FastGCN: Fast Learning with Graph Convolutional Networks

via Importance Sampling
Jie Chen, Tengfei Ma, Cao Xiao. |IBM Research

9

Graph convolution is
similar to image
convolution: Sum up the
contributions of the
neighbors to update the
representation of itself.

Rowwise Rowwise
node embedding node embedding

(output) (input)

gU+y J(AH(Z)W(Z))

Adjacency matrix Weight matrix
(normalized) (model parameter)

Empirical Risk Minimization

* |n standard learning theory, we learn the parameters of a model by
minimizing the risk:

expected risk f(w) = E[f(w;§)],

model training example
parameter and label

* For large models, the minimization is typically done through stochastic
gradient descent: Update the model with one training example (or a
mini-batch of examples) each time:

Wit1 = W — Yk VLW, &k, )

* The problem for graphs is that one node is related to many other
nodes, hence the sample gradient is very expensive to compute.

Theoretical Result

* Recall that we approximate the loss function f by sampling the /-th layer

with t, nodes:
tm

a rox 1
f = Bunpllws k™ @)] 2 frn = 7 3wk (™)

* Theorem: The approximator is strongly consistent:

lim Jtots....ty, = J with probability one

to,t1,...,tpr — 00
* The result may be easily generalized to the gradient:

lim V ftot1....t,, = V[ with probability one

to,t1,...,tpr —> 00

1 n
empirical risk fomp(w) = - Zé(w; &)
i=1

Scalability Challenge -

after a few layers, almost the whole

graph will be touched. For stochastic

optimization, this means that a mini-

batch is very expensive to compute. )

‘
C .
' s Y0
Starting from a single node (brown), ‘
© ®

Generalize to Integral Transform -2

* Let the graph G have a vertex set V

* We generalize it to an infinite graph G’ with vertex set V’, and an
associated probability space (V/, F, P) ...

* ...such that G is induced from G’ and the nodes in V are iid samples of

V' according to probability measure P
/ embedding vectors

gU+n) J(AHU)W(Z))

/ embedding function

* Now, one layer of GCN ...

° ... becomes

AU () = ¢ ( / A(v, w)hW (u)wW dP(u))

Experimental Results -

Table 4: Total training time (in seconds).
Optimizing the implementation of

GraphSAGE for small graphs Cora Pubmed Reddit
improves running time to here FastGCN 2.7 15.5 638.6
GraphSAGE-GCN 724 259.6  3318.5

GCN (batched) 6.9 210.8 58346.6

batch size:

Cora

400

Pubmed

100

——— - GCN (original) 1.7 214 NA
EE?E“SAGE 4 Micro F1 Score
Cora Pubmed Reddit
: - FastGCN 0.850  0.880 0.937
\ GraphSAGE-GCN 0.829 0.849 0.923
— GraphSAGE-mean 0.822  (.888 0.946
GCN (batched) 0.851 0.867 0.930
GCN (original) 0.865 0.875 NA

Reddit

400

Proposed Solution: FastGCN

Vel

C.‘.O o @
: V‘ o
\

e

\

We propose that for each layer, sample
a fixed number of neighbors only.

Sampling Each Layer

*  We may perform Monte Carlo approximation for the integral in each
layer. For the /-th layer, use t,iid samples ~ P:

1 -
el @) = o | 5D Ak ()W

ti41

* In practice, this sampling means using t, iid nodes ~ Uniform to
approximate matrix multiplication (because vertex set is already iid ~ P)

t
I+1 n . l l l l
Hy LD ,) =0 | 30 Al ud )V H (0w O
j=1
* Furthermore, for variance reduction, we may use t,; iid nodes ~ Q to
perform sampling. The optimal distribution Q is not efficient to

compute, but setting Q to be proportional to the squared column
norms of the normalized adjacency matrix A works fairly well in practice

Experimental Results

© 0.85 ‘ ‘ ‘
3 Il Uniform
O
»n 08 H IH IH | I[L__]Importance Cora
L 0.75 n ‘ ‘
10 25 50
Importance o 0.9 ‘ ‘ ‘
- . o .
sampling is 3085 IH IH IH ! E:fn”ggrr{;‘nce Pubmed
consistently T o8 | | |
© 0.94 ‘ ‘ ‘
o .
0 0.92] { /Il Uniform :
D 09! H IH IH | \L_JImportance Reddit
L - | | |
25 50 100

Sample size



