

FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling Jie Chen, Tengfei Ma, Cao Xiao. IBM Research

GCN (Graph Convolutional Net)

Empirical Risk Minimization

In standard learning theory, we learn the parameters of a model by minimizing the risk:

expected risk $f(w) = E[\ell(w;\xi)],$ empirical risk $f_{\rm emp}(w) =$

> training example and label functior parameter

• For large models, the minimization is typically done through stochastic gradient descent: Update the model with one training example (or a mini-batch of examples) each time:

$$w_{k+1} = w_k - \gamma_k \nabla \ell(w_k, \xi_{k_i})$$

The problem for graphs is that one node is related to many other nodes, hence the sample gradient is very expensive to compute.

Theoretical Result

Recall that we approximate the loss function f by sampling the *I*-th layer with t, nodes:

 $f = \mathcal{E}_{v \sim P}[\ell(w; h^{(M)}(v))] \quad \xrightarrow{\text{approx}} \quad f_{t_0, t_1, \dots, t_M} = \frac{1}{t_M} \sum_{i=1}^{M} \ell(w; h^{(M)}(v))]$

Theorem: The approximator is strongly consistent:

 $\lim_{t_0,t_1,\ldots,t_M\to\infty} f_{t_0,t_1,\ldots,t_M} = f \quad \text{with probability one}$

• The result may be easily generalized to the gradient:

 $\lim_{t_0,t_1,\ldots,t_M\to\infty}\nabla f_{t_0,t_1,\ldots,t_M} = \nabla f \quad \text{with probability one}$

Scalability Challenge

Starting from a single node (brown), after a few layers, almost the whole graph will be touched. For stochastic optimization, this means that a minibatch is very expensive to compute.

$$= \frac{1}{n} \sum_{i=1}^{n} \ell(w; \xi_i).$$

$$\mathcal{Q}(w; h_{t_M}^{(M)}(u_i^{(M)}))$$

Generalize to Integra

- Let the graph G have a vertex set V
- We generalize it to an infinite graph G' with vertex set V', and an associated probability space (V', F, P) ...
- ... such that G is induced from G' and the nodes in V are iid samples of V' according to probability measure P
- Now, one layer of GCN ...

 $H^{(l+1)} = \sigma(\hat{A}H^{(l)}W^{(l)})$

... becomes

s
$$h^{(l+1)}(v) = \sigma \left(\int \hat{A}(v, u) h^{(l+1)}(v) \right)$$

Experimental Results

Proposed Solution: FastGCN

Sampling Each Layer

$$h_{t_{l+1}}^{(l+1)}(v) = \sigma\left(\frac{1}{t_l}\sum_{j=1}^{t_l}\hat{A}(v, u_j^{(l)})h_{t_l}^{(l)}(u_j^{(l)})W^{(l)}\right)$$

$$H_{t_{l+1}}^{(l+1)}(v,:) = \sigma\left(\frac{n}{t_l}\sum_{j=1}^{t_l} \hat{A}(v, u_j^{(l)}) H_{t_l}^{(l)}(u_j^{(l)},:) W^{(l)}\right)$$

Experimental Results

Importance

sampling is

consistently

better

F1 Score	0.85
	0.85 0.8
	0.75
F1 Score	0.9
	0.9 0.85
	0.8
F1 Score	0.94
	0.92
	0.9

We may perform Monte Carlo approximation for the integral in each layer. For the *I*-th layer, use t₁ iid samples ~ P:

In practice, this sampling means using t_i iid nodes ~ Uniform to approximate matrix multiplication (because vertex set is already iid ~ P)

• Furthermore, for variance reduction, we may use t_i iid nodes ~ Q to perform sampling. The optimal distribution Q is not efficient to compute, but setting Q to be proportional to the squared column norms of the normalized adjacency matrix A works fairly well in practice

