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Abstract

Solving large sparse linear systems is ubiquitous in science and engineering, gener-
ally requiring iterative solvers and preconditioners since many problems cannot be
solved efficiently by using direct solvers. The practical performance of solvers and
preconditioners is sometimes beyond theoretical analysis, however, and an optimal
choice calls for intuition from domain experts and knowledge of the hardware, as
well as trial and error. In this work we propose a new method for optimal solver-
preconditioner selection using graph neural networks as a complementary solution
to laborious expert efforts. The method is based on the graph representation of the
problem and the idea of integrating node features with graph features via graph
convolutions. We show that our models outperform traditional machine learning
models investigated by a margin of 25% under the NDCG evaluation metric.

1 Introduction

Solving linear systems of the form
Ax = b , (1)

where A is a large and sparse matrix, is a core computing task in numerous scientific and engineering
problems, such as piezoelectric crystal vibration simulation [1], superconductor modeling [2], and
airborne electromagnetic problems [3]. These problems typically scale poorly for direct solvers
because of constraints of memory and computational resources. Therefore, iterative methods, as
well as preconditioners, are continuously being developed to improve effectiveness and accelerate
the computations [4]. Because of the wide variety of algorithms, data structures, and hardware
architectures, however, selecting the optimal combination of a solver and a preconditioner for a
given linear system is difficult for application developers and researchers and may require extensive
background and expertise in numerical analysis and high-performance computing. For example, the
scientific computing library PETSc [5, 6, 7] already includes 17 iterative methods, 17 preconditioners,
and 6 matrix formats (not counting support for third-party packages). The growing pool of new
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techniques becomes a barrier to productivity. Therefore, a long-standing goal has been to automate
the process and ease the reliance on numerical analysis and hardware knowledge. It becomes more
crucial when the problem size is enormous and its solution requires parallel computation resources.

Achieving this goal is a challenging task, however, because the decision cannot be made based on
the algorithm analysis alone: the problem characteristics also must be taken into account. While
most existing machine learning methods rely on finding features that are relevant for the performance
prediction but often expensive to compute, we propose a machine learning method that uses graph
neural networks (GNNs) for fast selection of preconditioners and sparse iterative solvers based upon
features that are easy to compute on graphs. Our work is motivated by the observations that matrices
of sparse linear systems entail a graph interpretation and GNNs has shown promises for learning and
encapsulating the domain knowledge required for efficient solution of sparse linear systems [8].

For a proof of concept, only selected built-in Krylov solvers and preconditioners in PETSc are
considered here for the performance benchmark. Users with access to other software libraries can
follow a similar procedure and create a suitable training dataset to obtain specific predictions for
solver and preconditioner selection in their computing environment.

Our main contributions are listed below.

• We introduce a general graph representation of large sparse matrices so that the local
structure of the matrix is exploited by the graph convolution process.

• We formulate a score-based metric that accounts for the budget of running time and accuracy
requirement of the target problem, thus allowing for a trade-off between these two factors.

• We analyze four known graph convolution models through the proposed GNN architecture
that combines node features with graph features.

• We introduce a two-level pooling strategy to simulate the mechanism by which human
experts select iterative solvers and preconditioners.

2 Related work

Over the years, the literature has reported automatic methodologies for selecting preconditioned
linear solvers for sparse linear systems. In 1996, Barrett et al. [9] proposed a poly-iterative approach
that executed several Krylov methods simultaneously for the same problem to predict the best solver.
Bhowmick et al. [10, 11] presented ideas for applying alternating decision trees to choose linear
solvers adaptively. Holloway and Chen [12] extended the methodology to neural networks, while
Kuefler and Chen [13] evaluated the effectiveness of reinforcement learning. Bhowmick et al. [14]
subsequently investigated other machine learning (ML) methods, including k-nearest neighbor, naive
Bayes, and support vector machines. Similar research includes that of Eller et al. [15], who introduced
a dynamic model especially for adaptive hydraulics problems during transient simulations. Kotthoff
et al. [16] compared ML techniques to address the more general problem of algorithm selection.

Software and systems for tuning and recommending numerical solvers have also been developed. In
particular, PYTHIA [17] is a knowledge-based recommender system for elliptic partial differential
equations. In 2010, Eijkhout and Fuentes [18] developed a self-adapting large-scale solver architecture
(SALSA) for multistage solver selection, with the help of their matrix feature extraction software
named AnaMod [19]. Later, a comprehensive taxonomy and framework were given in the project
Lighthouse [20, 21, 22], which targets preconditioned solvers in PETSc and Trilinos libraries [23].

These prior works rely heavily on a number of carefully chosen features to predict the performance
of preconditioners and solvers. However, useful features such as condition numbers are expensive to
compute, and inexpensive features such as average node degree are not very effective in distinguishing
matrices with different sparse structures. It is difficult to balance the effectiveness and cost of feature
extraction with traditional methods. In this work, we consider GNN mainly for two reasons. First, it
can efficiently utilize features related to spatial structure, which are usually easy to compute. Second,
GNNs allow us to explore popular techniques in graph learning, such as virtual nodes [24]. These
techniques offer opportunities to improve graph classification performance, thus potentially beneficial
to the preconditioners and solvers selection problem.
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Figure 1: Overview of the proposed GNN architecture.

3 Method

Figure 1 shows an overview of the proposed GNN architecture. An input matrix of the coordinate
(COO) format is processed through two paths. In the first path, a graph with well-defined node
features is generated. Then, by applying graph convolutional layers and pooling layers, we obtain a
graph embedding. In the second path, matrix features are extracted and treated as graph features. A
feature vector is processed by a neural network such as a multilayer perceptron (MLP). Thus, the
second path also generates a graph embedding. The two separate embeddings are concatenated and
integrated into a new graph embedding through another MLP. One may regard this output embedding
as an input of a classifier, after applying a scaling function such as a sigmoid function. Note that
these two paths are independent until the mixing step is taken, and in this framework one can remove
either path or add new paths of a similar structure.

3.1 Problem formulation

The objective of the selection problem is defined as multi-label classification, where each class
represents a combination of a solver and a preconditioner. Table 1 shows the Krylov iterative solvers
and preconditioners used in our settings. In total, 33 classes are considered, excluding combinations
where solvers and preconditioners are incompatible. Therefore, for any input matrix, the target label
of our GNN model is a binary vector y ∈ {0, 1}33, with a value of 1 representing recommendation,
and 0 otherwise.

Table 1: Available preconditioners and Krylov iterative solvers
Capability Algorithm

Preconditioners Block Jacobi + ILU(0), QMD reordering
Block Jacobi + ILU(1), QMD reordering
Block Jacobi + LU
ASM(1)
ASM(2)
Hypre/BoomerAMG
Hypre Euclid
Parasails approximate inverse from Hypre
Block Jacobi + GMRES

Krylov iterative solvers CG
GMRES(30)
BiCGStab
LSQR
Flexible GMRES (inner GMRES)

The performance of solvers and preconditioners on a given matrix A arises from solving a linear
system Ax = b, where all elements in b are 1’s. By applying various combinations, we record the
running time t and the residual r = ‖b− Ax̂‖2 for each choice, where x̂ is the computed solution.
Then, we use the following metrics to compute a score:

score(t, r) = log(1 + w1/t) log(1 + w2/r) , (2)
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where w1, w2 are user-defined weights (default 1) based on the budgets of running time and tolerance
of residual error. For the cases that run out of time or fail to solve the system, the score will be 0.
Equation 2 is designed to distinguish between the classes with exponential differences in residual or
runtime cost.

We define an empirical threshold equal to 90% of the highest score. Any class that has a score higher
than the threshold will be labeled as 1, and others will be labeled as 0.

3.2 Graph representation and preprocessing

For any input matrix A, a graph is first generated based on the adjacency matrix of A. Then a self-
loop is added to each node. The off-diagonal nonzero elements of A are attached to corresponding
edges as edge features, and diagonal elements are attached to self-loops respectively. As a rule
of thumb, diagonal elements are deemed more important than off-diagonal elements. Our graph
representation emphasizes diagonal elements, since self-loops are visited more frequently throughout
the message-passing process. Diagonal elements with larger magnitudes correspond to larger edge
values on self-loops and thus have a larger impact on the computation graph.

Here we demonstrate this idea with an example of a 3× 3 matrix.

Recalling that the essence of our GNN model is to predict the performance of solvers and precondi-
tioners in solving linear systems, any modification on a linear system is reasonable as long as it does
not affect the selection. Therefore, all columns and rows that contain only diagonal nonzero elements
can be removed. In the context of graph interpretation, this refers to the operation of deleting isolated
nodes. Diagonal matrices are removed from the dataset for the same reason. Furthermore, we add a
small constant value to every self-loop in the graph because diagonal shifting is commonly applied to
singular matrices in iterative linear solvers.

3.3 Node and graph features

As mentioned at the beginning of Section 3, the graph embedding is generated by processing two
types of features. Node features attached to graph nodes are processed through graph convolutional
layers, while graph features are processed via other neural network layers, for example, MLP. Then a
mixing layer, for example another MLP, is performed to render a final graph embedding.

We introduce a node feature to describe diagonal dominance of row i. Assume that αi denotes the
ratio between magnitudes of diagonal and off-diagonal elements for each row,

αi =

{
|Aii|∑

j 6=i |Aij | ,
∑

j 6=i |Aij | > 0 ;

∞,
∑

j 6=i |Aij | = 0 .
(3)

Then, the node feature xi for node i is defined as

xi =
αi

αi + 1
, (4)

such that xi ∈ [0, 1] and xi = 0.5 is the critical point of whether row i is diagonally dominant. Simi-
larly, the diagonal decay of row i can be defined by replacing

∑
j 6=i |Aij | in Eq. 3 with maxj 6=i |Aij |.

Both diagonal dominance and decay can also be computed for each column. Moreover, the local
degree profile [25] is also considered.

Table 2 gives a complete list of graph features used in this paper. To reduce the cost of extracting
features that have no significant impact on the classification accuracy, we use the reduced feature
set provided by [21, 22]. Additionally, normalization or standardization must be performed when
concatenating various features.
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Table 2: List of node and graph features.
Capacity Features

Node Diagonal dominance (col & row)
Diagonal decaying (col & row)
Local degree profile

Graph Average distance of nonzero to diagonal
Number of nonzero elements
1-norm
∞-norm
Column variability
Minimum number of column non-zero elements
Row variability
Minimum number of row nonzero elements
Number of diagonals that have non-zero elements
Estimated condition number

3.4 Graph convolutional layers

We analyze four conventional graph convolution models:

• Graph attention networks (GATs). GATs [26, 27] support taking edge features as input,
where edge features are multiplied with transformation matrices and then concatenated with
node features.

• The edge version of graph isomorphism networks (GINEs) [28, 29]. GINEs aggregate edge
features along with node features.

• Graph convolutional networks (GCNs) [30]. GCNs are different from the above models.
GCNs can take only non-negative edge weights, so a sigmoid or softmax function is required
for edge features.

• A modified version of GraphSAGE [31]. The aggregator is represented by

xi ←W1xi +W2 ·meanj∈N (i)xjeji , (5)

where xi is the node embedding of node i; N (i) is the neighbor of node i; W1,W2 are
training weights; and eji is the edge feature from node j to node i.

We make slight modifications to GCN and GraphSAGE in order to utilize both node and edge features.
Edge features, in other words, nonzero elements of the matrix, can be arbitrary real values. This
requires that the desired convolutional network be able to distinguish between A and its absolute
counterpart |A| if there are both positive and negative elements in A. It also should produce the same
results for A and kA for any scalar k 6= 0.

3.5 Two-level pooling

By adapting the idea of Multiset Pooling [32], we designed a two-level pooling based on the fact
that computations between distinct connected components are independent. In our approach, the
graph embedding is generated in the following steps. First, node embeddings are aggregated within
the connected components to which they belong. Then, the connected component embeddings are
summarized to yield the graph embedding.

The message-passing mechanism can be viewed as a voting procedure in which the central node
collects messages from its neighbor nodes and votes for the classification of the graph from its
perspective via node embedding. Since each node can only reach the connected component to which
it belongs, however, we aggregate the node embeddings within each connected component. Common
embedding techniques include mean pooling, histogram of voting, and virtual node embedding.

Without treating each connected component independently, the selection of solvers and precondi-
tioners for the whole matrix heavily depends on the most difficult connected components to solve,
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for example, the most ill-conditioned one. Therefore, we apply a min-pooling technique to con-
nected component embeddings to generate the graph embedding, which indicates the solver and
preconditioner that are suitable and efficient for all connected components.

To illustrate the second level of pooling, we use a simple example where we choose from two
candidate preconditioned solvers for a block diagonal matrix that consists of two square matrices,

C =

[
A

B

]
. (6)

Here A and B are two distinct connected components of C. If both solvers can be applied to A
and only the first solver is applicable to B, it gives rise to multi-labels yA, yB ∈ {0, 1}2, where
yA = [1, 1] and yB = [1, 0]. Then, the multi-label for C is yC = [1, 0] = min-pooling(yA, yB).

4 Numerical results

The experiments for the GNN models were performed on a workstation with an NVIDIA RTX 3090
GPU and an Intel i7-11700KF CPU. Scikit-learn [33] was used to implement traditional ML methods.
GNN frameworks were based mainly on PyTorch [34] and PyTorch-Geometric [35], and evaluation
metrics were provided by TorchMetrics [36].

4.1 Benchmark dataset

To assess the performance of the GNN models, we built a benchmark using matrices from the
SuiteSparse Matrix Collection [37]. Only square matrices A ∈ Rn×n with a number of rows
1000 ≤ m ≤ 10000 and a number of nonzero elements nnz(A) ≤ 200000 were selected. The dataset
contained 614 matrices and was split into training and testing datasets using 5-fold cross-validation.
Each matrix resulted in 33 entries because of the 33 combinations of solvers and preconditioners.
Each entry in the dataset consisted of the matrix ID, the solver choice, the preconditioner choice,
the solution time (with negative values indicating failure reasons such as using an incompatible
preconditioner, time out, or divergence) and the `2 residual norm. Each linear solve was run in
parallel using 64 MPI processes on the KNL partition on Theta [38], a Cray XC40 supercomputer at
Argonne National Laboratory.

4.2 Evaluation metrics

The evaluation metrics for multilabel classification in this paper includes label ranking average
precision (LRAP) [39] and normalized discounted cumulative gain (NDCG) [40, 41, 42]. Both
methods enable taking prediction probability as input and return scores in [0, 1], where higher scores
indicate better classification accuracy. Note that the metric true positive rate (TPR) was occasionally
used in the related literature, but we do not use it because it is meaningless for multi-label classification
tasks. TPR can be arbitrarily high if one sets the decision threshold sufficiently low.

We denote the true labels by y and the prediction by ŷ. The definition of LRAP is as follows:

LRAP (y, ŷ) =
1

n

n−1∑
i=0

1

‖yi‖0

∑
j:yij=1

|Lij |
rankij

, (7)

where n is the number of samples, Lij = {k : yik = 1, ŷik > ŷij}, rankij = |{k : ŷik > ŷij}|, and
‖ · ‖0 computes the l0-norm, which is equal to the number of nonzeros.

The DCG score is defined as follows:

DCG(y, ŷ) =

m∑
r=1

yf(r)

log(1 + r)
, (8)

where m is the number of classes and f is a ranking function induced from y and ŷ. The NDCG
score is the DCG score divided by the DCG score of y, which is considered as the ideal DCG score.
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4.3 Comparison with traditional ML methods

We compared the proposed GNN models with traditional ML methods supporting multi-label clas-
sification, such as random forest (RF) [43], k-nearest neighbor (kNN) [44], multilayer perceptron
(MLP) [45, 46], and Ridge Classifier. GNN models in our experiments follow the same architecture
and differ solely from the convolutional layers. Each graph convolution model consists of five layers.
The MLP for processing graph features has two layers, and the MLP for combining node and graph
embeddings has two layers. More GNN layers can cause oversmoothing, and effective training
strategies [47] need to be used for such situations.

Table 3 gives 5-fold average LRAP and NDCG scores and standard errors of the considered methods
on the test dataset. It shows that GNN models are comparable to traditional ML-based models
under the LRAP metric and significantly outperform traditional models under the NDCG metric.
Specifically, the best-performing GNN model, GAT, outperforms the best-performing traditional
method, RF, by more than 25%.

4.4 Overhead of the GNN inference

The overhead of the GNN inference consists of two parts: building the input graph from an input
matrix and processing the data through our GNN model. Table 4 shows the detailed time costs for
several representative matrices. As we can see, the processing time is negligible compared with the
solving time. Although the cost of building the graphs is significantly higher than the processing time,
it is still lower than the worst solving time of the linear system. Note that the same linear system
is often solved many times in real applications that use PETSc. These observations imply that the
cost of using the GNN models is justifiable and worthwhile relative to the solving time of the linear
systems.

Table 3: Classification scores of considered methods on test dataset.
Method LRAP NDCG

RF 0.7778 ± 0.0262 0.5618 ± 0.0299
MLP (1 layer) 0.7231 ± 0.0378 0.5181 ± 0.0366
MLP (2 layers) 0.7570 ± 0.0530 0.5424 ± 0.0475
k-nearest neighbors 0.6465 ± 0.0405 0.4902 ± 0.0307
Ridge Classifier 0.3245 ± 0.0706 0.2473 ± 0.0239

GINE 0.7480 ± 0.0357 0.8126 ± 0.0285
GAT 0.7770 ± 0.0267 0.8246 ± 0.0325
GraphSAGE 0.7492 ± 0.0068 0.8043 ± 0.0388
GCN 0.7664 ± 0.0338 0.8222 ± 0.0216

Table 4: Building, processing and solving time of selected matrices. tb, tp, and ts correspond to
building time, processing time, and solving time of the linear system. Predicted ts corresponds to the
combination of solver and preconditioner recommended by our GNN models. Worst ts corresponds
to the worst combination, excluding the failed cases.

Matrix size nnz tb tp predicted ts worst ts
1138_bus 1138 4054 0.2084 0.0035 0.5195 5.7607
msc01440 1440 44998 2.6324 0.0035 0.5183 8.3124
cage9 3534 41594 2.4863 0.0035 0.2116 4.2138
cavity13 2356 72034 4.4684 0.0039 0.6144 >600
circuit_1 4875 105339 2.0890 0.0035 0.4243 >600

4.5 Case studies

We notice that both the LRAP and NDCG metrics focus on the ranked positions of “good” classes,
which are the classes associated with ground-truth label 1. The difference is that, for LRAP, given a
“good” class j, the rank of j in all “good” classes |Lij | goes to the numerator and the rank of j in
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all classes rankij becomes the denominator. And in the end, we will take the average score of all
“good” classes. While for NDCG, these “good” classes are not considered separately. In particular,
the numerator is the DCG of predicted positions of all “good” classes, and the denominator is the
DCG of true positions of all “good” classes. Generally, when a “good” class is ranked low, both
LRAP and NDCG can still be high if there are many “good” classes that are well-predicted. But
NDCG focuses more on the leading classes. In other words, it highly depends on whether the first
several predicted positions represent “good” classes. In contrast, LRAP penalizes harder than NDCG
does when a “good” class is ranked low. Therefore, LRAP requires more “good” classes to be ranked
high.

In our case, doing well on NDCG conveys better effectiveness because our users usually only need
one or a few choices that can solve the linear system efficiently and accurately. And typically, they
do not need our model to provide as many good suggestions as possible. Nevertheless, scoring high
in both LRAP and NDCG can provide reliable robustness.

To interpret our experimental results and explain the large discrepancy between LRAP and NDCG
scores, we performed a case study with the Trefethen_2000 selected from the test dataset. Figure 2
shows the classwise prediction results for this matrix. There are three “good” classes (18, 19, and
20) as shown in green. GAT provides a better ranking (3, 1, and 6) for these “good" classes, while
Random Forest (RF) yields 8, 1, and 7. As we can see in Fig. 2, the difference between LRAP is
significantly higher than that on NDCG. The reason is that both methods correctly predict the class
with the highest rank, so NDCG has a higher tolerance to other predictions than LRAP does.

Moreover, high NDCG scores in Table 3 suggest that our GNN models tend to provide safe recom-
mendations and make fewer false positive predictions. Therefore, our models are less likely to rank
“bad" classes high.
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Figure 2: Prediction for matrix Trefethen_2000. Crosses denote predictions of RF. Here, GAT scores
LRAP = 0.7222, NDCG = 0.8711, and RF scores LRAP = 0.5536, NDCG = 0.7737.

5 Conclusions

We have shown that graph neural networks have great potential in classification tasks where inputs are
sparse matrices of varying sizes. By using the message-passing mechanism, defining node features
properly, and using the output embedding, we can exploit the structural characteristics of the matrix
such as the diagonal elements and sparsity patterns. Our methods also exploit graph features together
with a two-level pooling, serving as a meaningful extension of standard GNNs.

Table 3 shows that the performances of 4 GNN models are indistinguishable. Future refinement
includes exploring models of a different nature (e.g., transformers) that have the potential to outper-
form existing GNNs by a noticeable margin. In addition, graph coarsening techniques [48] will be
deployed for arbitrary-sized (especially exceedingly large) matrices to improve the robustness and
efficiency of the GNN models.
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