) to attack all nodes, whereE and F rep-
resent the number of edge and feature perturbations, respec-
tively, and T is the average size of a 2-hop neighborhood. In
practice, Nettack is slower to run, due to the n2 factor.

Table 4: Average ASR through sampling the training set per epoch.

Dataset 100% 40% 20% 10% 5%

Cora 84.2% 83.7% 83.2% 82.6% 79.9%
Citeseer 77.1% 77.4% 69.7% 69.7 65.2%
Pol.Blogs 43.1% 40.1% 35.7% 37.7% 30.8%

Table 5: Average ASR after applying the anchor nodes found by
GUA when ξ = 4 on Cora and Citeseer, and ξ = 8 on Pol.Blogs.

Dataset GCN DeepWalk node2vec GAT

Cora 84.21% 85.80% 80.84% 85.15%
Citeseer 77.07% 81.71% 74.07% 77.02%
Pol.Blogs 43.06% 33.21% 41.62% 38.85%

Transferability. We have already seen that GUA is quite
effective in attacking GCN. Such an attack belongs to the
white-box family, because knowledge of the model to be at-
tacked is assumed. In reality, however, the model parame-
ters may not be known at all, not even the model form. At-
tacks under this scenario is called black-box. One approach
to conducting black-box attack is to use a surrogate model.
In our case, if one is interested in attacking graph deep learn-
ing models other than GCN, GCN may serve as the surrogate.
The important question is whether anchors found by attacking
the surrogate can effectively attack other models as well.

We perform an experiment with three such models: Deep-
Walk [Perozzi et al., 2014], node2vec [Grover and Leskovec,
2016], and GAT [Veličković et al., 2017]. The first two com-
pute, in an unsupervised manner, node embeddings that are
used for downstream classification, whereas the last one is a

graph neural network that directly performs classification. In
Table 5, we list the ASR for these models. One sees that
the ASRs are similarly high as that for GCN; sometimes
even surpassing. Specifically, GAT is developed based on
GCN through incorporating the attention mechanism, while
Node2vec and DeepWalk update node embeddings by explor-
ing the local structure via random walk. Since GUA modifies
the neighborhood of the target, it is reasonable that all the
other methods can also be misled efficiently. This finding
concludes that the results of GUA are well transferable.

5 Related Work
Since the seminal work by [Szegedy et al., 2014], various
types of methods have been proposed to generate adversar-
ial examples. For instance, [Goodfellow et al., 2014] intro-
duce the fast gradient sign method and [Carlini and Wagner,
2017] develop a powerful attack through iterative optimiza-
tion. This work is related to recent advances in adversarial
attacks on GNNs and general universal attacks.
Adversarial attack on GNN. [Zügner et al., 2018] propose
Nettack that uses a greedy mechanism to attack the graph em-
bedding model by changing the entry that maximizes the loss
change. [Dai et al., 2018] introduce a reinforcement learning
based method that modifies the graph structure and signifi-
cantly lowers the test accuracy. [Wang et al., 2018] propose
Greedy-GAN that poisons the training nodes through adding
fake nodes indistinguishable by a discriminator. [Chen et al.,
2018] recursively compute connection-based gradients and
flip the connection value based on the maximum gradient.
[Zügner and Günnemann, 2019] attack the whole graph by
tackling an optimization problem using meta learning.
Universal attacks. [Moosavi-Dezfooli et al., 2017] train a
quasi-imperceptible universal perturbation that successfully
attacks most of the images in the same dataset. [Brown et
al., 2017] generate a small universal patch to misclassify any
image. [Wu and Fu, 2019] search for a universal perturbation
that can be well transferred to several models.

6 Conclusion
In this work, we consider universal adversarial attacks on
graphs and propose the first algorithm, named GUA, to effec-
tively conduct these attacks. GUA finds a set of anchor nodes
to mislead the classification of all nodes in the graph through
flipping the connections between the anchors and the target
node. GUA achieves the highest ASR compared to several
universal attack baselines. The training process can be accel-
erated through sampling the training set in each epoch. There
exists a trade-off between ASR and the anchor set size and
we find that a very small size is sufficient to achieve remark-
able attack success. Additionally, we find that the computed
anchor nodes often belong to the same class. We also find
that the anchor nodes used to attack one model equally well
attack other models. In the future, we plan to develop defense
mechanisms to effectively counter these attacks.
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