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Abstract A flexible version of the BiCGStab algorithm for solving a linear system
of equations is analyzed. We show that under variable preconditioning, the pertur-
bation to the outer residual norm is of the same order as that to the application of
the preconditioner. Hence, in order to maintain a similar convergence behavior to
BiCGStab while reducing the preconditioning cost, the flexible version can be used
with a moderate tolerance in the preconditioning Krylov solves. We explored the
use of flexible BiCGStab in a large-scale reacting flow application, PFLOTRAN,
and showed that the use of a variable multigrid preconditioner significantly ac-
celerates the simulation time on extreme-scale computers using O(104)–O(105)
processor cores.

Keywords BiCGStab · variable preconditioning

1 Introduction

Flexible iterative methods [4,39,16,17,23,26,37,40] for solving a linear system of
equations refer to preconditioned Krylov methods where the preconditioner may
vary across iterations. The flexible preconditioning strategy is also known under
various terms such as variable or inexact preconditioning. A representative scenario
is that the preconditioning requires a linear solve with a second iterative method,
in which case “inner iterations” refer to preconditioning and “outer iterations”
refer to the flexible Krylov method itself. Flexible methods are an important class
of methods that offer several advantages over the use of a fixed preconditioner,
one of which is the flexibility to balance the accuracy of the preconditioning solves
and the speed of convergence of the outer Krylov iterations in order to reduce the
total computational cost. Furthermore, in large-scale applications, the changing
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landscape of both scientific needs (complex physical models and couplings) and
emerging extreme-scale computing systems give rise to practical preconditioners
that are hierarchical or nested [8,9,11,18,20,29]. Many of these emerging precon-
ditioners benefit from inexact inner solves and thus require the use of outer flexible
Krylov methods.

Among many proposed flexible iterative methods, flexible GMRES (abbrevi-
ated as FGMRES [26]) is the most frequently used in practice. Its wide use is
probably linked to the robustness that results from the long-term recurrence and
global orthogonality. Compared with standard GMRES [28], even though the tra-
ditional notion of a Krylov subspace is lost, FGMRES computes an orthonormal
basis of a subspace within which an optimal residual is sought. Hence, FGMRES
still enjoys the residual norm minimization property, and it often shows a satisfac-
tory convergence behavior. On the other hand, in other flexible iterative methods
with short-term recurrences, such as inexact PCG [17], flexible QMR [37], and
flexible BiCG [40], global (bi)orthogonality is lost, and the convergence behav-
ior is often unpredictable unless the inner solves are sufficiently accurate so that
orthogonality is nearly preserved. An idea to improve the robustness is to explic-
itly perform the orthogonalization as proposed for a variant of the flexible CG
algorithm [23]. On the other hand, several analyses of flexible methods, using a
larger Krylov subspace that includes the Arnoldi vectors, indicate that the conver-
gence behavior can be maintained with respect to the fixed preconditioning case
if the perturbation to the preconditioner grows inversely with the current residual
norm [12,31,32].

BiCGStab [38] is a widely used Krylov method. In many applications, BiCGStab
outperforms GMRES in terms of both solution time and memory usage, and it
has become the de facto method of choice for practitioners. Although BiCGStab
is akin to BiCG [13], which generates two sets of biorthogonal residual vectors
that naturally form two associated Krylov subspaces, the convergence behavior of
BiCGStab is harder to describe because the residual vectors alone do not span
the Krylov subspace that contains them. BiCGStab can be seen as redefining
the residual polynomial of BiCG by squaring the degree with a smoothing effect.
BiCGStab can also be understood as a member of a family of induced dimen-
sion reduction (IDR) methods whereby the generated residuals belong to a nested
sequence of shrinking subspaces [34,33,35], which is analogous to other Krylov
methods where there is a similar subspace defined (for example, K⊥ for CG and
(AK)⊥ for GMRES, where K is the current Krylov subspace). The orthogonal
complement notation for the latter methods is consistent with Saad’s viewpoint
of projection methods [27]; however, BiCGStab does not belong to this class.

This work is motivated by the scaling difficulty of the simulation of react-
ing flows in a geological application PFLOTRAN [2,21] on extreme-scale parallel
computers. A well-known bottleneck in Krylov methods for solving large-scale lin-
ear systems on parallel computers is the inner-product calculations, because they
require global synchronizations. The scaling of the solver starts to deteriorate
when the number of processor cores increases beyond O(105) [3]. Among several
strategies, such as deferring or pipelining inner product calculations, overlapping
communications with computations, and block orthogonalizations [10,14,22,36,
25,41], the use of a hierarchical preconditioner that reduces the length of vectors
in inner-product calculations has been demonstrated to be effective for inner-outer
GMRES iterations [20]. This discovery prompted us to generalize the idea to flexi-
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ble BiCGStab iterations (FBiCGStab) [40,15], because BiCGStab has historically
been the preferred solver for PFLOTRAN by domain scientists. However, the con-
vergence behavior is not well understood. In particular, we find that FBiCGStab
does not always converge if the preconditioner is not chosen appropriately (see
experiments in Section 3 and also results in [40]).

The goal of this paper is to analyze the convergence properties of FBiCGStab,
describe factors that affect its convergence, and provide guidance on its use in
practice. We argue that the convergence behavior is close to that of the fixed pre-
conditioning case if the perturbation to the preconditioner is not too large. Thus,
an appropriate perturbation is key to the performance: if too large, the residual
behavior of the outer iterations is unpredictable; if too small, the inner solves may
be time consuming to complete. Because of the loose connection of BiCGStab with
the associated Krylov subspace, this analysis is different from that for other flexible
Krylov methods (see [12,31,32]). Rather, the arguments are made on orthogonal-
ity and norm minimization properties that guarantee bounds of perturbations on
the iterates. Interestingly, this result can lead to a conclusion similar to that in [12,
31,32,7]; that is, the convergence behavior of the flexible method can be main-
tained by relaxing the accuracy requirement of the preconditioning solves as the
outer residual norm decreases. For demonstration, we design for PFLOTRAN a
variable preconditioner based on multigrid and obtain remarkable improvement in
the simulation time using O(104)–O(105) processor cores.

The rest of the paper is organized as follows. With a brief derivation of FBiCGStab,
Section 2 analyzes the behavior of the residual norm under flexible precondition-
ing and gives examples to illustrate the interpretation of the results. Then, several
numerical examples are shown in Section 3 to demonstrate the need for a stopping
criterion with a moderate tolerance in the preconditioning inner solves. Section 4
presents the successful use of FBiCGStab with multigrid preconditioners in PFLO-
TRAN. Concluding remarks are given in Section 5.

2 Algorithm and analysis

The following is the standard unpreconditioned BiCGStab algorithm for solving a
linear system

Ax = b,

using x0 as the initial vector [27]:

1: r0 = b−Ax0; r̄0 arbitrary but (r̄0, r0) 6= 0
2: p0 = r0
3: for j = 0, 1, . . . until convergence do

4: αj = (rj , r̄0)/(Apj , r̄0)
5: sj = rj − αjApj
6: ωj = (Asj , sj)/(Asj , Asj)
7: xj+1 = xj + αjpj + ωjsj
8: rj+1 = sj − ωjAsj
9: βj = (rj+1, r̄0)/(rj , r̄0) · αj/ωj

10: pj+1 = rj+1 + βj(pj − ωjApj)
11: end for
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The coefficient iterates αj and βj are derived based on their counterparts in
BiCG for updating the residual vectors and the search direction vectors. One can
show that αj makes sj ⊥ r̄0 and βj makes pj+1 ⊥ r̄0 for all j. Furthermore, ωj is
defined to minimize the 2-norm of the residual vector rj+1 given sj and Asj .

When the algorithm is used with a preconditioner M ≈ A, the right precondi-
tioning consists of solving the system

AM−1y = b, y = Mx.

One way to derive the preconditioned iteration is, in the above unpreconditioned
version, to replace the symbol A by AM−1 and xj by yj , and then substitute yj
back by Mxj . This introduces two auxiliary vectors p̃j = M−1pj and s̃j = M−1sj ,
which are the only computations that require the preconditioner. We summarize
this preconditioned version in Algorithm 1. It is the same as the one presented
in [40].

Algorithm 1 Right preconditioned BiCGStab / Flexible BiCGStab

1: r0 = b−Ax0; r̄0 arbitrary
2: p0 = r0
3: for j = 0, 1, . . . until convergence do
4: p̃j = M−1pj
5: αj = (rj , r̄0)/(Ap̃j , r̄0)
6: sj = rj − αjAp̃j
7: s̃j = M−1sj
8: ωj = (As̃j , sj)/(As̃j , As̃j)
9: xj+1 = xj + αj p̃j + ωj s̃j

10: rj+1 = sj − ωjAs̃j
11: βj = (rj+1, r̄0)/(rj , r̄0) · αj/ωj

12: pj+1 = rj+1 + βj(pj − ωjAp̃j)
13: end for

One would also like to consider left preconditioning, where M−1 is applied to
the left of the system Ax = b. After a change of variables, the left preconditioned
version is almost the same as Algorithm 1, except that the two inner products in
line 8 are changed to the ones using (MMT )−1-norm. In this case, ωj minimizes
the (MMT )−1-norm of rj+1. Compared with right preconditioning, left precondi-
tioning incurs two more applications of the preconditioner in each iteration, which
increases the computational cost. Furthermore, similar to other Krylov methods,
a major hurdle for developing variable preconditioners for left preconditioning is
the disconnection between the preconditioned residuals and the actual residuals.
Therefore, we do not consider left preconditioning in this paper.

An iterative method can be used to compute p̃j in line 4 and s̃j in line 7
of Algorithm 1, but the iterations may not run to full accuracy. In this case,
Algorithm 1 becomes the flexible version of BiCGStab. The computed iterates
p̃j and s̃j under inexact preconditioning will carry on their error to subsequent
iterations. To gauge the amplification of error, we are interested in the situation
that the relative residual of the inner solves with M is bounded by a small tolerance
ε. That is, if we use an underline to denote the actual iterates with errors, we
assume that

‖pj −Mp̃j‖ ≤ ε‖pj‖ and ‖sj −Ms̃j‖ ≤ ε‖sj‖. (1)
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The following subsection characterizes the relative difference between rj+1 and
rj+1 under condition (1).

2.1 Analysis

The analysis is based on the fact that the coefficient iterates αj , βj , and ωj are
computed such that the inaccuracy incurred in the preconditioning solves is not
“adversely” accumulated to affect outer iterations. For this, we need the following
observations. They are trivially correct in the fixed preconditioned case, but they
are also true when a flexible preconditioner is used. The proof is simple and thus
omitted.

Proposition 1 The iterates in Algorithm 1 have the following properties:

1. The vector rj+1 is the residual, that is, rj+1 = b−Axj+1.

2. Consider that sj is a function of αj ; then the definition of αj in line 5 makes

sj ⊥ r̄0.

3. Consider that pj+1 is a function of βj ; then the definition of βj in line 11 makes

pj+1 ⊥ r̄0.

4. Consider that rj+1 is a function of ωj ; then the definition of ωj in line 8 minimizes

‖rj+1‖2.

In light of these observations, we will bound the perturbation to vectors of
the form x− αy, where the scalar α is used to satisfy some orthogonality or mini-
mization property when x and y are perturbed. We will make heavy use of angles
spanned by two Rn vectors. For this, we use ∠(x, y) to denote the acute angle
between the two vectors, that is, |(x, y)| = ‖x‖‖y‖ cos∠(x, y). Hence, cos∠(x, y) is
always nonnegative. The following lemma establishes the basic fact, generalizing
from the intuitive R3 case, that for three vectors spanning three angles, one of
the angles is bounded by the sum and the difference of the other two. Then, two
lemmas follow, stating that the perturbation to x−αy is in the same order as that
to x and y.

Lemma 1 If all pairwise angles among three vectors x, y, and z are acute, then

|∠(x, y)−∠(y, z)| ≤ ∠(x, z) ≤ ∠(x, y) + ∠(y, z).

Proof Without loss of generality, we assume that ‖x‖ = ‖y‖ = ‖z‖ = 1. It suffices
to prove, for the case ∠(x, y) + ∠(y, z) is acute, that

cos∠(x, y) cos∠(y, z)− sin∠(x, y) sin∠(y, z) ≤ cos∠(x, z) ≤
cos∠(x, y) cos∠(y, z) + sin∠(x, y) sin∠(y, z),

which is equivalent to

|(x, z)− (x, y)(y, z)| ≤
√

1− (x, y)2
√

1− (y, z)2. (2)

Note that

|(x, z)− (x, y)(y, z)| = |xT (I − yyT )z|
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and that √
1− (x, y)2

√
1− (y, z)2 =

√
xT (I − yyT )x

√
zT (I − yyT )z.

Thus, Cauchy’s inequality for vector semi-inner products with respect to the sym-
metric positive semi-definite matrix I − yyT proves (2).

Lemma 2 Given a vector r, let z = x − αy and z = x − αy, where α = (x, r)/(y, r)
and α = (x, r)/(y, r), and let γ = sgn[(x, y)(x, r)(y, r)]. If there exist εx, εy such that

εx < cos∠(x, r), εy < cos∠(y, r) and that

‖x− x‖ ≤ εx‖x‖ and ‖y − y‖ ≤ εy‖y‖,

then ‖z − z‖ ≤ εz‖z‖ with

εz =

εx +
cos∠(x, r)

cos∠(y, r)

[
2εy + (1 + εx)(1 +B)(1 +D)− 1

]
√

1 +
cos2 ∠(x, r)

cos2 ∠(y, r)
− 2γ cos∠(x, y)

cos∠(x, r)

cos∠(y, r)

, (3)

B = εx

(
εx

2
√

1− ε2x
+ tan∠(x, r)

)
, D =

2εy
√

1− ε2y tan∠(y, r) + ε2y

−2εy
√

1− ε2y tan∠(y, r) + 2(1− ε2y)
.

In other words, denoting by ε = max{εx, εy}, we have εz ≤ Cε where the prefactor C

has a finite limit

lim
ε→0

C =
cos∠(y, r) + cos∠(x, r)[3 + tan∠(x, r) + tan∠(y, r)]√

cos2 ∠(y, r) + cos2 ∠(x, r)− 2γ cos∠(x, y) cos∠(x, r) cos∠(y, r)
.

Proof First we have

‖z − z‖ ≤ ‖x− x‖+ ‖αy − αy‖

≤ ‖x− x‖+ ‖α(y − y)‖+ ‖(α− α)y‖

≤ εx‖x‖+ εy‖αy‖+ ‖(α− α)y‖.

Based on Lemma 1, when εx < cos∠(x, r), the angle between x and r and that
between x and r will be acute, or obtuse, at the same time. This means that the
inner products (x, r) and (x, r) have the same sign. Similarly it holds for (y, r) and
(y, r). Thus, α and α have the same sign, and hence

‖(α− α)y‖
‖αy‖ =

∣∣∣∣‖y‖‖y‖ − ‖αy‖‖αy‖

∣∣∣∣ .
Using the fact that |‖y‖/‖y‖ − 1| ≤ εy, we get

‖(α− α)y‖ ≤ ‖αy‖
(
εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣) . (4)

With ‖αy‖ = ‖x‖ cos∠(x, r)/ cos∠(y, r) and

‖z‖2 = ‖x‖2
(

1 +
cos2 ∠(x, r)

cos2 ∠(y, r)
− 2γ cos∠(x, y)

cos∠(x, r)

cos∠(y, r)

)
,
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we thus obtain

‖z − z‖ ≤ εx‖x‖+ ‖αy‖
(

2εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣)

= ‖z‖
εx + cos∠(x,r)

cos∠(y,r)

(
2εy +

∣∣∣1− ‖αy‖‖αy‖

∣∣∣)√
1 + cos2 ∠(x,r)

cos2 ∠(y,r) − 2γ cos∠(x, y) cos∠(x,r)
cos∠(y,r)

. (5)

Therefore, we proceed to bound∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣ =

∣∣∣∣1− ‖x‖‖x‖ cos∠(x, r)

cos∠(x, r)

cos∠(y, r)

cos∠(y, r)

∣∣∣∣ .
The strategy of bounding this term is to find A,B,D > 0 such that∣∣∣∣1− ‖x‖‖x‖

∣∣∣∣ ≤ A, ∣∣∣∣1− cos∠(x, r)

cos∠(x, r)

∣∣∣∣ ≤ B, ∣∣∣∣1− cos∠(y, r)

cos∠(y, r)

∣∣∣∣ ≤ D;

then, ∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣ ≤ (1 +A)(1 +B)(1 +D)− 1. (6)

Clearly, we can let A = εx.

To simplify notation, let ∠(x, r) = β and ∠(x, r) = β + δ for some δ. Then,∣∣∣∣1− cos(β + δ)

cosβ

∣∣∣∣ = |(1− cos δ) + sin δ tanβ|

=

∣∣∣∣(sin δ)(tan
δ

2
+ tanβ

)∣∣∣∣ ≤ | sin δ|(1

2
| tan δ|+ tanβ

)
. (7)

Because | sin δ| ≤ εx,

∣∣∣∣1− cos(β + δ)

cosβ

∣∣∣∣ ≤ εx
(

εx

2
√

1− ε2x
+ tan∠(x, r)

)
=: B. (8)

Similarly, let ∠(y, r) = η and ∠(y, r) = η + τ for some τ . Note that based on
Lemma 1, |τ | ≤ π/2− η. Using∣∣∣tan

τ

2

∣∣∣ ≤ 1

2
| tan τ | ≤ εy

2
√

1− ε2y
,

we have

∣∣∣∣1− cos η

cos(η + τ)

∣∣∣∣ =

∣∣∣∣ tan η + tan(τ/2)

tan η − cot τ

∣∣∣∣ ≤ tan∠(y, r) +
εy

2
√

1−ε2y

− tan∠(y, r) +
√

1−ε2y
εy

=: D. (9)

With (8) and (9), we establish (6). Then, together with (5), we have proved (3).
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Lemma 3 Let z = x−αy and z = x−αy, where α = (x, y)/‖y‖2 and α = (x, y)/‖y‖2.

If (x, y) and (x, y) have the same sign and there exist εx, εy such that εx + εy < 1 and

that

‖x− x‖ ≤ εx‖x‖ and ‖y − y‖ ≤ εy‖y‖,

then |α− α| ≤ εα|α| and ‖z − z‖ ≤ εz‖z‖ with

εα = (εx + εy)(1 + εy)

{
1 + (1 + εx)

[
εx + εy

2
√

1− (εx + εy)2
+ tan∠(x, y)

]}
(10)

and

εz = (εx+εy)(1+εx)+
εx

sin∠(x, y)
+

εy
tan∠(x, y)

+
εx + εy

tan∠(x, y)

[
1 +

(1 + εx)(εx + εy)

2
√

1− (εx + εy)2

]
.

(11)
In other words, denoting by ε = max{εx, εy}, we have εα ≤ Cαε and εz ≤ Czε, where

the prefactors Cα and Cz have finite limits

lim
ε→0

Cα = 2 + 2 tan∠(x, y), lim
ε→0

Cz =

(
2 +

1 + 3 cos∠(x, y)

sin∠(x, y)

)
.

Proof Using a similar argument as in the proof of the preceding lemma, we reach

‖z − z‖ ≤ εx‖x‖+ εy‖αy‖+ ‖(α− α)y‖

≤ ‖z‖
[

εx
sin∠(x, y)

+ cot∠(x, y)

(
2εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣)] , (12)

by noting that ‖αy‖ = ‖x‖ cos∠(x, y), that ‖z‖ = ‖x‖ sin∠(x, y), and that α and α

have the same sign by the condition of this lemma. Furthermore, with (4), which
clearly also holds here, we have

|α− α|
|α| ≤ ‖y‖‖y‖

(
εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣) ≤ (1 + εy)

(
εy +

∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣) . (13)

Therefore, we proceed to bound∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣ =

∣∣∣∣1− ‖x‖‖x‖ cos∠(x, y)

cos∠(x, y)

∣∣∣∣ .
The strategy of bounding this term is to find A,B > 0 such that∣∣∣∣1− ‖x‖‖x‖

∣∣∣∣ ≤ A, ∣∣∣∣1− cos∠(x, y)

cos∠(x, y)

∣∣∣∣ ≤ B;

then, ∣∣∣∣1− ‖αy‖‖αy‖

∣∣∣∣ ≤ (1 +A)(1 +B)− 1. (14)

Clearly, we can let A = εx.
To simplify notation, let ∠(x, y) = β and ∠(x, y) = β + δ for some δ. Then, the

same as (7), we have∣∣∣∣1− cos(β + δ)

cosβ

∣∣∣∣ ≤ | sin δ|(1

2
| tan δ|+ tanβ

)
.
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Let θx be the angle between x and x, and similarly for θy. Because ‖x−x‖ ≤ εx‖x‖
with εx < 1, θx is acute. Similarly, so is θy. Note that ‖x‖ sin θx ≤ ‖x−x‖ ≤ εx‖x‖;
therefore, sin θx ≤ εx, and similarly sin θy ≤ εy. Then, sin θx ≤ εx <

√
1− ε2y ≤

cos θy, which indicates that θx + θy is also acute. Thus, the fact that |δ| ≤ θx + θy
leads to sin |δ| ≤ sin θx + sin θy ≤ εx + εy. Therefore∣∣∣∣1− cos(β + δ)

cosβ

∣∣∣∣ ≤ (εx + εy)

[
εx + εy

2
√

1− (εx + εy)2
+ tan∠(x, y)

]
=: B. (15)

With (15), we establish (14). Then, together with (13) and (12), we have proved (10)
and (11).

Using the above two lemmas, we have the following result. It states that the
relative perturbation to the outer residual norm is in the same order as the relative
residual norm in the inner solves.

Theorem 1 If Algorithm 1 (with flexible preconditioning) is run with a finite number

of iterations where neither breakdown nor stagnation occurs, then under condition (1),

for all j,
‖rj − rj‖
‖rj‖

= O(ε). (16)

Proof To facilitate presentation, we define err(a) := ‖a− a‖/‖a‖ for any vector or
scalar a 6= 0. We first observe that

‖Ap̃j −Ap̃j‖
‖Ap̃j‖

=
‖AM−1(pj −Mp̃j)‖

‖AM−1pj‖
≤ κ
‖pj −Mp̃j‖
‖pj‖

≤ κ

(
‖pj − pj‖
‖pj‖

+
‖pj −Mp̃j‖
‖pj‖

)
≤ κ

(
‖pj − pj‖
‖pj‖

+ ε
‖pj‖
‖pj‖

)
,

where κ denotes the condition number of AM−1. Since the big-O notation is used
for sufficiently small ε, the above observation means that if err(pj) = O(ε), then
err(Ap̃j) = O(ε). Similarly, if err(sj) = O(ε), then err(As̃j) = O(ε).

We now show the theorem by induction on err(rj) and err(pj). The conditions
in the theorem (no breakdown and stagnation) are used to ensure the applicability
of the lemmas. At j = 0, r0 and p0 are unchanged under variable preconditioning.
If err(rj) = O(ε) and err(pj) = O(ε), then because err(Ap̃j) = O(ε), we have
err(sj) = O(ε) by Lemma 2. Consequently, err(As̃j) = O(ε), and thus err(rj+1) =
O(ε) by Lemma 3.

Now consider pj+1 = rj+1 + βjzj where zj = pj − ωjAp̃j . Both err(pj) and
err(Ap̃j) are O(ε). On the other hand, err(ωj) is also O(ε) according to Lemma 3,
because we have shown that both err(sj) and err(As̃j) are O(ε). Hence, err(zj) =
O(ε). Then by invoking Lemma 2 again we have err(pj+1) = O(ε), which completes
the induction.

Remark 1 Equation (16) concerns only the order with respect to ε. However, the
result is derived based on the condition of a finite number iterations, so that factors
other than ε are suppressed in the big-O notation as a constant. This hidden
constant may be j-dependent and may grow with respect to j; see Figure 1(b) in
the next subsection.
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Theorem 1 considers the perturbation of the residual in the relative sense. As
a corollary, a result for the absolute perturbation is given next. Instead of a fixed
tolerance ε for all the inner solves, we allow the tolerance, denoted by εj , to vary
in each outer iteration j. The result indicates a reciprocal relationship between
the residual norm ‖rj‖ and εj .

Corollary 1 Let the relative inner tolerance ε depend on the outer iterations indexed

by j, that is,

‖pj −Mp̃j‖ ≤ εj‖pj‖ and ‖sj −Ms̃j‖ ≤ εj‖sj‖.

Under the condition of Theorem 1, if the residual norm ‖rj‖ is monotonically decreas-

ing, then for any δ there exists a constant C such that if

εj =
Cδ

‖rj‖
,

then ‖rj − rj‖ ≤ δ.

Proof Note that Theorem 1 is proved by induction on j. When εj is monotonically
increasing but is still sufficiently small (guaranteed by a finite number of itera-
tions), a stronger conclusion is that there exists a C′ that is independent of j such
that

err(rj) ≤ C′εj , (17)

because in the right-hand side εj can always be relaxed later by changing it to εj+1.
Rewriting (17), we have ‖rj − rj‖ ≤ C′εj‖rj‖. Therefore, if we let εj = Cδ/‖rj‖ by

using some C such that C′C ≤ 1 and that Cδ/‖rj‖ is sufficiently small to trigger
the validity of (17), we immediately have ‖rj − rj‖ ≤ δ.

2.2 Interpretation and illustrative examples

Roughly speaking, the above results state that if the perturbation to the precon-
ditioning step is not relatively large, then the convergence history looks similar to
that of the case without perturbation. Whereas this gives a qualitative descrip-
tion of the behavior of BiCGStab under variable preconditioning, one must be
cautious in interpreting the theoretical results and not overly emphasize their pre-
dictive power in a quantitative manner. First and most important, these results are
not convergence assertions. Since BiCGStab itself is not guaranteed to converge
for general unsymmetric matrices, it does not seem reasonable to expect that a
flexible version magically proves the opposite.

Second, the perturbation result is built based on a small-ε regime. Clearly,
when ε→ 0, such as when ε is the machine precision, the term “flexible” gradually
loses its meaning since the convergence history will be almost identical to that of
the fixed preconditioning case. A tricky question is determining when the behavior
of flexible BiCGStab starts to diverge from that of standard BiCGStab, since it
depends on when the accumulated prefactor in front of ε, as in (16), grows to
an unacceptable level. It is unclear how to characterize this prefactor, but the
prefactor is certainly connected to the bound εz in Lemma 2 and the bounds εα
and εz in Lemma 3. Empirically we see that the perturbation in the range of
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Fig. 1 Convergence history and ‖rj − rj‖/‖rj‖ under a fixed level of perturbation ε in the

preconditioning step. In (a) a few curves are omitted to avoid cluttering.

O(10−4)–O(10−2) gives reasonably similar convergence behavior to the case of no
perturbation (ε = 0).

Figure 1 shows the convergence results of solving a model problem that is
introduced in more detail in Section 3. Here, the discretization of the problem in
2D yields a matrix of size 65, 536×65, 536, and a choice of the parameters γ = 4/h
and β = −0.2/h2 renders the matrix positive definite but unsymmetric. With block
Jacobi/ILU(0) preconditioning of block size 64× 64 and a zero initial vector, the
residuals monotonically decrease to machine precision in 40 iterations (see the red
curve without markers in plot (a)).

We artificially perturbed the vectors pj and sj (see (1)) by a Gaussian random
vector normalized to a norm of ε‖pj‖ and ε‖sj‖, respectively, before computing
the preconditioned vectors p̃j and s̃j by block Jacobi/ILU(0). This mimics the
situation of an inexact preconditioning solve with relative residual tolerance ε.
One sees that in plot (a), as ε decreases, the convergence history is closer and
closer to the reference red curve. We also ran experiments with smaller ε’s, but
the residual curves were so close to the reference curve that we omit them in
the plot to avoid cluttering. In plot (b), we show ‖rj − rj‖/‖rj‖. As predicted by
Theorem 1, the curves corresponding to a smaller ε tend to be positioned below
those corresponding to a larger ε.

The absolute difference, ‖rj − rj‖, on the other hand, can be made bounded

as opposed to the increasing trends of Figure 1(b). One simple way is, in fact, to
do nothing, because ‖rj‖ itself decreases. More interesting is that we can increase
ε across iterations, as Corollary 1 implies. In Figure 2 we define εj = D/‖rj‖ for
various different choices of D. The iterations converge to a level dependent on D.

One is tempted to infer from Corollary 1 that successively relaxing the per-
turbation εj in this manner can perhaps reduce the preconditioning cost as the
iterations converge. However, several caveats render this corollary to be less prac-
tically useful than Theorem 1. First, when ‖rj‖ is large, εj is typically so small
that there is no practical difference with requiring the preconditioning to be ex-
act. Second, we do not know the residuals rj in variable preconditioning—we have
only the perturbed ones rj . Third, the corollary is based on the condition that
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rj is monotonically decreasing, a too restrictive requirement. Hence we consider
Corollary 1 to be mainly of theoretical interest.

3 Numerical examples

To empirically study when flexible preconditioning for BiCGStab is useful and to
compare its performance with that of the counterparts of GMRES, we extend the
example in Section 2 and perform more comprehensive experimentation. Consider
the linear system arising from a discretization of the PDE (adopted from [26]):

−∆u+ γx · ∇u+ βu = f (18)

with zero Dirichlet boundary condition. The linear system can be made indefinite
and/or unsymmetric by changing the parameters γ and β. We discretized the
3D domain into a regular grid of size n1 × n2 × n3 with spacing h = 1/n1 and
set γ = 4/h to make the problem unsymmetric. We varied the parameter β to
include both definite and indefinite cases. The right-hand side was chosen to be
the vector of all ones, with the initial x0 being zero. As a common practice in
parallel solvers, if no specific preconditioner is mentioned, an iterative method
(including the case of being used for inner iterations) was always preconditioned
by block Jacobi/ILU(0), where each block was handled by one processor. The
experiments were conducted on the supercomputer Titan (a Cray XK7 system)
hosted at the Oak Ridge Leadership Computing Facility [24].

We tested several β values; Table 1 shows the results of three representative
cases. As β decreases, the problem becomes harder to solve. In the first case (β =
0.01/h2) the system is positive definite, but in the latter two cases (β = −0.4/h2

and −0.6/h2) the system is indefinite. Figure 3(a) shows the convergence history
of BiCGStab and GMRES(30). The convergence history for the hardest case β =
−0.6/h2 is extended in plot 3(b). These results were obtained on a 256×256×256
grid using 16,384 processor cores. The relative residual tolerance and the maximum
number of iterations were 1e-8 and 200, respectively.
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Fig. 3 Convergence of BiCGStab and GMRES for three β’s (no inner iterations).

We compared BiCGStab, FBiCGStab/BiCGStab, GMRES, and FGMRES/GMRES,
where FBiCGStab/BiCGStab means FBiCGStab is preconditioned by BiCGStab,
and similarly for FGMRES/GMRES. In both of the flexible methods, the stopping
criterion for the inner iterations was either a residual tolerance or a fixed number
of iterations. The two major comparison metrics are the number of matrix-vector
products (MatMult, column 4) and the number of calls to MPI Allreduce (Allre-
duce, column 5). The number of floating point operations (Flops, column 6) for
computing the inner products is listed for reference, but it is not a fair criterion for
comparison because (i) the synchronization cost in MPI Allreduce is much higher
than that of floating point operations, and (ii) GMRES requires long-term recur-
rence (orthogonalization) whereas BiCGStab does not. The wallclock time is also
listed, but note that the fluctuations in a distributed memory computing environ-
ment and the communication latency are factors that affect the actual running
time.

Several observations are made according to Table 1 and other experiments with
intermediate β values that are not shown in the table. First, for this set of test
cases, the GMRES family in general performs better when the system is relatively
easy to solve; but as the difficulty level increases, the BiCGStab family outperforms
the GMRES family. One sees that in the first case (β = 0.01/h2) GMRES is
the best solver, whereas in the second case it failed to converge to the required
tolerance but BiCGStab did converge. In the second case (β = −0.4/h2), however,
the fastest solver is still in the GMRES family. Nevertheless, when moving to the
third case (β = −0.6/h2), FBiCGStab with an inner tolerance stopping criterion
clearly wins over all other solvers. In this case, the inner BiCGstab converges
much faster than does inner GMRES, as can be seen from the number of matrix-
vector products (amortized by the number of outer iterations) and also from the
convergence history in Figure 3(b).

Second, for a flexible Krylov method, using a fixed number of inner iterations
can sometimes achieve excellent performance; but as the problem becomes harder
and harder, it is difficult to specify an appropriate number a priori to ensure the
convergence of the outer iterations. One sees that in the first case, using a fixed
number of inner iterations as the stopping criterion is in general preferable over
using a residual tolerance. This is also true in the second case for the FGMRES
solvers; however, for the FBiCGStab solvers the situation is completely opposite.
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Table 1 Solution summary of (18) with three choices of β. Arrows point to the fastest run.

Outer Time
MatMult

Inner Product
β = 0.01/h2 Iter. (sec×10−1) Allreduce Flops×105

BiCGStab 21 1.132 42 84 3.010
FBiCGStab, inner rtol = 1e-3 2 1.397 58 120 4.246
FBiCGStab, inner rtol = 1e-2 2 1.335 44 92 3.233
FBiCGStab, inner rtol = 1e-1 4 1.364 54 116 4.037
FBiCGStab, inner max it = 5 2 1.131 44 92 3.233
FBiCGStab, inner max it = 10 1 1.147 40 82 2.910
FBiCGStab, inner max it = 20 1 1.226 46 94 3.334
GMRES 29 0.874 29 58 9.494 ←
FGMRES, inner rtol = 1e-3 3 1.122 40 83 6.081
FGMRES, inner rtol = 1e-2 4 7.200 37 78 4.240
FGMRES, inner rtol = 1e-1 7 1.153 38 83 3.292
FGMRES, inner max it = 5 6 1.072 36 78 3.130
FGMRES, inner max it = 10 3 1.066 33 69 4.237
FGMRES, inner max it = 20 2 1.065 40 82 8.720

β = −0.4/h2 ×100 ×106

BiCGStab 105 0.356 210 420 1.505
FBiCGStab, inner rtol = 1e-3 2 0.668 438 880 3.144
FBiCGStab, inner rtol = 1e-2 2 0.499 270 544 1.948
FBiCGStab, inner rtol = 1e-1 6 0.832 586 1184 4.225
FBiCGStab, inner max it = 5 fail - - - -
FBiCGStab, inner max it = 10 fail - - - -
FBiCGStab, inner max it = 20 25 2.517 2050 4150 14.800
GMRES fail - - - -
FGMRES, inner rtol = 1e-3 3 1.556 1165 2298 37.890
FGMRES, inner rtol = 1e-2 4 1.062 803 1586 25.550
FGMRES, inner rtol = 1e-1 7 0.791 560 1113 17.160
FGMRES, inner max it = 5 26 0.282 156 338 1.893
FGMRES, inner max it = 10 14 0.278 154 322 2.134 ←
FGMRES, inner max it = 20 12 0.373 252 516 5.861

β = −0.6/h2 ×101 ×107

BiCGStab fail - - - -
FBiCGStab, inner rtol = 1e-3 2 0.951 8314 16632 5.962
FBiCGStab, inner rtol = 1e-2 2 0.572 5024 10052 3.605 ←
FBiCGStab, inner rtol = 1e-1 15 3.564 30120 60270 21.560
FBiCGStab, inner max it = 5 fail - - - -
FBiCGStab, inner max it = 10 fail - - - -
FBiCGStab, inner max it = 20 fail - - - -
GMRES fail - - - -
FGMRES, inner rtol = 1e-3 5 5.291 51670 101680 169.600
FGMRES, inner rtol = 1e-2 5 4.589 41800 82259 136.560
FGMRES, inner rtol = 1e-1 7 3.903 37757 74305 123.730
FGMRES, inner max it = 5 fail - - - -
FGMRES, inner max it = 10 fail - - - -
FGMRES, inner max it = 20 fail - - - -

In the third case, none of the solvers using a fixed number of inner iterations
converged. In this sense, setting an inner tolerance is a more robust practice.

Third, one can choose an “optimal” inner tolerance for a flexible method. One
sees that for FBiCGStab the inner tolerance 1e-2 yields the best results in all the
cases, whereas for FGMRES the tolerance is 1e-1. This is consistent with the ob-
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servation made in the experiments of flexible QMR [37] and other methods [12,31,
32,7], which state that the total solver cost first decreases, then increases as the in-
ner solves are more and more exact. The “optimal” inner tolerance may be related
to the convergence behavior of the inner iterations. One sees that in Figure 3 the
relative residual norm of BiCGStab has a steep decrease at the beginning, until
between 1e-1 and 1e-2. This may be the stopping point when BiCGStab becomes
the most effective as an inner solve.

Fourth, the inner-outer iterations (that is, FBiCGStab/BiCGStab and FGM-
RES/GMRES) are often a better alternative to the standard iterations (that is,
BiCGStab and GMRES). In harder problems the standard iterations did not con-
verge whereas the inner-outer iterations did. In fact, the outer iterations converge
extremely fast when an appropriate inner tolerance is used.

In addition, we vary the grid size and show in Table 2 two indicative factors of
the convergence behavior: the number of matrix-vector products and the number
of calls to MPI Allreduce. These results confirm again that the problem becomes
more difficult to solve as β decreases. Moreover, these results also indicate that the
problem becomes more difficult to solve as the grid size increases. While in most of
the cases the quickest convergence is obtained by a member of the GMRES family,
in the hardest case (lower-right corner of the table) FBiCGStab wins.

4 Application

In this section, we explore the use of flexible BiCGStab to improve the run-time
performance of a large-scale application, PFLOTRAN [2,21], where historically
standard BiCGStab with block Jacobi/ILU(0) preconditioner has been the pre-
ferred linear solver. Based on the analysis in Section 2, we compose a multigrid
(MG) preconditioner. Its use with BiCGStab yields two to three times improve-
ment in solution time on O(104)–O(105) processor cores. When the coarse grid
solver varies slightly (thus becoming a variable preconditioner and having to be
used with FBiCGStab), we gain an additional 10–20% in overall runtime improve-
ment.

PFLOTRAN is a state-of-the-art code for simulating multiscale, multiphase,
multicomponent flow and reactive transport in geologic media. It solves a cou-
pled system of mass and energy conservation equations for a number of phases,
including air, water, supercritical CO2 and a number of chemical components. The
code utilizes finite volume or mimetic finite difference spatial discretizations and
backward-Euler (fully implicit) timestepping. At each time step, Newton-Krylov
methods are used for solving the resulting nonlinear algebraic equations. PFLO-
TRAN is built on the PETSc library [5,6] and makes extensive use of PETSc
iterative nonlinear and linear solvers.

The governing equations are described by Richards’ equation:

∂

∂t

(
ϕsρ

)
+∇ · ρu = S,

where ϕ denotes the porosity of the geologic medium, s the saturation (fraction
of pore volume filled with liquid water), ρ the fluid density, S a source/sink term
representing water injection/extraction, and u the Darcy velocity defined as

u = −κκr
µ
∇
(
P − ρgz

)
,
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Table 2 Solution summary of (18) for varying grid sizes, with the same setting as in Table 1.
“Dot” means the number of Allreduces for computing inner products.

Grid 643 Grid 1283 Grid 2563

β = 0.01/h2 MatMult Dot MatMult Dot MatMult Dot
BiCGStab 34 68 42 84 42 84
FBiCGStab, inner rtol = 1e-3 50 104 60 124 58 120
FBiCGStab, inner rtol = 1e-2 36 76 44 92 44 92
FBiCGStab, inner rtol = 1e-1 44 96 50 108 54 116
FBiCGStab, inner max it = 5 44 92 44 92 44 92
FBiCGStab, inner max it = 10 36 74 42 86 40 82
FBiCGStab, inner max it = 20 38 78 48 98 46 94
GMRES 24 48 29 58 29 58
FGMRES, inner rtol = 1e-3 35 73 40 83 40 83
FGMRES, inner rtol = 1e-2 31 66 38 80 37 78
FGMRES, inner rtol = 1e-1 34 75 39 85 38 83
FGMRES, inner max it = 5 30 65 36 78 36 78
FGMRES, inner max it = 10 33 69 33 69 33 69
FGMRES, inner max it = 20 34 70 41 84 40 82

β = −0.4/h2

BiCGStab 46 92 76 152 210 420
FBiCGStab, inner rtol = 1e-3 66 136 102 208 438 880
FBiCGStab, inner rtol = 1e-2 42 88 62 128 270 544
FBiCGStab, inner rtol = 1e-1 48 104 90 190 586 1184
FBiCGStab, inner max it = 5 44 92 88 184 fail fail
FBiCGStab, inner max it = 10 42 86 84 172 fail fail
FBiCGStab, inner max it = 20 50 102 80 162 2050 4150
GMRES 33 65 48 95 fail fail
FGMRES, inner rtol = 1e-3 42 87 61 125 1165 2298
FGMRES, inner rtol = 1e-2 41 86 58 120 803 1586
FGMRES, inner rtol = 1e-1 43 93 57 121 560 1113
FGMRES, inner max it = 5 42 91 60 130 156 338
FGMRES, inner max it = 10 44 92 55 115 154 322
FGMRES, inner max it = 20 41 84 63 129 252 516

β = −0.6/h2

BiCGStab 58 116 178 356 fail fail
FBiCGStab, inner rtol = 1e-3 84 172 334 672 8314 16632
FBiCGStab, inner rtol = 1e-2 56 116 214 432 5024 10052
FBiCGStab, inner rtol = 1e-1 96 204 490 992 30120 60270
FBiCGStab, inner max it = 5 66 138 fail fail fail fail
FBiCGStab, inner max it = 10 84 172 4368 8944 fail fail
FBiCGStab, inner max it = 20 64 130 328 664 fail fail
GMRES 41 81 fail fail fail fail
FGMRES, inner rtol = 1e-3 52 107 364 721 51670 101680
FGMRES, inner rtol = 1e-2 49 102 483 957 41800 82259
FGMRES, inner rtol = 1e-1 51 109 298 599 37757 74305
FGMRES, inner max it = 5 48 104 126 273 fail fail
FGMRES, inner max it = 10 55 115 132 276 fail fail
FGMRES, inner max it = 20 42 86 168 344 fail fail

where P denotes fluid pressure, µ viscosity, κ the absolute permeability of the
medium, κr the relative permeability of water to air, g the acceleration of gravity,
and z the vertical distance from a datum.

We consider two benchmark problems [20]:
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Case 1: Cubic domain with a central injection well. This case models a 100m ×
100m × 100m domain with a uniform effective permeability of 1 darcy and an
injection well at the exact center.

Case 2: Regional flow without well near river. This case models a 5000m × 2500m
× 100m region with a river at the eastern boundary.

In our numerical experiments, we ran each test case with a minimum number of
time steps—six for case 1 and two for case 2— at which the number of linear
iterations per Newton step became stabilized.

BiCGStab preconditioned by block Jacobi/ILU(0) has been the preferred linear
solver for PFLOTRAN because of its small memory consumption, compared with
that of GMRES, and the empirically fast convergence. Similar to other Krylov
methods, however, as the size of the application and the number of processors
increase, BiCGStab encounters a well-known scaling difficulty for over 10,000 pro-
cessor cores because of the bottleneck in vector inner-product calculations. The
synchronization cost in MPI Allreduce for computing inner products can constitute
more than half of the solution time. In order to overcome the scaling difficulty,
two algorithms were explored to successfully reduce the synchronization cost [20].
One was the use of flexible GMRES with a hierarchical GMRES preconditioner,
where inner GMRES iterations are run on diagonal submatrices over subgroups of
processor cores only. On each submatrix, inner GMRES is further preconditioned
by block Jacobi/ILU(0). We denote this approach FGMRES/h-GMRES. The sec-
ond algorithm was to use the IBiCGStab algorithm [42] with a Chebyshev pre-
conditioner. We denote this approach to be IBiCGStab/Chebyshev. IBiCGStab
is mathematically equivalent to BiCGStab, but the iterates are reorganized so
that several inner products are computed together to reduce the number of syn-
chronizations. The Chebyshev iterations may not be as effective in reducing the
condition number as other Krylov iterations, but an advantage is that it does not
require any inner product calculations and thus can be used as a fixed precon-
ditioner. The two algorithms are based on the idea of reducing expensive global
inner products across the entire system by using cheaper local inner products (e.g.,
FGMRES/h-GMRES) or inner iterations that do not compute inner products at
all (e.g., IBiCGStab/Chebychev).

The success in [20] prompted us to explore similar ideas for BiCGStab. The
first attempt was to use BiCGStab in place of GMRES in FGMRES/h-GMRES,
such as FBiCGStab/h-GMRES and FBiCGStab/h-BiCGStab. The use of a small
constant number of inner iterations generally failed for convergence; the failure is
not surprising because a few iterations make the preconditioner vary too much,
and FBiCGStab does not guarantee any form of outer convergence as does FGM-
RES (monotonic decrease of residuals regardless of the varying of preconditioner).
On the other hand, when we used an inner tolerance as the stopping criterion,
convergence is seen for a reasonably chosen value (see Figure 4). In fact, the gen-
eral trend for the same tolerance is similar for whichever preconditioner is used,
either h-GMRES or h-BiCGStab, and the smaller the tolerance, the closer the
residual history is to a fixed preconditioner case. However, this convergence was
obtained at the cost of a large number of inner iterations. The overall run time
cannot compete with the simple strategy of using BiCGStab preconditioned by
block Jacobi/ILU(0).
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Fig. 4 Convergence history of FBiCGStab/h-GMRES and FBiCGStab/h-BiCGStab for
PFLOTRAN case 1 (mesh size 256× 256× 256) using 512 processor cores.

We therefore searched for a preconditioner that converges faster to the level of
1e-2 to 1e-3. Among all preconditioners examined, we settled on multigrid with
a particular choice of the smoothers and the coarse-grid solver. Multigrid (MG) is
generally applicable to steady-state or close to steady-state problems, such as the
two cases of PFLOTRAN we consider here. In the standard setting, multigrid is a
fixed preconditioner, because the smoothers (such as SOR or Chebyshev) require
no inner-product calculations and the coarsest-grid problem is solved exactly by
using a direct linear solver. In other words, one can, in principle, write down the
linear operator for one cycle of multigrid and see that it does not vary.

For PFLOTRAN applications, the MG preconditioner was known to work well
on a small number of processors, but the performance started tailing off at around
1,000 processor cores [19]. The difficulty to scale up the number of processors is
that in the coarsest level, the problem is so small that the communication cost
outweighs the computational cost. We cope with this difficulty by limiting the
number of levels (effectively, three), such that the coarsest grid is not too small, and
employing an iterative method to approximately solve the coarsest-grid problem.
Two coarse grid solvers are (1) 100 Chebyshev iterations, and (2) 5 IBiCGStab
iterations, each preconditioned by 20 Chebyshev iterations. For the former, even
though the coarsest-grid problem is not solved to full accuracy, multigrid is still
considered a fixed preconditioner because there are no inner product calculations.
For the latter, clearly, multigrid is a variable preconditioner.

We conducted experiments with the above ideas on two computer systems:
Intrepid, an IBM Blue Gene/P supercomputer located at the Argonne Leadership
Computing Facility [1], and Titan, a Cray XK7 system located at the Oak Ridge
Leadership Computing Facility [24]. Intrepid has 40,960 nodes, each consisting of
one 850 MHz quad-core processor and 2GB RAM, resulting in a total of 163,840
cores, 80TB of memory, and a peak performance of 557 TFlops. Titan has 18,688
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compute nodes, each consisting of one AMD 16-core Opteron 6274 processor run-
ning at 2.2GHz and 32GB of memory, giving a total of 299,008 cores.

Table 3 BiCGStab and FBiCGStab for PFLOTRAN on Intrepid (IBM Blue Gene/P), Case
1.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/Variable MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

512
(256x256x256) 547 212.8 29 97.2 23 86.4 (11%)

4,096
(512x512x512) 1006 365.1 43 121.3 33 106.1 (12%)

32,768
(1024x1024x1024) 1886 654.3 62 153.7 37 119.1 (23%)

163,840
(1600x1600x640) 2843 308.3 88 81.8 53 65.7 (20%)

Table 4 BiCGStab and FBiCGStab for PFLOTRAN on Intrepid (IBM Blue Gene/P), Case
2.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/Variable MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

16,384
(1600x816x320) 844 231.1 33 64.3 22 52.6 (18%)

98,304
(1600x1632x640) 1520 270.5 61 70.0 39 54.7 (22%)

163,840
(1600x1632x640) 1499 169.3 62 52.0 36 40.2 (23%)

Tables 3 through 6 compare the performance of (1) IBiCGStab/Chebyshev, (2)
BiCGStab with the fixed MG preconditioner, and (3) FBiCGStab with the variable
MG preconditioner on the two benchmark cases. The results of IBiCGStab/Chebyshev
(columns 2–3) have been reported in [20] and are used here as the baseline of com-
parison. For MG preconditioners (columns 4–8), V-cycle was used; the smoothers
were 2 steps of Chebyshev iterations because we found that Chebyshev outper-
formed other choices of smoothers. For both smoothers and coarse grid solvers,
block Jacobi/ILU(0) was used as the innermost preconditioner.

Overall, FBiCGStab with an MG preconditioner is two to three times faster
than the baseline IBiCGStab/Chebyshev on a large number of processor cores.
Hence, the focus of comparison here is how much reduction in execution time one
can achieve by using a variable preconditioner compared with using a fixed one.
The percentage of reduction in execution time relative to the fixed MG precon-
ditioner is listed in column 8 (% Reduction). As the size of the problem (hence
coarsest grid) increases, the fixed number of iterations used for the coarsest-grid
solver weakens the MG preconditioner, resulting in an increased number of outer
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Table 5 BiCGStab and FBiCGStab for PFLOTRAN on Titan (Cray XK7), Case 1.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/Variable MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

512
(256x256x256) 546 24.2 29 13.5 23 12.5 (7%)

4,096
(512x512x512) 1033 44.1 43 18.1 33 16.6 (8%)

32,768
(1024x1024x1024) 2073 89.0 62 27.4 37 24.3 (11%)

160,000
(1600x1600x640) 2407 52.0 91 24.9 55 22.5 (10%)

Table 6 BiCGStab and FBiCGStab for PFLOTRAN on Titan (Cray XK7), Case 2.

IBiCGS/Cheby BiCGStab/MG FBiCGStab/Variable MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Iter. Time Iter. Time (% Reduction)

1,600
(800x408x160) 411 18.0 20 8.8 20 8.8 (0%)

16,000
(1600x816x320) 829 29.6 30 11.3 22 10.9 (4%)

80,000
(1600x1632x640) 1578 53.1 60 16.7 38 15.0 (10%)

224,000
(1600x1632x640) 1501 20.9 66 16.6 37 14.8 (11%)

Table 7 Comparison of FBiCGStab and FGMRES for PFLOTRAN on Titan (Cray XK7),
Case 2.

FBiCGStab/Variable MG FGMRES/Variable MG
Smoother: Cheby Smoother: Cheby

Number of Cores CSolve: IBiCGS/Cheby CSolve: IBiCGS/Cheby
(Mesh Size) Iter. Time Mem. (GB) Iter. Time Mem. (GB)

1,600
(800x408x160) 20 8.8 3 37 8.5 27

16,000
(1600x816x320) 22 10.9 25 38 10.2 215

80,000
(1600x1632x640) 38 15.0 100 61 14.3 859

224,000
(1600x1632x640) 37 14.8 100 60 13.6 859

iterations. Such an increase is less significant for the variable MG preconditioner
because IBiCGStab/Chebyshev is more effective as a preconditioner than Cheby-
shev alone is. When the number of cores becomes larger than 30,000 (see the
last two rows of Tables 3 through 6), the number of outer iterations for using
the variable MG preconditioner (column 6) is almost half that of using the fixed
MG preconditioner (column 4), leading to a reduction of 10% and 20% in overall
execution time, on Titan and Intrepid, respectively.
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Comparing the results obtained on the two machines, one sees a consistent it-
eration number (for some grid sizes, a slightly different number of processor cores
was used across machines; this affected the innermost block Jacobi/ILU(0), thus
making the iteration numbers slightly different). However, the time improvement
of using a variable MG preconditioner is very different across the two machines.
Because the clock rate of Intrepid is much lower than that of Titan, the solution
time on Intrepid is longer. Comparing the individual operations, the performance
gains on Intrepid for the variable preconditioner are primarily due to fewer matrix-
vector products and triangular solves in block ILU(0). The increased global syn-
chronization cost of MPI Allreduce by IBCGS on the coarse grid is insignificant
because the communication network of Intrepid has a lower latency. Titan has
larger memory per core than Intrepid, making the local triangular solves a negli-
gible portion of the entire computation. Thus, the performance gains on Titan for
the variable preconditioner arise mainly due to fewer matrix-vector products. In
addition, the increased global synchronization cost on Titan becomes more notice-
able. This phenomenon is not rare in practice. It showcases that for a solver, not
only the theoretical convergence matters, but also the machine architecture plays
an important role.

By using the variable MG preconditioner, we change the outer iteration from
FBiCGStab to FGMRES and compare their performance; see Table 7. In general,
FGMRES outperforms FBiCGStab by a slight margin, due to the fact that FGM-
RES requires one matrix-vector product and application of the preconditioner per
iteration, whereas FBiCGStab requires two. The total number of outer FBiCGStab
iterations is slightly more than half of that of FGMRES; hence, the former takes
slightly more time. The key to the success of both flexible methods is good use
of the MG preconditioner, which lands on the sweet spot of the tradeoff between
inner tolerance and outer convergence.

In the table we also list the memory consumption of the outer iterations (since
the preconditioners are the same). An advantage of FBiCGStab is that it con-
sumes much less memory than does FGMRES, whose memory footprint is nearly
proportional to the restart size, which often needs to be large. Although there
is no shortage of computing nodes in extreme-scale computer systems, the cost
considerations may limit memory capacity, which improves 10× slower than does
the system peak floating point rate [30]. In addition, memory bandwidth remains
challenging for large applications; a light-weight solver enables more efficient data
access and can make room for other program components, such as preconditioning.

5 Concluding remarks

BiCGStab has been the de facto method of choice in many application domains for
solving linear systems. Motivated by the challenges in large-scale scientific applica-
tions and extreme-scale computer architectures that encourage the use of variable
preconditioners, we analyzed flexible BiCGStab and showed that the change of the
convergence behavior with respect to standard BiCGStab is in accordance with
the inaccuracy of the preconditioning solves. Thus, often a stopping criterion with
a moderate tolerance, say 1e-4 to 1e-2, for the preconditioning solves is favored in
order both to maintain convergence and to reduce overall computation time. To
this end, we demonstrated through numerical experiments, including the PFLO-
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TRAN reacting flow application, that FBiCGStab with variable preconditioning
yields comparable performance on extreme-scale computers to FGMRES, yet re-
quires a smaller memory footprint. This work provides insight on the practical use
of FBiCGStab for large-scale applications.
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