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A DEFLATED VERSION OF THE BLOCK CONJUGATE GRADIENT
ALGORITHM WITH AN APPLICATION TO GAUSSIAN PROCESS

MAXIMUM LIKELIHOOD ESTIMATION

JIE CHEN∗

Abstract. Many statistical applications require the solution of a linear system corresponding to
a symmetric positive definite covariance matrix, in some cases with a large number of right-hand sides
of a statistical independence nature. A preconditioning strategy is considered, whereby the majority
of the modified spectrum is clustered within a narrow range, except for some extreme eigenvalues
deviating from the range rapidly. This situation motivates a deflated version of the block conjugate
gradient algorithm for handling the extreme eigenvalues and the multiple right-hand sides. With
exact deflation, the rate of convergence can depend on the spread of the clustered eigenvalues but
not the extreme ones. Even with inexact deflation, empirical evidences show that the combination
of deflation and block iterations is useful. Numerical experiments in a Gaussian process maximum
likelihood estimation application demonstrate the effectiveness of the proposed method, pointing to
the potential of solving very large-scale, real-life data analysis problems.
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1. Introduction. The preconditioned conjugate gradient (preconditioned CG,
or PCG) algorithm is an extensively studied, widely used, and successful algorithm
for solving symmetric positive definite systems. In many cases, however, variants
of the algorithm are considered to enhance the robustness and to handle practical
situations such as ill-conditioning and multiple right-hand sides. This paper considers
a common case in statistical analysis of spatial/temporal data, where the linear system
corresponds to a covariance matrix [27]. In addition to the increasing ill-conditioning
of the matrix, a challenge of a typical data analysis problem is the large number of
right-hand sides, say, 100 independent random vectors [1].

When there exist multiple right-hand sides, two major variants of the Krylov sub-
space methods have been studied: block methods [14] and seed methods [4, 15, 18, 29].
(For nonsymmetric matrices and the GMRES algorithm, see also [24, 25] for the block
variants and [23] for the seed variants.) The block methods extend the idea of repeat-
edly applying the matrix A ∈ Rn×n to vectors in order to generate a block subspace to
which the matrix is projected; the projected system is then solved to obtain approxi-
mate solutions. In exact arithmetic, the iteration terminates in at most dn/se steps,
where s is the block size. Similar to the single-vector version of PCG, in the block
versions the A-norm of the error vectors has (at least) a linear rate of decrease that is
governed by λn/λs, where for all j the λj ’s are the eigenvalues of the preconditioned
system, sorted nondecreasingly. As s increases, the convergence rate improves. In
fact, the block methods are often considered a robust improvement of PCG even if
there is only one right-hand side, since block iterations tend to better accommodate
the clustering of the small eigenvalues. The block iterations are sometimes necessary
to yield an acceptable convergence rate if an effective preconditioner is not available.

The seed methods [4, 15, 18, 29] run the CG iteration on a single right-hand
side (the seed system) and recycle the generated Krylov subspace by projecting the
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other systems to this subspace. When the seed system is solved, one also obtains crude
approximate solutions for the rest of the systems, one of which is then chosen to be the
seed system, and the CG iteration is restarted. The seed methods are most effective
when the crude approximate solutions yield residual vectors that have relatively large
components on the eigenvectors of A corresponding to the smallest eigenvalues. In
this case, using the crude approximate solution as a new initial guess for the new seed
system makes the iterations converge quickly. In some applications, the right-hand
sides are related in some manner (for example, they are time-dependent or parameter-
dependent), which makes it possible that the crude approximate solution is not too
far from the actual solution since the preceding seed system has been solved. Based
on the idea of using block iterations to improve the convergence over the single-vector
iterations, the seed methods can also be used in a block fashion, where the right-hand
sides are divided into equal-sized groups and the single seed system becomes a block
seed system [4].

A popular argument that favors the seed methods over the block methods is the
linear dependence issue of the block vectors during iterations, which is triggered by
the convergence of some system(s) or by other factors. Commonly used remedies
include reducing the block size (variable block PCG, [13]), removing the converged
system(s) [14], or separating the block into subblocks and performing a restart. We
note that the variable block PCG method [13] is intended for the solution of only
one right-hand side, and adaptations to the case of multiple right-hand sides may not
be obvious. A practical use of the seed methods may require the block seed version,
which in any case will need to face the linear dependence issue. Therefore, in this
paper we focus on the block methods.

Deflation [8, 20, 26, 12] is another idea to accelerate the convergence of a Krylov
subspace method. A typical deflation technique is to inject to the Krylov subspace a
few eigenvectors corresponding to the eigenvalues that hamper convergence (usually
the smallest ones). When accurate eigenvectors are expensive to compute, an ap-
proximate eigen-subspace is used instead. With a single right-hand side, approximate
eigenvectors can be obtained during the course of CG iterations. In fact, deflation
is more favorable for multiple right-hand sides, whereby the systems are solved se-
quentially. In such a case, the approximate eigenvectors can be refined every time
a system is solved, and the approximate subspace is used immediately for deflation
when solving the next. Deflation can be considered a method that explicitly modifies
the spectrum of the original matrix and reduces the condition number. A limitation
of the technique is the memory requirement to store all (or part of) the iterates for
computing the deflation vectors.

In this paper we consider a combination of deflation and block iterations to ac-
celerate the convergence of PCG. The method considered here is an extension of the
deflated PCG algorithm proposed by [20]. Since multiple right-hand sides are handled
simultaneously, the extra storage cost of deflation is relatively low when amortized
over each right-hand side. The method is motivated by a maximum likelihood estima-
tion application, for fitting a covariance model to a Gaussian process/random field.
Existing methods for solving this data-fitting problem heavily rely on the Cholesky
factorization of the covariance matrix, whereas the algorithm developed in [1] uses
approximation techniques to bypass the prohibitively expensive matrix factorizations
in large-scale problems. The algorithm [1] requires solving the linear system cor-
responding to the covariance matrix with a large number of right-hand sides. The
successful examples in [1] assume a regular grid structure of the sampling sites, which,



DEFLATED BLOCK PRECONDITIONED CONJUGATE GRADIENT 3

when translated to the matrix language, means that the covariance matrix is multi-
level Toeplitz. Hence, there are a few multilevel circulant preconditioners that assist
the CG iterations to converge superlinearly [3]. However, the methodology proposed
in [1] is not restricted to regular grid structures. In this paper we consider a gen-
eral case where the sampling sites are not regularly spaced. We apply a Laplacian
preconditioner to modify the spectrum of the covariance matrix. It turns out that
the majority of the resulting spectrum is well-conditioned, but the eigenvalues in the
two extremes deviate from the majority rapidly. Therefore, deflation is particularly
favorable here because the two ends of the spectrum can be approximated relatively
easily, and one then readily obtains a large reduction in the condition number of the
matrix. In the next section we summarize the key computational components of the
application and show an example of the spectrum of the preconditioned matrix.

2. Covariance matrices and preconditioners. Consider a stationary real-
valued random field Z(x), equipped with a covariance function φ(x) and a set of n
observation locations xi ∈ Rd, i = 1, . . . , n. The covariance between two observations
Z(xi) and Z(xj) is φ(xi − xj). A typical problem in statistical analysis of data is
the following: given a sample vector y from the random field, recover the covariance
function φ that presumably generates the given sample. We assume that φ comes from
a given family of covariance functions parameterized by a low-dimensional vector θ.
Then the covariance matrix K(θ) has entries

Kij = φ(xi − xj ;θ). (2.1)

In the case of a zero-mean Gaussian random field, the unknown parameter θ is found
by maximizing the log-likelihood function [17]

L(θ) = −1

2
yTK−1y − 1

2
log(det(K))− n

2
log 2π. (2.2)

The optimization is in general not convex, but in practice it is to the interests of
statisticians to study a solution of the following score equations:

−yTK−1(∂`K)K−1y + tr[K−1(∂`K)] = 0, ∀ `, (2.3)

which are nothing but the first order condition of maximizing (2.2). A solution θ̂
of (2.3) is called a maximum likelihood (ML) estimate. Because of the difficulty
of evaluating the trace of large (implicit) matrices, Anitescu et al. [1] exploited the
Hutchinson estimator of the trace [11] and proposed solving the sample average ap-
proximation of (2.3) instead:

−yTK−1(∂`K)K−1y +
1

N

N∑
j=1

uT
j [K

−1(∂`K)]uj = 0, ∀ `, (2.4)

where the sample vectors uj ’s have independent Rademacher variables as entries. As

the number N of sample vectors tends to infinity, the solution θ̂N of (2.4) converges

to θ̂ in distribution [1, 21]:

(V N/N)−1/2(θ̂N − θ̂)
D→ standard normal,

where V N is some positive definite matrix related to the left-hand side of (2.4). Hence,

V N/N is used to quantify the approximation quality of θ̂N to θ̂.
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Depending on the covariance model and parameterization, different nonlinear
solvers are used to solve (2.4). Consider a general Newton-type method, which re-
peatedly evaluates the left-hand side, which in turn requires solving the linear system
with respect to K with multiple right-hand sides (y and uj ’s). For inexact Newton
methods, the linear solves need not be very accurate, whereas when the nonlinear iter-
ations approach the optimum, the accuracy requirement of the linear solves becomes
progressively strict. Some information can be passed on between successive nonlinear
iterations to reduce computational costs, for example, by using the solution of the
last linear solve as an initial guess to the next linear solve. Note that in our situation
the preconditioner for the linear solver is fixed, and the Jacobian of the nonlinear
equations has a small size because θ is low-dimensional. For illustration purposes, we
simply use the fsolve command (which by default implements the trust region dogleg
algorithm) in Matlab as the nonlinear solver. It converges sufficiently fast, allowing
us to focus on the design of the linear solver. Detailed discussion of the nonlinear side
is out of the scope of this paper.

A covariance model that effectively models the smoothness and the scales of
spatiotemporal data is the Matérn family [27]

φM (x; θ) =
1

2ν−1Γ(ν)

(√
2ν ‖x‖
θ

)ν

Kν

(√
2ν ‖x‖
θ

)
,

where Γ is the Gamma function and Kν is the modified Bessel function of the second
kind of order ν. To make the covariance function anisotropic, one can replace the
scalar θ by a vector θ as in

φ(x;θ) = φM (x; θ) with
‖x‖
θ

=

√
x2
1

θ21
+ · · ·+

x2
d

θ2d
. (2.5)

The covariance matrix K(θ) resulting from the Matérn model is ill-conditioned.
Stein et al. [28] showed that the condition number of K must grow faster than linearly
in n assuming the observation domain has a finite parameter.

A preconditioning technique for K was proposed in [28]. For the case d = 1 and
the case d > 1 but where the points xi form a regular grid, the preconditioner essen-
tially is a (possibly high-order) finite-difference filter. Ignoring boundary points, the
preconditioned matrix was shown to have a bounded condition number independent
of n. The technique for deriving such a preconditioner explores the equivalence of
Gaussian measures between the spectral density of the Matérn functions and that of
the Brownian motions. However, the technique cannot be easily generalized to irreg-
ularly distributed points in d > 1. For this general case, a preconditioner based on
the stiffness matrix (under the context of finite elements) is found to yield a clustered
spectrum, since the stiffness matrix is generated from a discretization of the Laplace
operator. The construction of the preconditioner is as follows. First we add a set of
points surrounding {xi} to form an artificial boundary, and we perform a meshing on
all the points. Based on the finite-element mesh, a stiffness matrix L is constructed,
with

Lij =

∫
∇vi · ∇vj , (2.6)

where vi(x) is the piecewise linear basis function with vi(xj) = δij and δij is the
Kronecker delta. We immediately see that L is positive definite generically. We then
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define

τ = round(ν + d/2) (2.7)

and use Lτ to precondition K. Figure 2.1 shows an example for d = 2 and ν = 2.
The details of generating this example are explained in §5. One sees that a majority
of the eigenvalues of LτK are located within a narrow band between 10−2 and 10−1

(where the two red circles are located). The rapid deviation of the largest eigenvalues
from the band makes the computation of the eigen-subspace associated with these
eigenvalues inexpensive, and it is expected that block iterations can effectively handle
the other end of the spectrum.
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(a) K with ν = 2, d = 2
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(b) LτK with τ = 3

Fig. 2.1. Sorted eigenvalues. The details of generating K are given in §5.

3. The algorithm. To make notation clear, we will use boldface lower-case
letters such as b to denote a vector and the usual upper-case letters such as B to
denote a block vector. With a block size s, we write B = [b(1), . . . , b(s)] ∈ Rn×s, using
superscripts with parentheses to denote each vector in the block. We are interested
in solving the symmetric positive definite system

AX = B

using a symmetric positive definite preconditioner M ; that is, we solve the equivalent
system MAX = MB. We first review the standard form of the block PCG algorithm
discussed by O’Leary [14] and a version of the deflated PCG algorithm proposed
in [20].

3.1. Block PCG. With an initial guess X0 and initial iterates R0 = B −AX0,
Z0 = MR0 and P0 = Z0γ0, the block PCG algorithm runs the following iteration
until convergence:

Xj+1 = Xj + Pjαj

Rj+1 = Rj −APjαj

Zj+1 = MRj+1

Pj+1 = (Zj+1 + Pjβj)γj+1,
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where αj = (PT
j APj)

−1γT
j (Z

T
j Rj) and βj = γ−1

j (ZT
j Rj)

−1(ZT
j+1Rj+1). The vectors

x
(i)
j (columns of Xj) are approximate solution vectors, and r

(i)
j = b(i) − Ax

(i)
j are

the corresponding residual vectors. The s × s matrices αj and βj are so defined to
ensure that the block search directions Pj are A-conjugate; that is, P

T
i APj = 0 for all

i 6= j. One can show that the resulting block residual vectors Rj ’s are M -orthogonal.
The s× s matrices γj are arbitrary as long as they are nonsingular; they come from
the freedom of expressing the search subspace range(Pj) by using an arbitrary basis.
Practical uses of the γj ’s can, for example, orthogonalize the columns of Pj to improve
numerical stability.

Let the block-span of a set of matrices {Yj ∈ Rn×s} be defined as

block-span{Y1, . . . , Yt} :=


t∑

j=1

Yjξj

∣∣∣∣∣∣ ξj ∈ Rs×s

 .

Then each approximate solution Xj ∈ X0 +KM
j , where KM

j is the Krylov subspace

KM
j (A,R0) := block-span{MR0, . . . , (MA)j−1MR0}.

In fact, Xj is the minimizer of the error tr[(X−X∗)
TA(X−X∗)] over allX ∈ X0+KM

j ,

where X∗ = A−1B is the exact solution. This minimization property leads to an error
bound

‖x(i)
j − x

(i)
∗ ‖A ≤

(√
κ− 1√
κ+ 1

)j

D(i) (3.1)

for all approximate solution vectors indexed by i, where κ = λn(MA)/λs(MA) and
D(i) is some constant independent of j.

3.2. Deflated PCG. The deflated PCG algorithm discussed in [20] for solving
a single right-hand side system

Ax = b

uses a subspace range(W ) for deflation. Let an initial vector x0 be such that the
residual vector r0 = b− Ax0 ⊥ W . (To ensure this, one can, for an arbitrary vector
x−1, let x0 = x−1 + W (WTAW )−1WTr−1, where r−1 = b − Ax−1.) Compute
z0 = Mr0 and p0 = z0 − W (WTAW )−1WTAz0, and iterate the following until
convergence:

xj+1 = xj + αjpj

rj+1 = rj − αjApj

zj+1 = Mrj+1

pj+1 = zj+1 + βjpj −W (WTAW )−1WTAzj+1,

where the scalar coefficients are αj = 〈rj , zj〉 / 〈Apj ,pj〉 and βj = 〈rj+1, zj+1〉 / 〈rj , zj〉.
Compared with the standard PCG algorithm, this iteration uses a different search di-
rection pj for updating the approximate solution. In addition to the A-orthogonality
of the pj ’s and the M -orthogonality of the residual vectors rj ’s inherent from the
standard PCG algorithm, each residual vector is also orthogonal to W . The deflated
PCG algorithm is equivalent to the three-term Lanczos iteration on the matrix

C := A−AW (WTAW )−1WTA. (3.2)
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It is positive semi-definite and is singular (since CW = 0). One can show that the
spread of the spectrum of C is always no wider than that of A if the zero eigenvalues
are not counted. As a special case, when the columns of W are eigenvectors of A, then
almost all the eigenvalues of C are the same as those of A, except for those associated
with the eigenvectors that are the columns of W ; these eigenvalues are deflated to
zero. Hence, the deflated PCG algorithm can be considered explicitly modifying the
spectrum of A in order to accelerate the convergence. A standard convergence result
is

‖xj − x∗‖A ≤ 2

(√
κC − 1
√
κC + 1

)j

‖x0 − x∗‖A,

where κC is the condition number of C.1 Here we generalize the concept of condition
number for a singular matrix by defining it to be the ratio between the largest and
the smallest nonzero singular value.

3.3. Deflated block PCG. A natural generalization of the block PCG algo-
rithm by incorporating deflation is to modify the block search direction Pj and to
ensure that the initial block residual vector R0 is orthogonal to W . The modification
is straightforward, and we directly give the algorithm in Algorithm 1.

Algorithm 1 Deflated Block Preconditioned Conjugate Gradient

Input: Matrix A, preconditioner M , right-hand sides B, deflation matrix W , initial
solution X−1

1: R−1 = B −AX−1

2: X0 = X−1 +W (WTAW )−1WTR−1

3: R0 = B −AX0

4: Z0 = MR0

5: P0 = (Z0 −W (WTAW )−1WTAZ0)γ0
6: for j = 0, 1, . . . until convergence do
7: αj = (PT

j APj)
−1γT

j (Z
T
j Rj)

8: Xj+1 = Xj + Pjαj

9: Rj+1 = Rj −APjαj

10: Zj+1 = MRj+1

11: βj = γ−1
j (ZT

j Rj)
−1(ZT

j+1Rj+1)

12: Pj+1 = (Zj+1 + Pjβj −W (WTAW )−1WTAZj+1)γj+1

13: end for

The theory of this algorithm is parallel to that of the single-vector deflated PCG
algorithm. One can show by induction that for each j,

1. Rj and APj are both orthogonal to W , that is, WTRj = 0 and WTAPj = 0,
and

2. the Rj ’s are M -orthogonal and the Pj ’s are A-orthogonal, that is, R
T
i MRj =

0 and PT
i APj = 0 for all i 6= j.

Let the Krylov subspace

KM
j (C,R0) := block-span{MR0, . . . , (MC)j−1MR0},

1This bound is given in [8, 20] for the case of no preconditioning. It is straightforward to show
a similar bound for the preconditioned case.
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where recall that C is defined in (3.2). By induction, one obtains that MRj ∈ KM
j+1

and APj ∈ CKM
j+1. Thus, the Krylov subspace KM

j is equal to

block-span{MR0, . . . ,MRj−1}.

By the M -orthogonality of the Rj ’s, we have Rj ⊥ KM
j . For any Y ∈ KM

j , RT
j Y = 0

implies that RT
j A

−1CY = 0 since Rj is orthogonal to W . Then we have Rj ⊥
A−1CKM

j . Using this property, one obtains that Xj minimizes the solution error over

the subspace X0 +A−1CKM
j in each step j.

Theorem 3.1. The j-th approximate solution Xj minimizes the error

ej(X) := tr[(X −X∗)
TA(X −X∗)] (3.3)

over the subspace X0 +A−1CKM
j (C,R0).

Proof. Write X = X0+A−1CMRξ for any ξ ∈ Rjs×s, where R = [R0, . . . , Rj−1].
Then one has

ej = tr(ξTRTMCMRξ −RT
0 A

−1CMRξ − ξTRTMCA−1R0 +RT
0 A

−1R0)

by noting that CA−1C = C. A sufficient condition for ej to be minimized is that
there exists ξ such that

RTMCMRξ = RTMCA−1R0. (3.4)

On the other hand, it is obvious that Xj ∈ X0 + A−1CKM
j . Therefore we write

Xj = X0 +A−1CMRζ for some ζ. Then from the orthogonality

A−1CKM
j ⊥ Rj = R0 − CMRζ,

we have RTMCMRζ = RTMCA−1R0. Therefore, ξ = ζ satisfies (3.4), and thus Xj

minimizes ej .

3.4. Convergence. The minimization property presented in Theorem 3.1 is
used to explore the convergence of Xj to X∗. Considering preconditioning, we will
often refer to the following notation:

Ã = M1/2AM1/2, C̃ = M1/2CM1/2, R̃j = M1/2Rj .

In particular, inherent from the property of C, the matrix C̃ is singular. If we assume
that the deflation matrix W has t < n columns and has full rank, then the bottom
t eigenvalues of C̃ are zero. Denote by λj(·) the jth eigenvalue of a matrix, sorted

nondecreasingly. It is not hard to show that λn(C̃) ≤ λn(Ã) by using the definition
of C and that λt+1(C̃) ≥ λ1(Ã) based on the Courant-Fischer minimax theorem. In
other words, the spread of the spectrum of C̃ (ignoring zero-eigenvalues) is always no
wider than that of Ã.

We start by noting that for any X ∈ X0 + A−1CKM
j , we can write x(i) for each

i as

x(i) = x
(i)
0 +A−1C

s∑
k=1

j−1∑
l=0

σ
(i,k)
l (MC)lMr

(k)
0
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by using some set of scalar coefficients {σ(i,k)
l }. Then

x(i) − x
(i)
∗ = M1/2Ã−1

(
s∑

k=1

j−1∑
l=0

σ
(i,k)
l C̃l+1r̃

(k)
0 − r̃

(i)
0

)
.

Therefore, we can write

x(i) − x
(i)
∗ = −M1/2Ã−1

(
s∑

k=1

p
(i,k)
j (C̃)r̃

(k)
0

)
,

where for each i and k, p
(i,k)
j is some polynomial of degree not exceeding j satisfying

the constraint

p
(i,k)
j (0) = δik. (3.5)

Indeed, since the error ej(X) =
∑s

i=1 ‖x(i) − x
(i)
∗ ‖A (see (3.3)) is minimized by Xj ,

the p
(i,k)
j ’s corresponding to x(i) = x

(i)
j are optimal polynomials that minimize the

error

‖x(i) − x
(i)
∗ ‖A =

∥∥∥∥ s∑
k=1

p
(i,k)
j (C̃)r̃

(k)
0

∥∥∥∥
Ã−1

(3.6)

for each i. With the freedom of choosing s polynomials and the fact that C̃ has t
zero-eigenvalues, we obtain the following result, which implies a decreasing rate of

‖x(i)
j − x

(i)
∗ ‖A independent of the bottom t+ s− 1 eigenvalues of C̃.

Theorem 3.2. Denote by λj, j = 1, . . . , n the eigenvalues of C̃ = M1/2CM1/2,
sorted nondecreasingly. Then for each i,

‖x(i)
j − x

(i)
∗ ‖A ≤ c · min

p∈Pj p(0)=1
max

t+s≤j≤n
|p(λj)| · ‖x(i)

0 − x
(i)
∗ ‖A,

where Pj is the space of polynomials of degree not exceeding j and c =
√
1 + a2 is some

constant depending on i but independent of j. Here, a is the largest singular value of

Λ
−1/2
2 F2F

−1
1 Λ

1/2
1 , where Λ1 = diag(λt+1, . . . , λt+s−1), Λ2 = diag(λt+s, . . . , λn), and

F1 and F2 are given by (3.8) in the course of proving the theorem.
Proof. Define the error vector

d(i) := x(i) − x
(i)
∗ and d̃(i) = M−1/2d(i).

In parallel, we use the notation d
(i)
j and d̃

(i)
j when x(i) = x

(i)
j , for all j. Continuing

the above discussion, if we let UT C̃U = Λ = diag(λ1, . . . , λn) be a diagonalization of
C̃ where U is unitary, then for any i

s∑
k=1

p
(i,k)
j (C̃)r̃

(k)
0 =

s∑
k=1

p
(i,k)
j (C̃)C̃d̃

(k)
0 =

s∑
k=1

Up
(i,k)
j (Λ)ΛUT d̃

(k)
0 . (3.7)

To simplify notation, we let p
(i,i)
j ≡ p, a polynomial equal to 1 at the origin. To

satisfy (3.5), we choose the rest of p
(i,k)
j ’s for k 6= i to be p

(i,k)
j = τk(1− p), where the
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scalars τk’s are determined as follows. Let

(−p(Λ))−1(I − p(Λ))ΛUT
[
· · · d̃(k)

0 · · ·︸ ︷︷ ︸
k 6=i

]
=

 0
F1

F2

 and ΛUT d̃
(i)
0 =

 0
f1

f2

 ,

(3.8)
where the matrix with the underbrace labeled “k 6= i” contains as columns all the

vectors d̃
(k)
0 except for k = i. The matrices F1, F2 and vectors f1, f1 have sizes

(s− 1)× (s− 1), (n− t− s+1)× (s− 1), (s− 1)× 1, (n− t− s+1)× 1, respectively.
The zeros above F1 and f1 are caused by the fact that λ1, . . . , λt = 0. Then we solve
F1τ = f1 for the τk’s. Since k = i is absent, one has to be cautious that the labeling

of the τk’s is in accordance with the stacking of the columns d̃
(k)
0 . Then for each k 6= i,

Up
(i,k)
j (Λ)ΛUT d̃

(k)
0 = U(I − p(Λ))ΛUT d̃

(k)
0 τk

= U(−p(Λ))(−p(Λ))−1(I − p(Λ))ΛUT d̃
(k)
0 τk,

and thus

∑
k 6=i

Up
(i,k)
j (Λ)ΛUT d̃

(k)
0 = U

−I 0 0
0 −p(Λ1) 0
0 0 −p(Λ2)

 0
f1

F2F
−1
1 f1


= U

−I 0 0
0 −p(Λ1) 0
0 −p(Λ2)F2F

−1
1 0

 0
f1

f2

 .

Therefore,

s∑
k=1

Up
(i,k)
j (Λ)ΛUT d̃

(k)
0 = U

0 0 0
0 0 0
0 −p(Λ2)F2F

−1
1 p(Λ2)

ΛUT d̃
(i)
0 . (3.9)

On the other hand, note that C̃ = C̃Ã−1C̃. Since UT C̃U = diag(0,Λ1,Λ2),
UT Ã−1U must have the following structure:

UT Ã−1U =

∗ ∗ ∗
∗ Λ−1

1 0
∗ 0 Λ−1

2

 ,

where ∗ means some matrices that are out of our interest. Then combining (3.6),
(3.7) and (3.9) and using the above matrix structure, through direct calculations we
have

‖d(i)‖2A = d̃
(i)
0

T
UΛ1/2DΛ1/2UT d̃

(i)
0 ≤ ‖D‖ · ‖Λ1/2UT d̃

(i)
0 ‖2 = ‖D‖ · ‖d(i)

0 ‖2A, (3.10)

where the matrix

D =

0 0 0
0 ETE ETP
0 PE P 2

 with E = Λ
−1/2
2 PF2F

−1
1 Λ

1/2
1 , P = p(Λ2).

We now proceed to derive a bound for ‖D‖.
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Let the eigenvector corresponding to the largest eigenvalue ofD be z = [z0; z1;z2]
(where the semicolon is the Matlab notation); clearly z0 = 0. We have

‖D‖ = ‖Ez1 + Pz2‖2

‖z1‖2 + ‖z2‖2
≤ ‖P‖2

(
√
‖ETP−TP−1E‖‖z1‖+ ‖z2‖)2

‖z1‖2 + ‖z2‖2

≤ ‖P‖2 (a‖z1‖+ ‖z2‖)
2

‖z1‖2 + ‖z2‖2
,

where a > 0 has been defined in the theorem. Further, note that the function

f(z) =
(a+ z)2

1 + z2
(z ≥ 0)

achieves the maximum 1 + a2 when z = 1/a. This maximum is larger than 1, which
can be achieved by letting z1 = 0. Therefore, we conclude that

(a‖z1‖+ ‖z2‖)2

‖z1‖2 + ‖z2‖2
≤ 1 + a2

and thus ‖D‖ ≤ ‖P‖2 (1 + a2). By choosing the optimal polynomial p to bound ‖P‖
and following (3.10), the proof of the theorem is complete.

Using Chebyshev polynomials, we can estimate the minimax of |p(λj)|, which
gives a bound that is an analog to probably the most well-known convergence result of
the standard PCG algorithm. See Corollary 3.3. In the nondeflation case, this bound
is slightly different from that presented in [14] (see also (3.1)); however, the implied
rates of convergence therein are the same. The rate, which is based on λn/λt+s, may
be too pessimistic when λn � λt+s. Thus, we also give a second bound, which is
a useful estimate when the eigenvalues, except for a few largest ones, are clustered.
See Corollary 3.4. This bound can be used to explain the superlinear convergence
sometimes observed in practice.

Corollary 3.3. Using the notation in Theorem 3.2, we have

‖x(i)
j − x

(i)
∗ ‖A ≤ 2c

(√
κ− 1√
κ+ 1

)j

‖x(i)
0 − x

(i)
∗ ‖A,

where κ = λn/λt+s.
Proof. By using the standard result (see, e.g., [19, pp. 204–205])

min
p∈Pj , p(0)=1

max
λ∈[a,b]

|p(λ)| = 2

(√
b/a− 1√
b/a+ 1

)j

,

the corollary is obvious.
Corollary 3.4. Using the notation in Theorem 3.2, we have

‖x(i)
j − x

(i)
∗ ‖A ≤ c

(
κj − 1

κj + 1

)
‖x(i)

0 − x
(i)
∗ ‖A,

where κj = λn−j+1/λt+s.
Proof. Consider the degree-j polynomial

p(λ) =
2

(λt+s + λn−j+1)λn−j+2 · · ·λn

(
λt+s + λn−j+1

2
− λ

)
(λn−j+2−λ) · · · (λn−λ).

Since λt+s, . . . , λn−j+1 ≤ λn−j+2, . . . , λn, it is obvious that

max
t+s≤i≤n

|p(λi)| ≤
λn−j+1 − λt+s

λn−j+1 + λt+s
.
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3.5. Deflation matrix W . In the ideal case, the extreme eigenvalues of Ã =
M1/2AM1/2 (or equivalently those of MA) are deflated to reduce the condition num-
ber. This step amounts to using the corresponding eigenvectors of MA as the columns
of W . If the smallest t1 eigenvalues and the largest t2 eigenvalues of Ã are deflated
(where t1 + t2 = t), then the condition number as in Corollary 3.3

κ =
λn(C̃)

λt+s(C̃)
=

λn−t2(Ã)

λs+t1(Ã)
.

In reality, although the PCG iterations yield all the information sufficient to com-
pute eigenvectors (since they are equivalent to the Lanczos iterations), it is expensive
to actually compute them. Take the simple case of single-vector iteration, for ex-
ample. The high additional cost comes from storing all the basis vectors (essentially
the residual vectors) to compute eigen-subspaces. Computing accurate eigenvectors,
if actually done, is more often seen in the nonsymmetric case, for example, when
the GMRES algorithm is used for solving a nonsymmetric linear system [5]. In such
a case, the basis vectors must be stored in order to continue the Arnoldi process.
Hence, a practical version of the deflated GMRES algorithm is implemented by us-
ing a reasonable restart length where a fixed number of basis vectors are collected
for computing eigenvectors in each restart cycle. On the other hand, in the deflated
PCG algorithm considered in [20, 8], the algorithm is suitable for the case of multiple
right-hand sides, where each system with one right-hand side is solved sequentially.
An approximate eigen-subspace is obtained after each solve, and it results from a
refinement of the previous one in solving the preceding system.

For our algorithm, one can run a separate single-vector Lanczos algorithm to
obtain the eigenvectors. The overhead caused by the Lanczos iterations should not be
high compared with the cost of Algorithm 1, when amortized on each right-hand side.
Because of the clustered spectrum, the eigenvectors are likely to converge quickly.
Hence, one can use the Ritz vectors to approximate the extreme eigenvectors (in fact,
it is their spanned subspace that matters). Algorithm 2 shows the standard Lanczos
iterations. In t steps, the iterations yield the relation

AVt = UtTt + τt+1ut+1e
T
t , Vt = MUt,

where Ut = [u1, . . . ,ut] is M -orthogonal, Vt = [v1, . . . ,vt] is M
−1-orthogonal, and

Tt =


σ1 τ2

τ2 σ2
. . .

. . .
. . . τt
τt σt

 .

The matrix Vt is used as the deflation matrix W .
Note that line 6 of Algorithm 2 is the reorthogonalization step, which is other-

wise not needed in exact arithmetic. The loss of orthogonality occurs at the con-
vergence of the eigenvalues. Alternative to the full reorthogonalization approach,
which reorthogonalizes qj+1 against all the previous vectors at each step j, are other
computationally less expensive approaches, such as partial reorthogonalization [22]
and selective reorthogonalization [16]. The general principle of these approaches is
to perform reorthogonalization only when the loss of orthogonality is accumulated to
some critical level. In some cases, such as ours where the extreme eigenvalues deviate
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Algorithm 2 Lanczos for MA

Input: S.P.D. Matrices A and M , initial vector u1 with unit M -norm, t steps
Output: Vt, AVt

1: τ1 = 0
2: v1 = Mu1

3: for j = 1, 2, . . . , t do
4: σj = 〈Avj ,vj〉 // to improve stability, do σj = 〈Avj − τjuj−1,vj〉 instead
5: qj+1 = Avj − τjuj−1 − σjuj

6: Reorthogonalize qj+1 against {u1, . . . ,uj−1} using M -norm, if necessary

7: τj+1 = 〈Mqj+1, qj+1〉1/2
8: uj+1 = qj+1/τj+1

9: vj+1 = Mqj+1/τj+1

10: end for

from the majority of the spectrum rapidly, eigenvalues converge quickly, leading to
a fast accumulation of the loss of orthogonality. Then, reorthogonalization is needed
frequently, and thus using the alternative approaches may not gain a significant cost
reduction compared with using the full reorthogonalization approach. A numerical
example regarding this issue is presented in §5.

4. Practical issues. In this section we discuss several practical issues to make
Algorithm 1 robust and cost effective. We begin with the reorthogonalization issue.

4.1. Reorthogonalization. In the standard PCG algorithm, it is well known
that in finite arithmetic the orthogonality of the residual vectors is quickly lost. How-
ever, the loss of orthogonality does not appear to be a serious problem in practice.
We also make no attempt to recover the orthogonality of the block residual vectors
in the proposed algorithm, partly because reorthogonalization is costly. However, the
loss of orthogonality between the block residual vectors Rj and the deflation subspace

W hampers convergence seriously. As we often observe, the residual norms ‖r(i)j ‖
and the error norms ‖x(i)

j − x
(i)
∗ ‖A bounce back before they drop under a desired

tolerance. Hence, it is imperative to reorthogonalize Rj against W . This process is
done by inserting the following,

Rj+1 = Rj+1 −W (WTW )−1WTRj+1, (4.1)

immediately after line 9 of Algorithm 1 (and also a similar line with j = −1 immedi-
ately after line 3).

4.2. Rank deficiency of Pj. A well-known breakdown of block iterations is
the linear dependence of the columns within a block search direction Pj , which can
be triggered by many reasons in practice, including, for example, the convergence of
some system(s) and the bad scaling of different right-hand sides. An obviously easy
way to reduce the risk of breakdown is to normalize the right-hand sides so that the

initial residuals r
(1)
0 , . . . , r

(s)
0 do not vary too much in their norms. Especially when

the right-hand sides are statistically independent (e.g., independent random vectors),
and a zero initial guess is used, this is a good heuristic to ensure that the norms of

the residual vectors r
(i)
j among all i’s do not vary too much and that convergence is

more or less simultaneously attained.
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Another way to improve numerical stability is to use γj+1 to orthogonalize the
columns of Pj+1 as in line 12 of Algorithm 1. Specifically, we compute a QR fac-

torization of P̃j+1 = Zj+1 + Pjβj −W (WTAW )−1WTAZj+1 and let Pj+1 be the Q
factor and γ−1

j+1 be the R factor. The computations regarding γj+1 in other places of

the algorithm should be reformulated by using γ−1
j+1 to avoid unnecessary inversions.

To handle the potential rank deficiency, we set a threshold ε (e.g., the machine
epsilon). In the QR factorization outlined above, when the condition number of the R
factor is higher than 1/ε, we split the columns of P̃j+1 in two equal-sized groups and

obtain two smaller block vectors P̃
(1)
j+1 and P̃

(2)
j+1. For each group, the Q and R factors

are recomputed. In all subsequent iterations, the columns of all the block iterates are
split in groups accordingly. The split of columns may occur more than once across
iterations, hence the algorithm may finally result in several groups of block iterates.
The removal of the converged systems is done after the computation of P̃j+1 and
before the split of its columns. The net result of the removal and split of columns
is to update the approximate solution corresponding to each group using a smaller
block subspace.

4.3. Computational costs. We now analyze the computational costs of the
solver, including those of computing the deflation subspace. We first comment on
the computation of the term W (WTAW )−1WTAZj+1 in line 12 of Algorithm 1. We
precompute AW and WT (AW ) and factorize WT (AW ) before the iteration begins.
Then, in each iteration, Zj+1 is first multiplied by (AW )T , then solved withWT (AW ),
and finally multiplied by W . Hence, the time cost of computing this term in one it-
eration is O(nts+ t2s), where recall that t is the dimension of the deflation subspace
and s is the block size. This computation avoids the multiplication of A with Zj+1,
and hence in each iteration only one A-multiply (with Pjαj) is needed. The reorthog-
onalization (see (4.1)) is done in a similar way. Performing a QR factorization to
obtain γj+1 takes O(ns2) time. Let TA and TM be the time cost of performing one
matrix-vector multiplication with A and M , respectively. Then if the PCG iteration
is run in k steps, the total time cost of Algorithm 1 is O(ks(TA + TM ) + ks(s+ t)n),
including reorthogonalization and assuming that t, s � n. The majority of the stor-
age cost occurs in storing the block iterates Xj , Rj , Zj , Pj and the deflation-related
block vectors W and AW . Thus the storage cost is O((s+ t)n).

We also need to consider the costs of obtaining W and AW . In Algorithm 2, we
let W = Vt, and hence AW = AVt = [Av1, . . . , Avt] is simultaneously available. The
time cost of Algorithm 2 is O(t(TA+TM )+tn) considering no reorthogonalization, and
the storage cost is O(tn). Added to the time complexity is the reorthogonalization cost
O(tTM + t2n). In practice, s and t are comparable, and hence the costs of computing
the deflation subspace are not asymptotically higher than the solver alone.

We remark that in our application, the matrix A is the covariance matrix, which is
full, whereas the preconditioner M is some integer power of a sparse matrix. Since the
covariance matrix is defined based on a covariance kernel, A is not explicitly stored
and used. Rather, fast Fourier transform or fast summation methods [10, 2, 7, 1]
make it possible to perform A-multiply in O(n log n) or O(n) time using only O(n)
memory.

5. Numerical results. We present in this section several numerical experiments
with the deflated block PCG solver, where the matrix A is K, the covariance ma-
trix (2.1), and the preconditioner M is Lτ , with L being the stiffness matrix (2.6)
and τ defined in (2.7). Most of the experiments were conducted based on a two-
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dimensional irregular grid with triangulation (see Fig. 5.1 and references [6, 1]). The
grid is deformed from a regular grid in the physical region [−0.5, 0.5] × [−0.5, 0.5]
by scaling the y-coordinates of the grid points by a quadratic function, which is 1
in the middle of the range of x and 0.5 at the extremes. When the efficiency of the
matrix-vector multiplication is not important, we formed the full matrix K and per-
formed the multiplication in the straightforward way. When the matrix size is bigger
than what memory can hold, we used the tree code developed in [1] to carry out the
multiplication. The code was experimental, and it was neither parallel nor optimized.
However, it suffices to illustrate the point that multiplication with a large full matrix
is possible, and that the cost dominates that of vector inner products, although the
two have the same or similar asymptotic complexity. When the performance of the
multiplication is critical, we used the regular grid instead, which enables a fast mul-
tiplication by using multidimensional FFT. In this case, however, several multilevel
circulant preconditioners can effectively precondition the matrix. Thus, the purpose
here is not to compare the preconditioners but to show the encouraging convergence
caused by the combined use of deflation and block iterations.

Fig. 5.1. Points {xi} and the mesh.

5.1. Effect of preconditioning. The spectrum of the covariance matrix K
with grid size 32 × 32 and parameters ν = 2, θ = 0.25 has been shown in Fig. 2.1
(see §2), together with that of the preconditioned matrix LτK. The y-scales of the
two plots in the figure are the same. The clustered spectrum after preconditioning
is clearly seen. Outside the cluster (indicated by the two red circles) are 50 smallest
eigenvalues and 100 largest eigenvalues. The numbers of these eigenvalues cannot be
determined a priori, but empirically they are proportional to the size of the boundary
of the grid. This particular matrix was used in §5.2 to §5.5.

The stiffness matrix preconditioner is effective not only for the particular grid
shown in Fig. 5.1. In Fig. 5.2, we show the spectrum of the covariance matrix and
that of the preconditioned matrix, where the n = 1024 observation locations {xi}
are uniformly randomly distributed in a unit square. We added 128 points with a
distance 1/32 surrounding the square, as an extra layer of the boundary in order to
form the stiffness matrix. One sees that the preconditioner modifies the spectrum of
the matrix in a similar way to the deformed grid case.

5.2. Deflation subspace. We first investigate the computation of the defla-
tion subspace. One practical concern of Algorithm 2 with a large t is the cost of
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Fig. 5.2. Sorted eigenvalues. The points {xi} for generating K are random.

reorthogonalization. We implemented the partial reorthogonalization method used
in [9]. Fig. 5.3(a) plots the orthogonality of the Ritz vectors (defined as the maximum
of |vT

i uk| for all i, k ≤ j and i 6= k) across all Lanczos iterations j. One sees that
reorthogonalization is frequently needed. The reason is that the extreme eigenvalues
converge quickly. The phenomenon, on the other hand, is favorable for deflation.
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Fig. 5.3. Effect of partial reorthogonalization in Algorithm 2 and exact/inexact deflation.

Next, we compare the effect of exact (using eigenvectors) versus inexact (using
Ritz vectors) deflation. We ran Algorithm 2 with t = 100 and observed that the top
44 eigenvalues converged. Therefore, We ran Algorithm 1 with a block size s = 50
and deflation dimension t = 44. Fig. 5.3(b) shows the convergence history of the first
system. The plot indicates almost no difference between using eigenvectors or Ritz
vectors. Thus, inexact deflation is sufficient.

5.3. Block size s and deflation dimension t. We investigate the convergence
of the solver by varying s and t. As mentioned, after preconditioning, approximately
50 smallest eigenvalues and 100 largest eigenvalues deviate from the clustered spec-
trum. We ran the solver until the residual norm dropped under the machine epsilon.
Fig. 5.4 plots the average number of A-multiplies and M -multiplies (including those
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in the computation of the deflation subspace) per right-hand side needed. One sees
that the block size s affects the convergence more significantly than does the deflation
dimension t (each plotted curve corresponds to a choice of s, whereas the horizontal
axis corresponds to the variation in t). The smallest number of multiplications occurs
when s = 64 and t = 64 to 256. This roughly correspond to the number of eigenvalues
outside the clustered spectrum.

10
0

10
1

10
2

10
1

10
2

10
3

t

(a) A-mult

10
0

10
1

10
2

10
1

10
2

10
3

t

(b) M -mult

Fig. 5.4. Average number of A-multiplies and M-multiplies per right-hand side. The curves
from top to bottom correspond to s = 1, 2, 4, 8, 16, 32, 64, respectively.

5.4. Rank deficiency in block iterations. Fig. 5.5 shows a typical change of
the condition number of the R factor (that is, γ−1

j+1) across iterations, along with the
drop of residual norms for all the systems. The rank deficiency issue did not occur
here. In fact, it only occurred when the problem size became large, in which case after
the reductions of the block size, the condition number remained in some medium size
level. On the other hand, the residuals dropped at a similar speed, possibly because
of the random and independent nature of the right-hand sides and their equal norm.
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Fig. 5.5. (a) Condition number of γ−1
j+1. (b) Residual norms for all systems.
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5.5. Comparison of four CG solvers. We compare the four CG variants (all
with preconditioning): PCG, block PCG, deflated PCG, and deflated block PCG.
Again, we fixed s = 50 and t = 100. Fig. 5.6 shows the residual norms and error A-
norms. For block iterations, only the result of the first system is shown; those of the
other systems look similar. One sees the monotone decrease of the error A-norm in all
four variants, as predicted by theory, with the deflated block PCG solver converging
the fastest. In practice, since the exact solution is unknown, often we resort to the
residual norm as an indication of convergence. The figure shows that this practice is
viable.
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(a) Residual norm
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Fig. 5.6. Convergence history of the first system.

Even when the matrix does not have a clustered spectrum, the deflated block
PCG solver is still the best among the four competitors. See the convergence history
shown in Fig. 5.7, when no preconditioner is applied. The standard CG iterations
barely converge, whereas block iterations and deflation do encourage convergence. Of
course, the combination of the two further accelerates the convergence.
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Fig. 5.7. Convergence history of the first system (no preconditioning).

5.6. Scaling. We tested the scaling of the solvers by varying the grid size from
32× 32 to one on which any one of the solvers did not converge (724× 724). We fixed
s = 100, t = 200. The tolerance of the residual norm was set to 10−6, and maximum
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number of iterations 1000. The underlying grid was regular. Since the matrix-vector
multiplications dominate the cost, we show in Table 5.1 the numbers of A-multiplies
and M -multiplies (including those in the computation of the deflation subspace). One
sees that as the grid size becomes larger, more multiplications are needed, and the
advantage of the combination of deflation and block iterations becomes more obvious.
Deflation alone, without taking advantage of the existence of the multiple right-hand
sides, is far inferior to the other two solvers. Clearly, the convergence of deflated block
CG is the fastest. To further compare the performance of block PCG and deflated
block PCG, we plotted in Fig. 5.8 the actual running time of the latter and the ratio
of running times between the former and the latter. Deflated block PCG is several
times faster than no deflation (except when the problem is small).

Table 5.1
Number of A-multiplies and M-multiplies. The sign > indicates that the solver did not converge.

block PCG deflated PCG deflated block PCG
log2 n A-mult M -mult A-mult M -mult A-mult M -mult
10 1200 1200 2200 2414 1300 1514
11 2200 2200 2400 2619 1900 2119
12 2900 2900 2700 2919 2400 2619
13 3700 3700 3500 3722 2800 3022
14 5400 5400 5300 5531 3200 3431
15 7300 7300 9100 9345 3400 3645
16 11900 11900 19200 19450 5100 5350
17 23800 23800 44600 44854 6700 6954
18 50500 50500 77600 77856 9800 10056
19 > 100000 > 10000 > 100300 > 100559 20500 20759

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

matrix size n

(a) Running time of deflated block PCG (in sec-
onds).

10
3

10
4

10
5

1

2

3

4

5

matrix size n

(b) Running time ratio between block PCG
(when converged) and deflated block PCG.

Fig. 5.8. Running time comparisons.

5.7. The MLE problem: simulation input. We show the maximum likeli-
hood estimation problem presented in §2, with the use of the deflated block PCG
solver. The covariance function φ is anisotropic, with ν = 2. The observation vector



20 J. CHEN

y was sampled from the centered multivariate normal distribution with covariance
matrix K(θ∗), where θ∗ = [0.25; 0.2]. We used N = 100, computed the approximate

ML estimate θ̂N , and compared it with the ground truth θ∗. In the linear solver we
set s = N , t = 200, and the tolerance of the residual norm to 10−6.

To estimate how large a problem can be solved on a single desktop machine, and
to understand the scaling of the algorithm, we varied the size of the grid from 32×32
to 128 × 128. We started with an initial guess θ0 = [0.2; 0.25] for the smallest grid,
solved the problem, obtained the estimate, used it as an initial guess for the larger
grid, and repeated the process until we solved the largest grid.

Table 5.2
Solution statistics (simulation input).

Grid size 32× 32 45× 45 64× 64 90× 90 128× 128

θ̂N (std.)
.248(.0056) .247(.0061) .255(.0077) .250(.0076) .251(.0092)
.202(.0035) .200(.0038) .200(.0036) .201(.0046) .200(.0065)

ave # CG iter. 10 20 30 40 53
# func. eval. 18 15 15 15 15

Table 5.2 summarizes the results. It shows (1) the estimated scale parameters
together with the standard deviation indicating the confidence of estimation, (2) the
average number of iterations in the inner linear solver per function evaluation, and (3)
the number of function evaluations in the outer nonlinear solver. One sees that for all
grids, the estimate θ̂N is close to the ground truth value θ∗, with a tight confidence
interval. The numbers of CG iterations increase as the grid size increases, but the
numbers of function evaluations more or less stay the same.
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Fig. 5.9. Wall-clock times of the MLE solution.

We also show in Fig. 5.9(a) the wall-clock time against the size of the problem,
in a log-log scale. The plot looks linear, and the slope α of the fitted line indicates
that the total running time scales as O(nα). Here, α = 1.86. The plot can be used
to estimate the running time for experiments on a larger grid, if sufficient memory is
available that meets the need of storing the entire matrix.

5.8. The MLE problem: function input. In the preceding example the co-
variance matrix K was stored as a full matrix; in this subsection, the matrix-vector
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multiplication was done by using the tree code. We consider the case when the obser-
vation y is a function g of the location x. We experimented with a g that produces
a fractal. Because of the self-similarity of a fractal, it was expected that as the grid
became denser, the parameter θ would become smaller, in accordance with the fine
details exhibited in higher resolutions. The function g(x) is the one typically used
for visualizing the Mandelbrot set. By abuse of notation, let boldface letters such as
x represent a complex number, and let |x| be the modulus of x. Then, starting with
z0 = 0, we performed the iteration zj+1 ← z2

j + 4x and let g(x) be the fractional
(noninteger) part of exp(−|z20|).

We fitted the Matérn covariance function with order ν = 3/2. The initial guess
was θ0 = [0.2; 0.2], and again we used the estimate from the smaller grid as an initial
guess for the larger grid. Other settings were the same as in the preceding subsection.

Table 5.3
Solution statistics (function input).

Grid size 32× 32 45× 45 64× 64 90× 90 128× 128

θ̂N (std.)
.172(.0036) .114(.0019) .109(.0011) .083(.0007) .061(.0004)
.178(.0027) .104(.0014) .101(.0009) .070(.0005) .059(.0003)

ave # CG iter. 10 14 21 35 63
# func. eval. 15 18 15 18 18

Table 5.3 summarizes the results of the fitting (see the preceding subsection for

instructions for reading the table). As expected, the estimate θ̂N decreases as the
grid size increases. One also sees that the average number of CG iterations and the
total number of function evaluations are similar to those in the preceding subsection.

It is crucial that the matrix-vector multiplication be performed efficiently. Fig. 5.9(b)
shows the scaling of the wall-clock time against the size of the problem. Comparing
the two plots in Fig. 5.9, since the number of CG iterations is similar, the slopes of
the plots in some sense imply that the multiplication done in the tree code is less
efficient than that done the straightforward way. Nevertheless, this timing result does
not compromise the validity of using fast and approximate summation techniques for
matrix-vector multiplications, since direct multiplication cannot overcome the mem-
ory barrier.

6. Conclusion. We have derived and analyzed a deflated version of the block
PCG algorithm and discussed practical implementations. The rate of convergence is
independent of the two ends of the spectrum if the eigenvalues are properly deflated.
The algorithm outperforms deflated PCG or block PCG, and it is particularly useful
when the spectrum of the (preconditioned) matrix is clustered, as occurs in some
statistical data analysis scenarios. We showed an application of the solver in solving a
Gaussian process maximum likelihood estimation problem. Numerical results indicate
an encouraging convergence history as the problem size increases. As future work, we
plan to develop more cost-effective matrix-vector multiplication methods with respect
to the covariance matrix in order to handle very large scale problems.

Acknowledgments. The author is grateful to Lei Wang for providing the tree
code for matrix-vector multiplications and to Yousef Saad, Mihai Anitescu, and
Michael Stein for their helpful discussions. This work was supported by the U.S.
Department of Energy under Contract DE-AC02-06CH11357.



22 J. CHEN

REFERENCES

[1] M. Anitescu, J. Chen, and L. Wang, A matrix-free approach for solving the Gaussian process
maximum likelihood problem, SIAM J. Sci. Comput., 34 (2012), pp. A240–A262.

[2] J. Barnes and P. Hut, A hierarchical O(N logN) force-calculation algorithm, Nature, 324
(1986), pp. 446–449.

[3] R. H.-F. Chan and X.-Q. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, 2007.
[4] T. F. Chan and W. L. Wan, Analysis of projection methods for solving linear systems with

multiple right-hand sides, SIAM J. Sci. Comput., 18 (1997), pp. 1698–1721.
[5] A. Chapman and Y. Saad, Deflated and augmented Krylov subspace techniques, Numer. Linear

Algebra Appl., 4 (1997), p. 4366.
[6] J. Chen, M. Anitescu, and Y. Saad, Computing f(A)b via least squares polynomial approx-

imations, SIAM J. Sci. Comput., 33 (2011), pp. 195–222.
[7] Z. Duan and R. Krasny, An adaptive treecode for computing nonbounded potential energy in

classical molecular systems, J. Comput. Chem., 23 (2001), pp. 1549–1571.
[8] J. Erhel and F. Guyomarc’h, An augmented conjugate gradient method for solving consec-

utive symmetric positive definite linear systems, SIAM J. Matrix Anal. Appl., 21 (2000),
pp. 1279–1299.

[9] H. R. Fang and Y. Saad, A filtered Lanczos procedure for extreme and interior eigenvalue
problems, Tech. Rep. umsi-2011-103, University of Minnesot, 2011.

[10] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325–348.

[11] M. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines, Communications in Statistics-Simulation and Computation, 18 (1989),
pp. 1059–1076.

[12] R. A. Nicolaides, Deflation of conjugate gradients with applications to boundary value prob-
lems, SIAM J. Numer. Anal., 24 (1987), pp. 355–365.

[13] A. A. Nikishin and A. Y. Yeremin, Variable block CG algorithms for solving large sparse sym-
metric positive definite linear systems on parallel computers, I: General iterative scheme,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 1135–1153.

[14] D. P. O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra
Appl., 29 (1980), pp. 293–322.

[15] B. N. Parlett, A new look at the Lanczos algorithm for solving symmetric systems of linear
equations, Linear Algebra Appl., 29 (1980), pp. 323–346.

[16] B. N. Parlett and D. S. Scott, The Lanczos algorithm with selective reorthogonalization,
Math. Comp., 33 (1979).

[17] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, MIT Press, Cam-
bridge, Massachusets., 2006.

[18] Y. Saad, On the Lanczos method for solving symmetric linear systems with several right-hand
sides, Mathematics of Computation, 48 (1987), pp. 651–662.

[19] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2nd ed., 2003.
[20] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h, A deflated version of the conjugate

gradient algorithm, SIAM J. Sci. Comput., 21 (2000), pp. 1909–1926.
[21] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming: Mod-
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