
Printing:
This	poster	is	48”	wide	by	36”	high.	
It’s	designed	to	be	printed	on	a	
large

Customizing	the	Content:
The	placeholders	in	this	
formatted	for	you.	
placeholders	to	add	text,	or	click	
an	icon	to	add	a	table,	chart,	
SmartArt	graphic,	picture	or	
multimedia	file.

T
from	text,	just	click	the	Bullets	
button	on	the	Home	tab.

If	you	need	more	placeholders	for	
titles,	
make	a	copy	of	what	you	need	and	
drag	it	into	place.	PowerPoint’s	
Smart	Guides	will	help	you	align	it	
with	everything	else.

Want	to	use	your	own	pictures	
instead	of	ours?	No	problem!	Just	
right
Change	Picture.	Maintain	the	
proportion	of	pictures	as	you	resize	
by	dragging	a	corner.

FastGCN:	Fast	Learning	with	Graph	Convolutional	Networks	
via	Importance	Sampling
Jie Chen,	Tengfei Ma,	Cao	Xiao.		IBM	Research

GCN	(Graph	Convolutional	Net)								à

WT

WT

WT

WT

Empirical	Risk	Minimization													à
• In	standard	learning	theory,	we	learn	the	parameters	of	a	model	by	

minimizing	the	risk:

• For	large	models,	the	minimization	is	typically	done	through	stochastic	
gradient	descent:	Update	the	model	with	one	training	example	(or	a	
mini-batch	of	examples)	each	time:

• The	problem	for	graphs	is	that	one	node	is	related	to	many	other	
nodes,	hence	the	sample	gradient	is	very	expensive	to	compute.

Theoretical	Result																																	à
• Recall	that	we	approximate	the	loss	function	f	by	sampling	the	l-th layer	

with	tl nodes:

• Theorem:	The	approximator is	strongly	consistent:

• The	result	may	be	easily	generalized	to	the	gradient:

Scalability	Challenge																												à

Experimental	Results																											à

Proposed	Solution:	FastGCN

Experimental	Results

Generalize	to	Integral	Transform					à
• Let	the	graph	G	have	a	vertex	set	V
• We	generalize	it	to	an	infinite	graph	G’	with	vertex	set	V’,	and	an	

associated	probability	space	(V’,	F,	P)	…
• … such	that	G	is	induced	from	G’	and	the	nodes	in	V	are	iid samples	of	

V’	according	to	probability	measure	P
• Now,	one	layer	of	GCN	…

• … becomes

Sampling	Each	Layer
• We	may	perform	Monte	Carlo	approximation	for	the	integral	in	each	

layer.	For	the	l-th layer,	use	tl iid samples	~	P:

• In	practice,	this	sampling	means	using	tl iid nodes	~	Uniform	to	
approximate	matrix	multiplication	(because	vertex	set	is	already	iid ~	P)

• Furthermore,	for	variance	reduction,	we	may	use	tl iid nodes	~	Q	to	
perform	sampling.	The	optimal	distribution	Q	is	not	efficient	to	
compute,	but	setting	Q	to	be	proportional	to	the	squared	column	
norms	of	the	normalized	adjacency	matrix	A	works	fairly	well	in	practice

Starting	from	a	single	node	(brown),	
after	a	few	layers,	almost	the	whole	
graph	will	be	touched.	For	stochastic	
optimization,	this	means	that	a	mini-
batch	is	very	expensive	to	compute.

We	propose	that	for	each	layer,	sample	
a	fixed	number	of	neighbors	only.

Graph	convolution	is	
similar	to	image	
convolution:	Sum	up	the	
contributions	of	the	
neighbors	to	update	the	
representation	of	itself.

H
(l+1) = �(ÂH

(l)
W

(l))

Rowwise
node	embedding	

(output)

Rowwise
node	embedding	

(input)

Adjacency	matrix	
(normalized)

Weight	matrix	
(model	parameter)

expected risk f(w) = E[`(w; ⇠)], empirical risk femp(w) =
1

n

nX

i=1

`(w; ⇠i).

loss	
function

model	
parameter

training	example	
and	label

wk+1 = wk � �kr`(wk, ⇠ki)

H
(l+1) = �(ÂH

(l)
W

(l))

h(l+1)(v) = �

✓Z
Â(v, u)h(l)(u)W (l) dP (u)

◆

embedding	vectors

embedding	function

h(l+1)
tl+1

(v) = �

0

@ 1

tl

tlX

j=1

Â(v, u(l)
j )h(l)

tl (u
(l)
j )W (l)

1

A

H
(l+1)
tl+1

(v, :) = �

0

@n

tl

tlX

j=1

Â(v, u(l)
j )H(l)

tl (u(l)
j , :)W (l)

1

A

f = Ev⇠P [`(w;h
(M)(v))]

approx����! ft0,t1,...,tM =
1

tM

tMX

i=1

`(w;h(M)
tM (u(M)

i ))

lim
t0,t1,...,tM!1

ft0,t1,...,tM = f with probability one

lim
t0,t1,...,tM!1

rft0,t1,...,tM = rf with probability one

Published as a conference paper at ICLR 2018

Table 2: Benefit of precomputing ÂH(0) for
the input layer. Data set: Pubmed. Train-
ing time is in seconds, per-epoch (batch size
1024). Accuracy is measured by using micro
F1 score.

Sampling Precompute
t1 Time F1 Time F1
5 0.737 0.859 0.139 0.849
10 0.755 0.863 0.141 0.870
25 0.760 0.873 0.144 0.879
50 0.774 0.864 0.142 0.880

10 25 50
0.75

0.8

0.85

F1
 S

co
re

Uniform
Importance

10 25 50
0.8

0.85

0.9

F1
 S

co
re

Uniform
Importance

 25  50 100
Sample size

0.9
0.92
0.94

F1
 S

co
re

Uniform
Importance

Figure 2: Prediction accuracy: uniform versus impor-
tance sampling. The three data sets from top to bottom
are ordered the same as Table 1.

the last step is a constant throughout training. Hence, one may precompute the product rather than
sampling this layer to gain efficiency. The compared results are listed on the right part of Table 2
(columns under “Precompute”). One sees that the training time substantially decreases while the
accuracy is comparable. Hence, all the experiments that follow use precomputation.

Next, we compare the sampling approaches for FastGCN: uniform and importance sampling. Fig-
ure 2 summarizes the prediction accuracy under both approaches. It shows that importance sampling
consistently yields higher accuracy than does uniform sampling. Since the altered sampling distri-
bution (see Proposition 4 and Algorithm 2) is a compromise alternative of the optimal distribution
that is impractical to use, this result suggests that the variance of the used sampling indeed is smaller
than that of uniform sampling; i.e., the term (9) stays closer to (8) than does (6). A possible reason
is that b(u) correlates with |x(u)|. Hence, later experiments will apply importance sampling.

We now demonstrate that the proposed method is significantly faster than the original GCN as well
as GraphSAGE, while maintaining comparable prediction performance. See Figure 3. The bar
heights indicate the per-batch training time, in the log scale. One sees that GraphSAGE is a sub-
stantial improvement of GCN for large and dense graphs (e.g., Reddit), although for smaller ones
(Cora and Pubmed), GCN trains faster. FastGCN is the fastest, with at least an order of magnitude
improvement compared with the runner up (except for Cora), and approximately two orders of mag-
nitude speed up compared with the slowest. Here, the training time of FastGCN is with respect to
the sample size that achieves the best prediction accuracy. As seen from the table on the right, this
accuracy is highly comparable with the best of the other two methods.

Cora Pubmed Reddit10-3

10-2

10-1

100

Ti
m

e 
(s

ec
on

ds
)

FastGCN
GraphSAGE
GCN Micro F1 Score

Cora Pubmed Reddit
FastGCN 0.850 0.880 0.937

GraphSAGE-GCN 0.829 0.849 0.923
GraphSAGE-mean 0.822 0.888 0.946

GCN (batched) 0.851 0.867 0.930
GCN (original) 0.865 0.875 NA

Figure 3: Per-batch training time in seconds (left) and prediction accuracy (right). For timing,
GraphSAGE refers to GraphSAGE-GCN in Hamilton et al. (2017). The timings of using other ag-
gregators, such as GraphSAGE-mean, are similar. GCN refers to using batched learning, as opposed
to the original version that is nonbatched; for more details of the implementation, see the appendix.
The nonbatched version of GCN runs out of memory on the large graph Reddit. The sample sizes
for FastGCN are 400, 100, and 400, respectively for the three data sets.

8

Optimizing	the	implementation	of	
GraphSAGE for	small	graphs	

improves	running	time	to	here

out	of	memory
batch	size:					400												100											400

Pe
r-b

at
ch

Published as a conference paper at ICLR 2018

Table 2: Benefit of precomputing ÂH(0) for
the input layer. Data set: Pubmed. Train-
ing time is in seconds, per-epoch (batch size
1024). Accuracy is measured by using micro
F1 score.

Sampling Precompute
t1 Time F1 Time F1
5 0.737 0.859 0.139 0.849
10 0.755 0.863 0.141 0.870
25 0.760 0.873 0.144 0.879
50 0.774 0.864 0.142 0.880

10 25 50
0.75

0.8

0.85

F1
 S

co
re

Uniform
Importance

10 25 50
0.8

0.85

0.9

F1
 S

co
re

Uniform
Importance

 25  50 100
Sample size

0.9
0.92
0.94

F1
 S

co
re

Uniform
Importance

Figure 2: Prediction accuracy: uniform versus impor-
tance sampling. The three data sets from top to bottom
are ordered the same as Table 1.

the last step is a constant throughout training. Hence, one may precompute the product rather than
sampling this layer to gain efficiency. The compared results are listed on the right part of Table 2
(columns under “Precompute”). One sees that the training time substantially decreases while the
accuracy is comparable. Hence, all the experiments that follow use precomputation.

Next, we compare the sampling approaches for FastGCN: uniform and importance sampling. Fig-
ure 2 summarizes the prediction accuracy under both approaches. It shows that importance sampling
consistently yields higher accuracy than does uniform sampling. Since the altered sampling distri-
bution (see Proposition 4 and Algorithm 2) is a compromise alternative of the optimal distribution
that is impractical to use, this result suggests that the variance of the used sampling indeed is smaller
than that of uniform sampling; i.e., the term (9) stays closer to (8) than does (6). A possible reason
is that b(u) correlates with |x(u)|. Hence, later experiments will apply importance sampling.

We now demonstrate that the proposed method is significantly faster than the original GCN as well
as GraphSAGE, while maintaining comparable prediction performance. See Figure 3. The bar
heights indicate the per-batch training time, in the log scale. One sees that GraphSAGE is a sub-
stantial improvement of GCN for large and dense graphs (e.g., Reddit), although for smaller ones
(Cora and Pubmed), GCN trains faster. FastGCN is the fastest, with at least an order of magnitude
improvement compared with the runner up (except for Cora), and approximately two orders of mag-
nitude speed up compared with the slowest. Here, the training time of FastGCN is with respect to
the sample size that achieves the best prediction accuracy. As seen from the table on the right, this
accuracy is highly comparable with the best of the other two methods.

Cora Pubmed Reddit10-3

10-2

10-1

100

Ti
m

e 
(s

ec
on

ds
)

FastGCN
GraphSAGE
GCN Micro F1 Score

Cora Pubmed Reddit
FastGCN 0.850 0.880 0.937

GraphSAGE-GCN 0.829 0.849 0.923
GraphSAGE-mean 0.822 0.888 0.946

GCN (batched) 0.851 0.867 0.930
GCN (original) 0.865 0.875 NA

Figure 3: Per-batch training time in seconds (left) and prediction accuracy (right). For timing,
GraphSAGE refers to GraphSAGE-GCN in Hamilton et al. (2017). The timings of using other ag-
gregators, such as GraphSAGE-mean, are similar. GCN refers to using batched learning, as opposed
to the original version that is nonbatched; for more details of the implementation, see the appendix.
The nonbatched version of GCN runs out of memory on the large graph Reddit. The sample sizes
for FastGCN are 400, 100, and 400, respectively for the three data sets.

8

Importance	
sampling	is	
consistently	

better

Cora

Pubmed

Reddit

Published as a conference paper at ICLR 2018

for Cora and Reddit, and 1024 for Pubmed. Dropout rate is set as 0. We use Adam as the opti-
mization method for training. In the test phase, we use the trained parameters and all the graph
nodes instead of sampling. For more details please check our codes in a temporary git repository
https://github.com/matenure/FastGCN.

Hardware: Running time is compared on a single machine with 4-core 2.5 GHz Intel Core i7, and
16G RAM.

C ADDITIONAL EXPERIMENTS

C.1 TRAINING TIME COMPARISON

Figure 3 in the main text compares the per-batch training time for different methods. Here, we list
the total training time for reference. It is impacted by the convergence of SGD, whose contributing
factors include learning rate, batch size, and sample size. See Table 4. Although the orders-of-
magnitude speedup of per-batch time is slightly weakened by the convergence speed, one still sees a
substantial advantage of the proposed method in the overall training time. Note that even though the
original GCN trains faster than the batched version, it does not scale because of memory limitation.
Hence, a fair comparison should be gauged with the batched version. We additionally show in
Figure 4 the evolution of prediction accuracy as training progresses.

Table 4: Total training time (in seconds).

Cora Pubmed Reddit
FastGCN 2.7 15.5 638.6

GraphSAGE-GCN 72.4 259.6 3318.5
GCN (batched) 6.9 210.8 58346.6
GCN (original) 1.7 21.4 NA

10-2 100 102

Training time (seconds)

0

0.2

0.4

0.6

0.8

1

Tr
ai

ni
ng

 a
cc

ur
ac

y

FastGCN GraphSAGE GCN (batched)

10-2 100 102 104

Training time (seconds)

0.8

0.82

0.84

0.86

0.88

0.9

Tr
ai

ni
ng

 a
cc

ur
ac

y

FastGCN GraphSAGE GCN (batched)

100 105

Training time (seconds)

0.7

0.75

0.8

0.85

0.9

0.95

Tr
ai

ni
ng

 a
cc

ur
ac

y

FastGCN GraphSAGE GCN (batched)

10-2 100 102

Training time (seconds)

0.2

0.4

0.6

0.8

1

Te
st

 a
cc

ur
ac

y

FastGCN GraphSAGE GCN (batched)

10-2 100 102 104

Training time (seconds)

0.82

0.84

0.86

0.88

0.9

Te
st

 a
cc

ur
ac

y

FastGCN GraphSAGE GCN (batched)

100 105

Training time (seconds)

0.75

0.8

0.85

0.9

0.95

Te
st

 a
cc

ur
ac

y

FastGCN GraphSAGE GCN (batched)

Figure 4: Training/test accuracy versus training time. From left to right, the data sets are Cora,
Pubmed, and Reddit, respectively.

C.2 ORIGINAL DATA SPLIT FOR CORA AND PUBMED

As explained in Section 4, we increased the number of labels used for training in Cora and Pubmed,
to align with the supervised learning setting of Reddit. For reference, here we present results by
using the original data split with substantially fewer training labels. We also fork a separate version
of FastGCN, called FastGCN-transductive, that uses both training and test data for learning. See
Table 5.

13


