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Abstract

Here, we present a computational framework, combining machine learn-
ing models with inverse optimization, which can accelerate and optimize con-
crete mix design with respect to climate impact and/or cost. Our approach
leverages a novel amortized Gaussian process (GP) model trained on a large
industry dataset to predict concrete strength based on mix proportions. The
resulting GP model has an R2 value, RMSE, and MAPE of ∼0.88, ∼909
psi (6.3 MPa), and ∼10.8%, respectively. We integrated the GP model with
an inverse optimization scheme to predict optimal mix designs that minimize
cost and/or climate impact. The results show that this integrated framework
can generate reasonable concrete mixes that offer up to ∼30% and ∼60% re-
duction in cost and climate impact, respectively, compared with industry
mixes with similar 28-day strength. This study highlights the potential en-
vironmental and economic benefits of data-driven approaches to design and
optimize concrete mixes.
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1. Introduction

Concrete is the most widely used building material in the world, with
a global annual production of approximately 30 billion metric tons [1]. Al-
though concrete has a lower carbon and energy footprint than almost all
construction materials on a unit mass basis [2, 3], the sheer scale of concrete
production and usage brings along huge environmental burdens. It has been
estimated that cement and concrete production is responsible for ∼8% of
global CO2 emissions [4, 1], rendering it an important consideration for the
global decarbonization effort.

To date, numerous research efforts have been dedicated to lowering the
CO2 emissions of cement and concrete production. According to the Inter-
national Energy Agency, one of the most promising mitigation strategies is
to partially replace ordinary Portland cement (OPC) with supplementary
cementitious materials (SCMs) with significantly lower carbon footprints [5],
e.g., fly ash (FA) from coal-fired power plants, blast-furnace slag (BFS) from
steel production, and silica fume (SF) from silicon and ferrosilicon alloy pro-
duction. These three SCMs have already been widely adopted by the concrete
industry, as shown by the published industry concrete data in the literature
[6, 7, 8] as well as those presented here. In addition to lowering CO2 emissions
and cost, the inclusion of SCMs in concrete can also increase the long-term
strength of concrete, improve durability, and mitigate permeability, among
many other effects [9, 10].

The use of SCMs, together with many organic and inorganic admixtures
often incorporated to tailor concrete properties, render modern concrete a
highly complex materials system. This complexity has led to industrial con-
crete mixture design based mostly on prescriptive and trial-and-error ap-
proaches [11], which are labor-intensive, time-consuming, and costly, yet re-
sult in sub-optimal designs. Given that the existing high-quality BFSs and
FAs are already highly utilized in concrete production and that researchers
are actively exploring a vast number of additional SCM sources [9, 10] and
other concrete additives (e.g., fillers and fibers), modern concrete materi-
als are likely to be increasingly more complex in the future. This expected
increase in complexity, together with the increasing need to lower concrete
emissions, call for new design strategies that will enable rapid optimal mix-
ture designs (e.g., achieving lower environmental impacts and cost while still
meeting structural performance requirements) for any given applications. For
this purpose, data-driven machine learning (ML) methods offer potential due
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to their ability to capture complex interactions among input features (e.g.,
individual concrete constituents) along with their correlations with target
output (e.g., concrete properties).

An increasing number of studies have explored ML as a means to predict
concrete properties (including mechanical strength) as a function of their mix
proportions, as reviewed recently by Ben Chaabene et al. [12], Nunez et al.
[13], and Li et al. [14]. As seen in these reviews, most existing ML studies
on concrete strength prediction are based on small lab datasets (typically
less than ∼300 observations), with only a handful of them having a size
greater than 1,000 observations [12, 13, 14]. The highest use larger data set
(∼1,030 observations) was compiled by Yeh over two decades ago [15] based
on seventeen early experimental studies, which contains concrete compressive
strength at different ages along with the quantities of cement, BFS, FA,
water, superplasticizer, and fine and coarse aggregate.

Although these studies based on small lab datasets are highly valuable,
larger datasets are often needed to develop more robust and reliable ML
models. For applications to real-world industry concrete mixes, ML models
developed based on large industry datasets are needed, which are inherently
more complex and have higher uncertainties than data collected under con-
trolled lab conditions. However, to this date, few ML studies on concrete
have explored large industrial datasets. Exceptions [6, 7, 8] include a recent
study by Young et al. [6], which presented several ML models to predict
concrete compressive strength using an industrial dataset (roughly 10,000
observations collected at job sites) consisting of eight input features (specifi-
cally, water/cement ratio, FA, coarse aggregate, fine aggregate, air-entraining
admixture, water-reducing admixture, air content and cement). They found
that the overall model performance was noticeably poorer on the industrial
data set (R2 values of ∼0.6) than on the Yeh data set, where R2 values
above ∼0.80 (and ∼0.90) are reported in their study [6] (and many previous
studies [16, 17, 18, 19, 20]). The lower model performance for industry data
(compared with the lab data) was also observed by Rousseau et al. [7]. This
discrepancy in performance between industry- and lab-based data sets has
been attributed to the higher level of noise in the industrial dataset from
higher uncertainty or uncontrolled/unreported process variables during the
process of proportioning, mixing, casting, and testing [6]. Young et al. [6]
suggested that future work should aim to expand the size of the data and
incorporate a wider set of input variables for improved results when using
industrial data.
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In light of this need, here we present a large industrial concrete dataset
collected by a concrete producer at various job sites across the United States
in 2017-2020, containing 9,296 concrete mixes with 38,332 compressive strength
measurements. Using this dataset, we built a novel amortized Gaussian pro-
cess (GP) model with embedded domain knowledge (based on our early work
[21]) to predict concrete strength and strength trajectories (i.e., output tar-
get) as a function of water/cementitious (w/cm) ratio and 12 constituent
quantities (i.e., input features). We chose the GP model (as opposed to the
more commonly used random forest (RF) and neural network (NN) mod-
els) because the problem of predicting concrete strength (which evolves as a
function of time) is well-suited to time-series analysis methods such as the
GP model.

We integrated this strength model (i.e., amortized GP) into an optimiza-
tion framework with nonlinear constraints, where the mix design is optimized
on two criteria (i.e., climate impact and cost) for specified 28-day target
strengths. The minimization of both cost and climate impact is different
from most existing optimization studies presented in the concrete literature
[6, 22, 23, 24, 25, 26, 27, 28, 29, 30], which minimize either cost or climate
impact (sometimes in combination with performance objectives (e.g., max-
imize strength [28, 30, 31])). For example, Young et al. [6] presented an
optimization procedure based on a NN model to minimize mixture cost sub-
ject to both target strength constraints and target embodied carbon impact.
Several exceptions [32, 33] have simultaneously minimized cost and climate
impact using metaheuristic algorithms; however, they are based on smaller
and simpler lab datasets (30-344 measurements).

We use the amortized GP model to predict the strength trajectories of the
identified optimal mixes to check the development of early-age strength. We
have also explored the impact of several scenarios (i.e., increasing unit prices
for two widely adopted SCMs (BFS and FA)) on the optimization outcome.
We demonstrate the potential of incorporating prediction uncertainty from
the GP model into the inverse optimization framework. This study highlights
the applicability of data-driven approaches in optimizing real-world concrete
mixes, revealing the potential for both cost and climate impact reductions.
The inclusion of cost in the optimization framework could be an important
driver for the concrete industry to adopt unconventional yet more sustainable
mix designs.
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2. Industrial Concrete Dataset

The concrete dataset used in this study was provided by an industrial con-
crete producer, and contains data collected for different projects over a period
of ∼3.5 years (2017-2020) across the United States. We aimed to perform
minimal pre-processing in the dataset. The raw dataset has mixture quanti-
ties for over 40 constituents, including two types of Portland cement (ASTM
Type II and Type I/II cements), nine FAs (density of 2.52-2.8 g/cm3), five
BFSs (density of 2.85-2.95 g/cm3), and coarse aggregates of different size
(e.g., 1 1/2, 3/4, 1/2 and 3/8 inches), type (limestone and trap rock) and
origin. This diversity of materials used highlights the complexity of indus-
trial concrete datasets as compared to the lab-based concrete datasets used
in most existing ML studies (as summarized recently by Ben Chaabene et al.
[12] and Li et al. [14]). These constituent sub-categories (over 40 in total)
are collapsed into 12 main categories which trade off between data avail-
ability for each constituent type (e.g., about 30% of the data contain one
type of FA while several other FAs were used only in less than 1% of the
data, plus no chemistry and mineralogy information is available for OPCs,
BFSs and FAs) and a loss of descriptive information. The resulting 12 major
constituent categories are coarse aggregate, fine aggregate, water, cement,
FA, BFS, SF, and high-range water-reducing (HRWR), water-reducing, ac-
celerating, air-entraining, and other (e.g., viscosity modifying) admixtures.
Obvious outliers, likely data-entry errors, were removed. For example, some
28-day strength data are significantly lower (some up to 10 times lower)
than the corresponding 28-day design strength, possibly due to recording or
experimental errors; these instances are manually identified and removed.

The final dataset consists of 9,296 concrete mixes, each with a varying
number of compressive strength measurements at different ages (range 1–26,
average 4.1 measurements per mix), for a total of 38,332 measurements,
yielding one of the largest concrete mixture and strength dataset studied.
The other two reported large industrial concrete strength data sets are from
Zhang et al. [8] (12,107 strength measurements on 25 concrete mixes) and
Young et al. [6] (9,994 strength measurements). For the purposes of mod-
eling, each mixture is represented by a 13-dimensional vector: the water-
to-cementitious material (w/cm; cementitious material = cement + SCMs)
ratio and the quantities of the 12 major constituent categories in units of
mass per cubic yard (CY) of concrete (1 CY = 0.76 m3). Table 1 sum-
marizes the statistics of the final dataset, and Fig. 1 displays the 28-day
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Figure 1: Visualization of 28-day compressive strength (in psi) as a function of each of the
13 variables in the 80% training (blue) and 20% testing (orange) sets: (a) w/cm ratio, and
quantity of (b) total water, (c) total fine aggregate, (d) total coarse aggregate, (e) total
cement, (f) total fly ash (FA), (g) total blast furnace slag (BFS), (h) total silica fume (SF),
(i) total high-range water-reducing (HRWR) admixture, (j) total water-reducing admix-
ture, (k) total air entraining admixture, (l) total accelerating admixture, and (m) total
other admixtures (e.g., viscosity modifying) admixtures). The histogram distributions of
strength and each variable in both the training and testing sets are also given. The con-
stituent quantities are given in either pound per cubic yard (lb/CY = ∼0.59 kg/m3) or
ounce per cubic yard (oz/CY = ∼0.037 kg/m3) of concrete, while strength is given in
pound-force per square inch (psi = ∼0.0069 MPa).
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compressive strength (i.e., target) as a function of each of the 13 variables
(i.e., input features), which clearly shows that there is significant variation
in the constituent quantities in the dataset. For example, the w/cm ratio
ranges from ∼0.2 to ∼0.6, while the 28-day concrete strength varies between
∼3,000 and ∼15,000 psi (∼23 and ∼102 MPa). This large variability of our
industry dataset is further illustrated by the principle component analysis
in Fig. S1 of Appendix, where the industry data is clearly seen to occupy a
wider design space (higher variations among designs of different mixes) than
the Yeh dataset [15].

Furthermore, Fig. 1 show that the 28-day strength is generally inversely
correlated with w/cm ratio (Fig. 1(a)) and positively correlated with the to-
tal HRWR admixture (Fig. 1(i)). The inverse correlation between strength
and w/cm ratio is consistent with domain knowledge and the published in-
dustry data [6, 34, 35]. However, the positive correlation in Fig. 1(i) was
not observed by Young et al. [6] due to the lack of HRWR admixture in their
industry dataset. This positive correlation can be attributed to the fact that
high-strength concrete mix design often requires the use of HRWR admixture
to maintain workability for low w/cm concrete (see the overall inverse cor-
relation between the quantity of HRWR admixture and w/cm ratio in Fig.
S2 of Appendix for our dataset). The correlations of other variables with
28-day strength are less obvious, even for SF (Fig. 1(f)) and air-entraining
admixture (Fig. 1(k)), which are known to increase [36] and decrease [37]
concrete strength, respectively. Furthermore, there are significant variations
in concrete strength at the same level of w/cm (Fig. 1(a)) or HRWR ad-
mixture (Fig. 1(i)), which suggests that other variables also influence the
28-day strength. These observations are consistent with the industry data
presented in ref. [6], further highlighting the complexity (and non-linearity)
of industry data.

We use 80% of the data for training the model and the remaining 20%
for testing the model (obtained via a random training-testing split). To
avoid leakage between the training and testing sets, we have partitioned the
data based on mixture ID, such that a given concrete mixture with multiple
strength observations (including measurements at different ages and repeated
measurements at the same age) appears only in the training or testing set
(or vice versa), but not both. As shown in Fig. 1, the distributions of each
feature in both the training and testing sets are similar, suggesting that both
sets are representative of the overall data set. All values have been z-scored
prior to model training by subtracting the mean and dividing by the standard
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Table 1: Summary statistics of the processed industrial data set (based on 1 cubic yard
(∼ 0.76 m3) of concrete), including the 12 major constituent categories and some selected
attributes. lb = pound; oz = ounce; psi = pound force per square inch. 1 lb = ∼ 0.45 kg;
1 oz = ∼ 0.028 kg; 1000 psi = ∼ 6.9 MPa.

Mean St. dev Min 25% 50% 75% Max

Coarse aggregate (lb) 1779.3 97.4 690.4 1767.3 1790.0 1810.0 2336.8

Fine aggregate (lb) 1376.2 127.4 847.1 1285.5 1382.0 1468.9 2136.5

Cement (lb) 554.4 105.4 228.9 468.9 553.3 664.0 850.0

Water (lb) 199.0 24.6 107.6 183.5 199.5 214.7 307.9

Slag (lb) 54.4 71.4 0.0 0.0 0.0 101.1 351.7

Silica fume (lb) 1.5 7.0 0.0 0.0 0.0 0.0 62.9

Fly ash (lb) 55.7 60.0 0.0 0.0 0.0 100.6 253.4

HRWR adm. (oz) 15.8 14.9 0.0 0.0 14.9 26.9 105.6

Water red. adm. (oz) 20.1 15.3 0.0 5.9 20.9 30.7 96.5

Accelerating adm. (oz) 63.1 89.9 0.0 0.0 0.0 116.0 426.7

Air-entraining adm. (oz) 1.1 1.8 0.0 0.0 0.0 2.1 29.6

Other adm (oz) 16.4 43.1 0.0 0.0 0.0 16.0 768.0

w/cm 0.30 0.05 0.19 0.27 0.30 0.33 0.60

28-day strength (psi) 8686 2042 3340 7080 8650 10270 14830

FA ratio 0.08 0.09 0.00 0.00 0.00 0.15 0.40

SL ratio 0.09 0.11 0.00 0.00 0.00 0.17 0.60

SF ratio 0.00 0.01 0.00 0.00 0.00 0.00 0.08

SCM ratio 0.17 0.09 0.00 0.13 0.16 0.21 0.60

Agg ratio 0.73 0.03 0.62 0.71 0.73 0.75 0.79

AEA/100*cement 0.21 0.35 0.00 0.00 0.00 0.43 5.69

deviation.
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Figure 2: Schematic overview of the proposed computational frameworks consisting of
three modules: (a) a strength prediction module (see Section 3.1), (b) an optimization
module (see Section 3.3) and (c) an objective estimation module (see Section 3.2).

3. Computational Methods

Fig. 2 presents a schematic overview of the computational framework
used to generate optimal concrete mix designs. It consists of three modules:
(a) a strength prediction module based on a GP model which enables concrete
strength prediction as a function of the mix proportions and time, (b) an
optimization module that generates and searches for optimal mix designs,
and (c) an objective module that calculates the cost and climate impact
of any given mix design. In the following sections we describe each of the
modules.

3.1. Gaussian process regression model for prediction of strength trajectories

To ensure specified compressive strength requirements are met, we devel-
oped a model which can make strength predictions given the mix design and
time. We select Gaussian processes (GPs) for three reasons. First, GPs are
well-suited for time series predictions [38], particularly in cases of irregular
sampling, as is true for our industrial concrete dataset. Irregular sampling
refers to a lack of consistency in time points, e.g. one mix may be measured
at 3 and 28 days while another is measured at 7 and 14 days. GPs are also
able to incorporate domain knowledge into the time series model as a prior.
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Second, compared with other ML models, such as support vector regres-
sion and RF, GPs return not only mean predictions but also variance as an
uncertainty measure, producing more informative estimates of the compres-
sive strength. Such information can be useful for more robust optimization
results. Third, GP models update their forecast based on additional obser-
vations, which can possibly accelerate mix development. These advantages
are further described below.

A GP provides flexibility in modeling because it is a distribution over
functions. Formally, a GP is a stochastic process such that any finite collec-
tion of random variables indexed by time t is jointly Gaussian. Characteriz-
ing a GP requires specifying a mean function m(t) and a covariance function
k(t, t′). We can then write the Gaussian process as

f(t) ∼ GP(m(t), k(t, t′)). (1)

We model the compressive strength y as a random function, perturbed by
independent noise ϵ:

y = f(t) + ϵ(t), (2)

where
ϵ(t) ∼ N (0, σ2

t ). (3)

When a set of observations, D = {(tm, ym)}Mm=1, is available, conditioned
on such a dataset, the posterior distribution over functions is yet another
Gaussian process. Moreover, by marginalizing over the posterior Gaussian
process, the predicted targets adopt a posterior predictive distribution that
is also Gaussian:

y∗|D ∼ N (y∗,V∗∗), (4)

where

y∗ = m∗ + K∗(K + σ2I)−1(m−m∗), (5)

V∗∗ = K∗∗ −K∗(K + σ2I)−1KT
∗ . (6)

Here, m = [y] and K = [k(t, t′)] for all t, t′ and y in the observation set;
while m∗ = [m(t∗)], K∗∗ = [k(t∗, t

′
∗)], and K∗ = [k(t∗, t

′)] for all t∗ and t′∗ in
the prediction set.

In our application, we model each mix using a Gaussian process and select
the mean and covariance functions based on domain knowledge. The mean
function (see Eq. 7) is chosen to be a log-linear function based on the typical
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shape of the trajectory of compressive strength as a function of time. The
covariance function (see Eq. 8) is chosen to be the squared exponential, a
typical choice for a smooth GP.

m(t;θ) = θ1 log t + θ2, (7)

k(t, t′;θ) = θ3 exp

(
−(t− t′)2

2(θ4)2

)
, (8)

where θ = [θ1, . . . , θ4] denotes the vector of hyperparameters.
To apply the model, the hyperparameters θ need to be estimated. We

expect the hyperparameters to differ depending on the formulation con-
stituents, z ∈ Rd. A standard approach to performing this estimation is
to find the values of θ which optimize the marginal likelihood of observing
the data under a particular choice of z. However, as our aim is to propose,
probably novel, formulations, there may be little to no data to perform this
optimization. Instead, as in [21], we use amortization, a concept in the ma-
chine learning literature referring to a parameterization of the quantity to
be estimated, so that the repeated estimation of the quantity under different
scenarios is replaced by a one-time estimation of the parameters of a func-
tion which predicts that quantity. To this end, we let the hyperparameters
θ be parameterized by using a multi-layer perceptron (MLP) of the concrete
formulation z:

θ = MLPϕ(z), (9)

where the MLP contains parameters ϕ. We choose the architecture of the
MLP to further encode our domain knowledge by constraining θ1 to be pos-
itive.

Given a collection of formulations and associated strength measurements,
{zi,yi, ti}Ni=1, where yi = [yi1, . . . , yiMi

]T are the observed strengths at times
ti = [ti1, . . . , tiMi

]T , we estimate ϕ through maximizing the log-marginal
likelihood,

L(ϕ) =
N∑
i=1

log p(yi | ti, zi;σ2,ϕ), (10)

where the Gaussian probability density p is specified by the mean function
m(t;θ) and the covariance function k(t, t′;θ), which in turn depend on the
formulation z. It is possible to jointly learn ϕ with the noise parameter σ in
Eq. 3, however in practice we perform a separate estimation of σ leveraging
repeated measurements from the same mix and time point in the industrial
dataset.
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3.2. Objective estimation

3.2.1. Climate impact of concrete mix design

We estimate the climate impact of a given concrete mixture (fg(zi)) on a
cradle-to-gate basis using Eq. 11:

fg(zi) = g⊺
mzi + g⊺

t zi + gp (11)

where gm,gt, and gp denote the GHG emissions associated with raw materials
production, transportation, and concrete production, respectively and zi is
a vector containing constituent quantities for a given concrete mix i .

We use two data sources for the climate impact analysis: the ecoinvent in-
ventory database for raw materials [39] and the life cycle assessment (LCA)
report commissioned by the National Ready Mixed Concrete Association
(NRMCA) [40] for raw material production and transportation. Environ-
mental product declarations for chemical admixtures provide materials cli-
mate impacts estimates [41, 42, 43]. Table 2 shows the climate impact factors
associated with the raw material production (gm,j) and transportation (gt,j)
of each constituent j in a mixture i (denoted zi,j). These factors are mea-
sured in CO2 equivalents (CO2-eq) per unit mass of constituent, where the
global warming potential (GWP) index is used in order to express the total
warming effect of all GHGs in terms of CO2. For example, 1 kg of methane
has about 30 times the warming potential of 1 kg of CO2 over a fixed time
period (e.g., 100 years), thus the GWP of methane is about 30. The climate
impact associated with the production of 1 CY (∼ 0.76 m3) of concrete (i.e.,
the gp in Eq. 11) is calculated as 5.79 kg CO2-eq using national average
statistics and is assumed to be the same for all concrete mixes in the study.
The final total climate impact (as given by Eq. 11) is reported in unit of kg
CO2-eq/CY of concrete.

3.2.2. Cost of concrete mix design

We estimate the cost of a concrete mixture per CY (∼ 0.76 m3), fc(zi),
using Eq. 12, where the unit costs for raw material production, cm, and
transportation, ct, are given in Table 3 for each constituent zi,j.

fc(zi) = c⊺mzi + c⊺t zi (12)

The unit price for the constituents (as given in Table 3) are estimated
considering several literature studies [6, 48] and the fact that the cost of BFS
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Table 2: Summary of the climate impact factors associated with raw materials production
(gm,j , Eq. 11) and transportation (gt,j , Eq. 11) of each constituent j on a mass basis,
which are obtained from refs. as indicated in the brackets. The climate impact associated
with the production of 1 CY (∼ 0.76 m3) of concrete (i.e., the gp term in Eq. 11) is
estimated as 5.79 kg CO2-eq.

j Mixture constituent
Raw materials pro-
duction (gm,j)

Transportation
(gt,j)

Non-admixtures kg CO2-eq/kg kg CO2-eq/kg
1 Coarse aggregate 0.00503 [39] 0.00728 [40]
2 Fine aggregate 0.00503 [39] 0.00721 [40]
3 Water 0.00212 [39] 0
4 Cement 1.043 [44] 0.02932 [40]
5 Fly Ash (FA) 0.00397 [45] 0.01887 [40]
6 Slag (BFS) 0.14705 [46] 0.01942 [40]
7 Silica fume (SF) 0.00397 [47] 0.01887!

Admixtures kg CO2-eq/kg kg CO2-eq/kg
8 HRWR 1.884 [43] 0
9 Water reducing 1.884 [43] 0
10 Accelerating 1.3404 [41] 0
11 Air-entraining 0.52805 [42] 0
12 Other 1.884 ∗ 0

Note: !assumed to be the same as those of FA.
∗assumed to be the same as the transportation cost of HRWR and Water
reducing admixtures.
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Table 3: Summary of cost factors used in this study for raw materials production (cm,j ,
Eq. 12) and transportation (ct,j , Eq. 12) of each constituent j on a mass basis.

j Mixture constituent
Raw materials pro-
duction (cm,j)

Transportation (ct,j)

Non-admixtures $/kg $/kg
1 Coarse aggregate 0.00992 0.005265
2 Fine aggregate 0.00595 0.005075
3 Water 0 0
4 Cement 0.11 0.02729
5 Fly Ash (FA) 0.055 0.01318
6 Slag (BFS) 0.11 0.02402
7 Silica Fume (SF) 0.397 0

Admixtures $/kg $/kg
8 HRWR 2.928 0
9 Water reducing 2.928 0
10 Accelerating 2.928 0
11 Air-entraining 2.928 0
12 Other 2.928 0

powder is comparable to OPC. Transportation cost estimates use national
average transport distances and quantities reported in [40], and assume costs
per ton-mile for truck, rail, ocean, and barge to be $0.15, $0.05, $0.04,and
$0.03, respectively. The cost of water is assumed to be zero, as is often done,
e.g. [6], given that its cost is significantly lower than other constituents. The
transportation costs for the admixtures and SF are also assumed to be zero,
given that they are relatively small compared with the corresponding raw
material cost (i.e., if we assume a unit transportation cost of $0.022/kg for
constituents 7-12 in Table 3, this transportation cost is only ∼1-6% of its
corresponding material cost, compared with ∼20-85% for constituents 1-6
(excluding water)).

We note that the cost and climate impact factors for individual con-
stituents in Tables 2 and 3 may evolve with time, source and region. Hence,
it is important to consider how the optimal mix design may change as SCMs
(e.g., FA and BFS) become more expensive, for example, as coal-fired power
plants are retired and FA becomes more scarce. Thus, we have studied three
cost scenarios in addition to the baseline, as shown in Fig. 3, where we in-
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Figure 3: Three studied scenarios with increasing unit prices of slag (Scenario 1), fly ash
(Scenario 2), and both slag and fly ash (Scenario 3) from the baseline level.

crease the unit price of BFS (Scenario 1), or FA (Scenario 2), or both BFS
and FA (Scenario 3) by $0.055/kg from the corresponding baseline price.

3.3. Optimization of concrete mix design

3.3.1. Bounds and constraints

In order to improve numerical stability and ensure that the predicted
optimal concrete mixtures are feasible, we have imposed some bounds and
constraints in the optimization framework, similar to previous concrete op-
timization studies [6, 32, 49, 28].

Bounds. Both upper and lower bounds are specified for each constituent
quantity, along with constituent ratios where appropriate, which are summa-
rized in Tables 4 and 5, respectively. The ratio bounds (e.g., BFS, FA, SF,
and SCM ratios and w/cm) are roughly selected based on the ranges of the
ratios reported in the original industrial data set (see Table 1). The use of
these bounds not only reduces the design feature space to be explored during
the optimization (hence lowers the computational cost) but also ensures the
feasibility of the predicted individual constituent quantity (i.e., avoiding non-
physically high or low values by exploring a design feature space comparable
to that of the original industrial data set).

Strength constraint. Using the GP model described in Section 3.1, we obtain
the predictions of strength for a given mix design zi and age t as expressed
using Eqs. 13-14. Note that Eq. 14 is the prior mean function of the GP
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Table 4: Densities and lower and upper bounds for each constituent. The density val-
ues for the coarse and fine aggregates and each type of SCM are taken as the aver-
age of the prevalent sources in the database. The density values of the admixtures
are not available in the database, and we used the average values of the available Sika
products (https://usa.sika.com/en/construction-products/concrete/concrete-admixtures)
for each type of admixture.

j Mixture constituent
Density
(ρj)

Lower Bound
(LBj)

Upper Bound
(UBj)

Non-admixtures g/cm3 kg (lb) kg (lb)
1 Coarse aggregate 2.71 415 (700) 2373 (4000)
2 Fine aggregate 2.63 415 (700) 2373 (4000)
3 Water 1.00 18 (30) 593 (1000)
4 Cement 3.15 59 (100) 1780 (3000)
5 Fly Ash (FA) 2.60 0 297 (500)
6 Slag (BFS) 2.92 0 297 (500)
7 Silica Fume (SF) 2.20 0 59 (100)

Admixtures g/cm3 kg kg (oz)
8 HRWR 1.08 0 7 (200)
9 Water-reducing 1.14 0 7 (200)
10 Accelerating 1.34 0 22 (600)
11 Air-entraining 1.01 0 4 (100)
12 Other 1.10 0 37 (1000)
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model (Eq. 7) leveraging the trained MLP (Eq. 9). The constraint as written
in Eq. 15 can be interpreted as the following: the mean predicted strength
of mixture zi at time t (i.e., fs(zi, t)) should meet or exceed a minimum
specified target strength, smin. In this work, we have considered 6-10 target
28-day strengths (ranging from 4,000 to 13,000 psi (27.6-89.7 MPa) at an
increment of 1,000 psi (6.9 MPa)), given the importance of 28-day strength
to concrete design and its prevalence in concrete literature. Nevertheless,
it is worthwhile for future investigations to explore multiple constraints of
strength over time.

θi = MLP(zi) (13)

fs(zi, t) = θi,1 log t + θi,2 (14)

fs(zi, t) ≥ smin (15)

We also consider an alternative specification of the strength constraint.
As the GP can also predict uncertainty, we frame the constraint as requir-
ing that the predicted strength exceeds the target strength with a specified
probability pc.

θi = MLP(zi) (16)

p(yi|t,θi, σt, ϕ) ∼ N (m(t;θi), k(t, t′;θi) + σt) (17)

p(yi ≥ smin|t,θi, σt, ϕ) ≥ pc (18)

where yi is the predicted strength at 28-day for a given concrete mix (i.e.,
fs(zi, 28)). For additional details, please refer to the appendix.

Volume Constraint. Since all the constituent quantities in the original dataset
are given based on one CY (∼ 0.76 m3) of concrete, the volume of the pre-
dicted concrete mix design should be approximately one CY. Based on den-
sity of individual constituent ρj (as given in Table 4) and Eq. 19 (volume
based on materials), we have estimated the volume of all concrete mixes in
original data set (Vm), which is shown in Fig. 4. We note that the density
value of each constituent is taken as the average of the prevalent sources in
the database. For example, the coarse aggregate in the database is predom-
inantly (> 99%) limestone aggregate, with density values ranging from 2.65
to 2.71 g/cm3. The prevalent coarse aggregate used is 3/4 inch (∼1.9 cm)
limestone with an average density of 2.71 g/cm3, which is adopted in Table
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4 to represent coarse aggregate density. This simplification (or estimation of
density) will induce some uncertainty in the subsequent volume calculation.

In Fig. 4, we observe a peak at ∼0.97 CY with small deviation (mostly
smaller than ∼2%) for concrete without air-entraining admixture (AEA),
suggesting that these concrete also has a small amount entrained air (about
3%) which is reasonable [50]. The small deviation around the peak is likely
caused by the density uncertainty of individual constituents, as mentioned
above (e.g., different sources of coarse aggregate have slightly different den-
sity values), and the amount of entrained air. For concrete with AEA, the
estimated volume peaked at ∼0.93 CY, which suggests the presence of ∼7%
entrained air. Furthermore, we observe that the most typical dosage of
AEA (oz) per 100 lb of cement (1 lb = 16 oz) in the air-entrained con-
crete is 0.39 (see Fig. S3 of Appendix). Therefore, we formulate the volume
constraint according to Eq. 20, where we assume 7% entrained air when
z11/(z4/100) ≥ 0.39 while 3% entrained air when z11/(z4/100) < 0.39. For
the final volume, we formulate an inequality in the optimization as shown in
Eq. 21, which is more attainable, as it can be thought of as a relaxed version
of an equality constraint. Furthermore, we have considered an additional
scenario when no constraints have been imposed on the AEA (i.e., Vfinal =
Vm + 3%). This treatment generates concrete mix designs without AEA,
similar to the approach adopted in ref. [6].

Finally, similar to ref. [6], we have also imposed an aggregate volume
ratio constraint as given by Eqs. 22 and 23, which is within the range of
values adopted in our industrial data (see Table 1). Considering the signifi-
cantly lower cost and climate impact factors associated with aggregates, the
introduction of the aggregate volume ratio constraint of 0.65-0.75 prevents
the generation of mixes with an excessive amount of aggregates, which is
known to cause workability issue [51].

Vm =
z1
ρ1

+
z2
ρ2

+
z3
ρ3

+
z4
ρ4

+
z5
ρ5

+
z6
ρ6

+
z7
ρ7

+
z8
ρ8

+
z9
ρ9

+
z10
ρ10

+
z11
ρ11

+
z12
ρ12

(19)

Vfinal =

{
Vm + 0.07, if z11

z4/100
≥ 0.39

Vm + 0.03, otherwise
(20)

0.99 ≤ Vfinal ≤ 1.01 (21)
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Figure 4: Histogram of calculated volumes of mixtures (Vm) in our industrial dataset using
constituent densities in Table 4 and Eq. 19. Units are in CY (∼ 0.76 m3).

Vagg =
z1/ρ1 + z2/ρ2

Vfinal

(22)

0.65 ≤ Vagg ≤ 0.75 (23)

where zj and ρj are the quantity and density of the jth constituent (see
the constituent label in Table 4), respectively; Vagg is the volume ratio of
aggregate (including both fine and coarse aggregates) in the final concrete
mix.

3.3.2. Optimization algorithm and objective function

Here, we have considered two optimization objectives for designing a con-
crete mixture, minimizing the climate impact (fg(z), Eq. 11), and cost (fg(z),
Eq. 12) and two settings, with and without constraints on the air-entraining
admixture (Eq. 20), resulting in four single-objective optimization problems.
We used the differential evolution (DE) algorithm, a heuristic optimization
algorithm developed by Storn and Price [52], to find the optimal solutions
(i.e., mix proportions with minimal climate impact or cost) subject to the
bounds and constraints in Section 3.3.1. We use the DE implementation
available in the SciPy Python package [53]. More details on the DE algorithm
and a summary of each single-objective optimization scheme (minimizing cli-
mate impact or cost) are given in Appendix. In each case, the algorithm was
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Table 5: Ratio constraints used in the optimization procedure. In all cases, the denomi-
nator is the total cement, fly ash, slag and silica fume. These bounds are selected based
on the ranges of the ratios in the original dataset (see Table 1).

Parameter Expression Lower Upper

Total supplementary cementi-
tious material ratio (RSCM)

z5 + z6 + z7
z4 + z5 + z6 + z7

0 0.6

Fly ash ratio (RFA)
z5

z4 + z5 + z6 + z7
0 0.4

Slag ratio (RBFS)
z6

z4 + z5 + z6 + z7
0 0.6

Silica fume ratio (RSF )
z7

z4 + z5 + z6 + z7
0 0.1

w/cm (RWCM)
z3

z4 + z5 + z6 + z7
0.2 0.6

run 50 times for each target strength using the Sobol population initialization
method, generating an ensemble of optimal solutions (local minima).

Bi-objective optimization. We then performed bi-objective optimization, which
aims to jointly minimize both climate impact and cost. Following the meth-
ods in ref. [54], we normalize each of the single objective functions using Eqs.
24 and 25, where z∗c and z∗g are the concrete mix formula which minimizes fc
(cost) and fg (climate impact), respectively.

fnorm
c (z) =

fc(z)

fc(z∗c)
(24)

fnorm
g (z) =

fg(z)

fg(z∗g)
(25)

There are several classical methods for multi-objective optimization prob-
lems, including ϵ-constraint, goal attainment, and weighted sum. Here, we
adopted the weighted sum method, which involves converting the multi-
objective problem into a weighted sum of all single objectives and is among
the simplest and most popular to implement. The new function to be mini-
mized (F ) for our bi-objective problem is given in Eq. 26. In this form, we
alter the values of the weighting factor w in the range [0, 1] in order to vary
the prioritization of one objective over another. As a result, we will be able
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to understand the trade-offs between the two objectives (i.e., minimizing cost
and climate impact).

F = w · fnorm
g (z) + (1 − w) · fnorm

c (z) (26)
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4. Results and Discussion

4.1. Strength prediction based on GP model

We examined the performance of the novel amortized GP model (as given
in Section 3.1) in predicting concrete strength. Fig. 5(a) and 5(c) show the
strength trajectories for two example concrete mixtures (from the 20% testing
set not exposed during model training) predicted using the GP model, in
comparison with the corresponding experimental data. It is clear that the GP
model gives reasonable strength predictions and captures the general trend
of strength evolution (i.e., growth of strength with time at a decreasing rate
of growth). Fig. 5(b) and 5(d) show the updated prediction trajectories after
informing the model an early-age measurement for the two concrete mixes
in Fig. 5(a) and 5(c), respectively. Comparison with the experimental data
shows that the early-age inference improves the prediction accuracy of the
later-age strength for both cases and reduces the uncertainty of predictions,
as also shown previously [21].

Next, we evaluate the GP model’s ability to speed up experimentation
by using the 28-day strength predicted from the posterior estimate of the
model conditioned on an earlier time point as surrogate data to shorten
experiment times. As a proof-of-principal, we consider the mixes in the test
set which have measurements at 14 and 28 days. This is a comparatively
small number of samples, therefore we consider four additional train-test
splits for the analysis (resulting dataset has an average of 74 samples per
split). All results presented here are on the testing data, i.e. data not used
to learn the model parameters. We propose an early stopping criterion for the
experiment based on the prediction of 14-day strength, i.e., if our prediction
at baseline for 14-day strength is close to the observation at 14-days, accept
the posterior prediction for 28-day strength and terminate the experiment,
else continue the experiment until 28-days. Setting a threshold of 20% error,
we achieve a 28-day error of 475 ± 32 psi or 3.3 ± 0.2 MPa (5.3 ± 0.4%)
for the mixes that meet the criteria, which translates to stopping 90 ± 4%
of experiments early, reducing experiment time by half for those mixes. In
comparison, the points that don’t meet the early stopping criteria have a
28-day error of 801 ± 262 psi or 5.5 ± 1.8 MPa (10.0 ± 2.3%). This analysis
shows that the GP model with early-age inference may be able to replace the
need for 28-day (or later age) strength measurements, significantly decreasing
the experimental time frame.
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Figure 5: (a) and (c) show the predicted strength trajectories (1000 psi = 6.9 MPa) of
two concrete mixes (in the 20% testing set) from the amortized GP model, in comparison
with the corresponding experimental data at specific ages. (b) and (d) show the impact
of early-age inference on the predicted strength trajectories of the two concrete mixes
in (a) and (c), respectively. Experimental data are given by the stars, while the circles
and lines represent the average predicted strength at given ages and strength trajectories,
respectively. The blue shaded areas represent 95% confidence interval.
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Fig. 6 compares the performance of the GP model in predicting concrete
strength at all ages for the 20% testing set with that of typical RF and ANN
models trained using the same 80% data for training and validation. Details
on the training of the RF and ANN models are given in the Supplementary
Material. The amortized GP model is seen to give an R2 value, RMSE and
MAPE of ∼0.88, ∼909 psi (∼6.3 MPa), and ∼10.8%, respectively, which
are comparable to those obtained from the RF and ANN models (R2 value,
RMSE and MAPE of ∼0.88-0.89, ∼876-932 psi (∼6.0-6.4 MPa), and ∼10.3-
10.4%, respectively). The prediction performance of the models presented
here is reasonably good given the inherent uncertainty and complexity of the
industry data set as discussed earlier (Section 2). The R2 value achieved
here for the 28-day strength prediction only is about 0.83, higher than those
reported by Young et al. [6] and DeRousseau et al. [11], where R2 values of
∼0.54-0.60 and ∼0.25-0.51 were achieved for predicting the 28-day strength
of industrial concrete using different ML models (including RF and ANN),
respectively. Overall, the results in Figs. 5 and 6 suggest that our GP
model works reasonably well in predicting strength and strength trajectories
of industrial concrete mixes.

4.2. Single objective optimization

The optimized costs and climate impacts as a function of 28-day design
strength from the single-objective optimization are presented in Fig. 7(a)
and 7(b), respectively. Each violin shape in Fig. 7 represents a distribution
of objective values achieved over 50 independent algorithm runs, with the
median of the data given by the circle in the middle. The scattering of
the results, particularly notable for the case of minimizing climate impact
at a target strength of 12000-13000 psi (82.8-89.7 MPa), suggests that the
optimization is challenging and contains many local minima.

It is clear from Fig. 7 that there is an overall trend of increasing cost
and climate impact for the optimized concrete mixes as the target 28-day
strength increases. This overall trend is consistent with previous studies
[55, 6, 28], which also show that the cost and climate impact of concrete mix is
generally positively correlated with its strength. Fig. 7 also reveals that this
relationship is nonlinear: the increase of cost and climate impact per 1000 psi
(6.9 MPa) increase in target strength (i.e., the slope of the data) is higher at a
higher target strength. For instance, the slope of cost over the target strength
of 6000-11000 psi (41.4-75.9 MPa) is about 1.6$/CY/1000 psi ($0.3/m3/MPa,
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Figure 6: Comparison of measured concrete compressive strength with the predicted
strength at different ages from the (a) amortized GP model, (b) RF model, and (c) ANN
model. Selected error statistics are given in the figure. The RF and ANN models were
trained using the same 80% training data with a five-fold cross validation (see more details
on the RF and ANN models in Supplementary Material). The solid black line represent
the line of equality.
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Figure 7: Evolution of the (a) cost and (b) climate impact of the optimized mixes produced
by cost and climate impact minimization, respectively, as a function of 28-day target
strength. Each violin distribution is based on results from 50 independent algorithm runs,
with median value given by the open circle. 1000 psi = 6.9 MPa. 1 cubic yard (CY) =
0.76 m3.

Fig. 7(a)), which is significantly lower than that over the range of 11000-
13000 psi = 75.9-89.7 MPa ($3.8/CY/1000 psi = $0.7/m3/MPa). For the
climate impact data in Fig. 7(b), the slope over the design strength of 11000-
13000 psi = 75.9-89.7 MPa (∼3.8 kg CO2-eq/CY/1000 psi = ∼0.7 kg CO2-
eq/m3/MPa) is also considerably higher than that over 4000-11000 psi (∼
0.7 kg CO2-eq/CY/1000 psi = ∼0.1 kg CO2-eq/m3/MPa). Fig. 7 appears
to suggest the existence of change points of design strength (e.g., 12000 psi
= 82.8 MPa) in terms of reducing cost and climate impact while increasing
strength. Nevertheless, for a given task, one must consider that a higher
strength can reduce the size of a concrete beam or column (hence the volume
of concrete materials) needed.
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Figure 8: Evolution of (a) cost and (b) climate impact of the optimized concrete mixes
(generated from the corresponding single-objective optimization) as a function of the 28-
day target strength in psi (1000 psi =6.9 MPa). The average optimization results based
on 50 independent production runs for two schemes (with and without an imposed AEA
constraint, see Section 3.3.1) are shown in the figure (orange triangles and purple squares)
in comparison with cost and climate impact of the industrial concrete mixes (unfilled blue
circles). 1 cubic yard (CY) = 0.76 m3.

To illustrate the potential benefits of these optimizations, we compare
the cost and climate impact of the observed concrete mixes in our industrial
dataset (calculated using Eqs. 12 and 11, respectively) with those of the opti-
mized concrete mixes in Fig. 8(a) and Fig. 8(b), respectively. A comparison
of the two schemes (with or without an imposed AEA constraint, as described
in Section 3.3.1) shows that the imposed AEA constraint does not alter the
overall trends in Fig. 8 yet slightly decreases the cost at 10,000-12,000 psi
(69.0-82.8 MPa). We note that, for the industry data, only mixtures con-
forming to the bounds and constraints imposed for optimization (see Tables
4 and 5) are shown in Fig. 8 for a fair comparison. This comparison demon-
strates that the cost and climate impact of the optimized concrete mixes are
generally considerably lower than those of the actual mix designs used by the
industry. Calculations show that, on average, the cost and climate impact
of the industry mixes are ∼$68/CY (∼$89/m3) and ∼304 kg CO2-eq/CY
(∼400 kg CO2-eq/m3), respectively. These large gaps highlight the potential
economic and environmental benefits of data-driven concrete mix design.

To better understand whether the optimization algorithm is producing
feasible concrete mix designs, we examine the quantity of each constituent
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of the optimized mixes as a function of the target 28-day design strength.
Fig. 9 compares the actual constituent quantities (blue circles) from our in-
dustry data with the results from four single-objective optimization schemes:
minimizing (i) cost and (ii) climate impact without imposing a constraint
on AEA, and minimizing (iii) cost and (iv) climate impact considering the
AEA constraint (see Section 3.3.1). The AEA constraint in schemes (iii) and
(iv) impose a minimal AEA content (z11/(z4/100) ≥ 0.39) and 7% entrained
air. The average values based on 50 runs along with the standard deviation
are given in Fig. 9, while Fig. S4 of the Appendix illustrates the typical
distributions of quantities from the 50 runs for schemes (i) and (ii) and a
design strength of 10000 psi (69 MPa).

The overall trends in Fig. 9 are largely consistent with expectation or
domain knowledge. In all four cases, the optimized mixtures use less cement
and more FA, as the former is more costly and carbon-intensive. In the case
of minimizing cost (scheme (i)), the algorithm tends to generally increase
the use of FA (Fig. 9(f)) and HRWR admixture (Fig. 9(h)) while reducing
the quantity of cement (Fig. 9(d)) and other types of organic admixtures
(Fig. 9(i)-(l)), compared with the industry data. The reduction in cement
usage and organic admixtures (other than the HRWR admixture) makes
sense given that cement is the most expensive constituent in concrete (see
the cost distribution of all concrete constituents for the industry mixes in
Fig. S5 of Appendix), while the latter has a less direct impact on 28-day
strength. The FA replacement ratios for the optimized mixes are about
0.4 (∼200/(250+200+50)= ∼0.4) for most of the target strengths (see the
evolution of the FA ratio in Fig. S6, which are close to the upper limit set
for FA (0.4, as seen in Table 5). In contrast, the predicted BFS replacement
ratios (∼50/(250+200+50)=∼0.1) are significantly lower than the set limit
(0.6, Table 5). This difference is mainly attributed to the lower assigned cost
of FA ($0.055/kg) than BFS ($0.11/kg), leading to the prioritization of FA
usage.

Furthermore, the overall SCM replacement ratio stay at about 0.5, as
seen in Fig. S6. At higher design strengths (> ∼11,000 psi (75.9 MPa)), SF
quantity is increased at the expense of FA. This observation can be explained
by the domain knowledge, where numerous studies have shown that high FA
replacement ratios tend to lower the 28-day compressive strength of concrete
[56, 57, 58] while small additions of SF improve 28-day concrete strength
[36, 35]. At the same time, we also see an overall reduction of water (and
hence w/cm ratio, Fig. 9c) in the optimized mixes, which is known to in-
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crease concrete strength [34, 35]. On the other hand, the reduction of w/cm
ratio and increase of SF content are known to decrease concrete workability
[35] (critical to the proper placement of concrete), which can be resolved by
increasing the quantity of HRWR admixture, as has been captured by our
optimization algorithm (Fig. 9(h)). This is encouraging given that workabil-
ity (e.g., slump) has not been used in training the GP model nor during the
implementation of the optimization framework. Furthermore, the predicted
increase for constituents with the highest unit price (i.e., $0.397/kg for SF;
$2.928/kg for HRWR admixture) at high design strengths in the case of min-
imizing cost suggests that the model is generally doing its job (i.e., capturing
the key factors that improve strength even at the expense of increasing cost).
Finally, the predicted quantities of the coarse and fine aggregates in the opti-
mized mixes fall within the range of the industry records. It appears that the
quantity of coarse aggregate tends to lean towards the lower end of the in-
dustry data range, while the quantity of fine aggregate tends to lean towards
the upper end of the industry data range (also evident from Fig. S4a-b).

In the case of minimizing climate impact (scheme (ii)), the optimization
algorithm is seen to minimize the use of cement (i.e., it remains at the lower
bound of 200 lb/CY (∼340 kg/m3) for all design strengths, Fig. 9(d)) while
maximizing the use of SCMs (i.e., the replacement ratio remains at the upper
bound of 0.6 at all design strengths, Figs. 9(e)-(g) and Fig. S6). This
is attributed to the fact that the assigned climate impact of cement (1.072
kg CO2-eq/kg) is ∼6-47 times higher than that of the SCMs (∼0.023-0.166
kg CO2-eq/kg). Among the three SCMs, the algorithm is seen to drive up
the replacement of cement with FA and SF toward their upper bounds in
Table 5 (0.4 and 0.1, respectively), which is attributed to their lower assigned
climate impact (∼0.023 kg CO2-eq/kg) compared with that assigned to BFS
(∼0.166 kg CO2-eq/kg). Given that the predicted quantities of cement and
SCMs do not vary significantly at increasing 28-day target strength, this
increased performance requirement is mainly achieved via decreasing water
content (and hence w/cm ratio), as evidenced by Fig. 9(c) (and Fig. S6(e)).
The reduction in workability due to decreasing w/cm is then mitigated by
increasing the usage of HRWR admixture (see Fig. 9(h)).

For schemes (iii) and (iv), where a constraint has been imposed on AEA
during optimization, the general trends of evolution are largely consistent
with schemes (i) and (ii), respectively. A major difference is seen in Fig. 9(c),
where we see generally lower w/cm for schemes (iii) and (iv) than schemes (i)
and (ii), respectively, at a given target strength. This is because the former
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Figure 9: Evolution of the constituent quantities (as labelled in each figure: 1 lb = 0.45 kg;
1 oz = 0.028 kg) in the optimized concrete mixes as a function of 28-day design strength in
psi (1000 psi = 6.9 MPa). Each figure contains four evolution curves, which are based on
results from four single-objective optimization scenarios: (i) cost and (ii) climate impact
minimization without constraint imposed on air-entraining admixture (AEA), and (iii) cost
and (iv) climate impact minimization with AEA constraint. Each constituent quantity in
the figures is an average value based on 50 independent production runs, with the error
bars representing one standard deviation. The constituent quantities of the industry mix
designs in our database are given in the figures (blue circles) for comparison.
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two schemes generate concrete mixes with more entrained air (7% vs 3%)
due to presence of AEA (the assumption made based on Fig. 4 and Fig. S3
of Appendix, as explained in Section 3.3.1), leading to reductions in strength
(as entrained air negatively impact strength [37]). This strength reduction
is then compensated by decreasing w/cm ratio, which is known to increase
strength [34, 35].

Next, we examine how the optimization results change as the unit price
of the SCM increases, which is a feasible future scenario given that the annu-
ally produced high-quality BFSs and FAs are already almost fully utilized [9].
Our industry data show that ∼20% of the mixes do not contain any SCMs
and that the average SCM replacement ratio used in this industry data set
is ∼16%, which is significantly lower than the optimized mix designs for all
four cases of optimizations shown in Fig. 9 (average SCM replacement ratios
of ∼45-60%). This large discrepancy may be partially attributed to the lack
of sufficient locally-accessible high-quality SCMs in reality, although other
factors need to be considered as well, including reduced early-age strength
often associated with high SCM ratios [10, 56, 57, 58]. Specifically, we have
studied the impact of three scenarios with an increased unit price for (1) FA,
(2) BFSs, and (3) both BFSs and FAs, from the baseline level (see Fig. 3)
on the cost of the optimized concrete mixes. The results based on 50 inde-
pendent production runs are presented in Fig. 10, which shows the expected
increase of optimal cost with increasing 28-day target strength for all sce-
narios. We also see that the cost of the optimized mixes generally increases
with the increasing unit price of SCMs, as expected. However, comparing
Scenarios 1 and 2 with the baseline reveals considerably larger increases in
cost for the optimized mixes when the unit price increase ($0.55/kg) is ap-
plied on FA (Scenario 2) as opposed to BFS (Scenario 1). This is because
the optimized mixes in the baseline scenario contain more FA than BFS and
hence are more sensitive to the unit price increase of the former.

4.3. Bi-objective Optimization

Although the single objective optimizations in the previous section have
generally captured important domain knowledge in concrete mix design,
multi-objective optimization is more useful in understanding the trade-offs
between different objectives. This is likely to be the case for concrete mix
design in the future concrete industry, where one needs to consider both cost
and climate impact at the same time. Following a weighted sum method
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Figure 10: Impact of increasing the unit price of BFS (Scenario 1), FA (Scenario 2), and
both BFS and FA (Scenario 3) from the baseline scenario on the cost of the optimized
concrete mixes (minimizing cost) at different 28-day target strengths. Details on the
different scenarios are given Fig. 3. Each violin plot shows the distribution of costs based
on 50 independent production runs with the open circle representing the median value.
1000 psi =6.9 MPa. 1 CY = ∼ 0.76 m3.

described in Section 3.3.2, we have minimized both the cost and climate im-
pact of concrete mixes with a weighting factor w varying from 0 to 1 (at
an increment of 0.1) for the objective function (Eq. 26) with respect to the
bounds and constraints specified in Section 3.3.1.

The results are presented in Fig. 11, which includes 50 independent opti-
mization runs at each weighting factor and each target strength. This gives
a total of 550 points (each corresponding to a local minima) for each target
strength. A weighting factor of 1 (ligher colors in Fig. 11) and 0 (darker col-
ors in Fig. 11) represents single-objective optimization that aims to minimize
climate impact and cost, respectively. Overall, we see a general increase in
cost and climate impact for the optimized mixes at increasing target strength,
which is consistent with expectation. We then determine the Pareto front
at each target strength with respect to the weighing factor (indicated by the
lines in Fig. 11) by connecting the optimal solutions (the lowest and leftmost
point at each weighting factor), which reveals the existence of a trade-off be-
tween cost and climate impact for the optimal solutions. Most of these lines
(except for the case of 7,000 psi = 48.3 MPa) can be approximated with
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Figure 11: Pareto fronts for the bi-objective minimization of climate impact and cost
(using the Eq. 16) for 28-day design strengths of 7,000, 8,000, 9,000, 10,000, 11,000, and
12,000 psi (48.3, 55.2, 62.1, 69.0, 75.9, and 82.8 MPa). For each target strength, there
are 550 points, with 50 points at each weighting factor (each point corresponds to a local
minimal solution). At each target strength, the points are color-coded from dark to light
as the weighting factor increases from 0 to 1, at an increment of 0.1. Each line in the
figure gives the optimal solutions among the 550 algorithm runs. 1 cubic yard (CY) = ∼
0.76 m3.

linear equations with a slope of –0.5-1$/kg CO2-eq (i.e., a cost increase of
0.5-1$ for every kg CO2-eq saved).

Furthermore, we note that the climate impact of mixes optimized based on
cost only can have large variance. For example, considering a design strength
of 9,000 psi (62.1 MPa) and a weighting factor 0 (minimizing cost only), the
resulting range of climate impact is approximately 135-175 kg CO2-eq/CY
over 50 runs of the optimization algorithm (∼30% variation). This means
that, without many independent runs, one may produce mixes with unneces-
sarily large climate impact. In contrast, the bi-objective optimization, even
with a weighing factor of 0.1 assigned to climate impact, significantly low-
ers the spread of climate impact for all the generated mixes, approximately
135-140 kg CO2-eq/CY with minimal compromise on cost (see Fig. S7 of the
Appendix for a direction comparison of the spread from the 50 runs for the
weighting factor of 0 and 0.1).

Table 6 shows the optimal mix designs for a target 28-day strength of
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Figure 12: Pareto fronts for the bi-objective minimization of climate impact and cost
(based on cost scenario 3 in Fig. 3, where both the unit price of blast-furnace slag (BFS)
and fly ash (FA) increase by $0.055/kg from the baseline) for 28-day design strengths of
7,000, 9,000, and 11,000 psi (48.3, 62.1, and 75.9 MPa). For each target strength, there
are 550 points, with 50 points at each weighting factor (each point corresponds to a local
minimal solution). At each target strength, the points are color-coded from dark to light
as the weighting factor increases from 0 to 1, at an increment of 0.1. Each line in the
figure gives the optimal solutions among the 550 algorithm runs. 1 cubic yard (CY) = ∼
0.76 m3.

7,000, 9,000, and 11,000 psi (48.3, 62.1 and 75.9 MPa), identified from the
bi-objective optimization (Fig. 11), with a weighting factor of 0.5. The
corresponding mix designs from the single-objective optimizations are also
given in Table 6. We have compared the cost and climate impact of the
three mixes from the bi-objective optimization with those of the industrial
mixes with similar measured 28-day strength (6,500-7,500, 8,500-9,500, and
10,500-11,500 psi, respectively). The comparison show that the optimized
mixes from our computational framework are about 28-35% lower in cost
and 56-57% lower in climate impact. We note that the mixes presented
in Table 6 are provided as examples of possible optimal solutions from the
optimization framework proposed here for the given conditions (e.g., the cost
and climate impact factors in Tables 3 and 2). It is important to recognize
that the cost and climate impact factors for individual constituents in Tables
2 and 3 may evolve with time, source and region, which, upon change, will
leads to different optimal solutions.
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Table 6: Optimal mix designs obtained from the bi-objective optimization (minimizing
both climate impact and cost) for target 28-day strengths of 7,000, 9,000, and 11,000 psi
(48.3, 62.1 and 75.9 MPa), in comparison with the optimal design from single objective
optimization (minimizing either climate impact or cost). The optimal solutions for the
bi-objective optimization are identified with a weighting factor of 0.5, as seen in Fig. 11.
The quantities are based on generating 1 cubic yard (CY) of concrete (1 CY = ∼0.76 m3).
1 lb = 0.45 kg; 1 oz = 0.028 kg.

j
Constituent or
ratio

Min. cost Min. climate impact Bi-objective (w=0.5)

7000 9000 11000 7000 9000 11000 7000 9000 11000
1 Coarse agg., lb 1834 1457 1507 937 1249 1401 715 1893 1483
2 Fine agg., lb 1330 1840 1796 2027 1828 1886 2160 1230 1781
3 Water, lb 228 174 172 299 261 172 285 192 135
4 Cement, lb 200 227 203 200 200 200 200 200 200
5 Fly ash, lb 200 200 199 200 200 199 200 200 200
6 Slag, lb 100 72 98 51 51 51 72 83 99
7 Silica fume, lb 0 0 0 49 49 50 29 17 1
8 HRWR adm., oz 0.0 41.5 67.4 1.0 0.7 45.1 0.0 12.7 53.9

9
Water reducing
adm., oz

0.0 0.3 0.5 0.3 3.1 1.5 0.4 0.3 0.1

10 Acc. adm., oz 0.1 0.1 0.3 1.4 4.7 0.2 0.2 1.2 1.1

11
Air-ent. adm.,
oz

0.8 1.0 0.8 1.4 0.9 0.8 0.8 0.8 0.9

12 Other adm, oz 0.0 0.0 0.0 0.1 0.5 0.1 0.1 0.2 0.2
w/cm 0.46 0.35 0.34 0.60 0.52 0.34 0.57 0.38 0.27
Slag ratio 0.2 0.14 0.2 0.1 0.1 0.1 0.14 0.17 0.2
Fly ash ratio 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
Silica fume ratio 0 0 0 0.1 0.1 0.1 0.06 0.03 0
SCM ratio 0.6 0.55 0.59 0.6 0.6 0.6 0.6 0.6 0.6
Agg. ratio 0.7 0.73 0.73 0.65 0.68 0.72 0.65 0.71 0.74
Cost 44 48 50 48 49 54 44 47 49
Climate impact 131 145 136 127 127 130 127 130 134
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Fig. 12 illustrates the results of bi-objective optimization for target de-
sign strengths of 7,000, 9,000, and 11,000 psi (48.3, 62.1, and 75.9 MPa),
considering the cost scenario #3 in Fig. 3, where both the unit price of BFS
and FA increases by $0.055/kg from the baseline scenario. The Pareto fronts
in Fig. 12 reveal clear trade-off between cost and climate impact. As a con-
sequence of the increased unit price of BFS and FA, the cost of the optimal
solutions for a given target strength is generally higher than those in Fig. 11
based on the baseline cost scenario. It is also clear from Fig. 12 that the op-
timized solutions exhibit higher climate impact than those in Fig. 11 at a low
weighting factor (e.g., w=0; minimizing cost only). This observation can be
attributed to a reduction in BFS and FA replacement due to their increased
unit price, resulting in higher OPC content and consequently higher climate
impact. This is clearly seen for the cost minimization (w=0) results in Table
7, where the optimal mixtures exhibit a 30-80% increase in cement quantity
and a 20-50% increase in climate impact than those in Table 6. Additionally,
it is interesting to note that bi-objective (w=0.5) optimal solution in Table
7 exhibit higher costs (as expected), yet slightly lower climate impact (for
design strength of 9,000 and 11,000 psi) than the corresponding mix in Table
6.

Furthermore, the Pareto fronts (connected lines) in Figure 12 exhibit two
distinct regions with different slopes for linear regression: (i) a slope of -
∼1$/kg CO2-eq (i.e., a cost increase of ∼1$ for every kg CO2-eq saved) when
the weighing factor is high (more emphasis on minimizing climate impact),
and (ii) a slope of -∼0.05$/kg CO2-eq (i.e., a cost increase of ∼0.05$ for every
kg CO2-eq saved) when the weighing factor is low (higher weighting on cost
minimization).

4.4. Prediction of early-age strength development

Given that a key issue identified with using a high content of SCMs is
the slow development of early-age strength [10, 56, 57, 58], we use our GP
model to estimate the strength trajectories for the optimal concrete mix
design identified from the bi-objective optimization based on the baseline
cost scenario (i.e., the mix designs given in Table 6). The predicted strength
trajectories for the target 28-day strengths of 7,000, 9,000, and 11,000 psi
(48.3, 62.1 and 75.9 MPa, respectively) are presented in Fig. 13, which shows
that the predicted 3-day strengths are ∼3,000 (20.7), ∼4,800 (33.1), and
∼7,600 (52.4) psi (MPa), respectively. These are considerably higher than
the minimum strength specified in some standards for supporting formwork
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Table 7: Optimal mix designs obtained from the bi-objective optimization (minimizing
both climate impact and cost) for target 28-day strengths of 7,000, 9,000, and 11,000
psi (48.3, 62.1 and 75.9 MPa) based on cost scenario #3 in Fig. 3. The optimal design
generated from single objective optimization (minimizing either climate impact or cost)
are also shown for comparisons. The optimal solutions for the bi-objective optimization
are identified with a weighting factor of 0.5, as seen in Fig. 11. The quantities are based
on generating 1 cubic yard (CY) of concrete (1 CY = ∼0.76 m3). 1 lb = 0.45 kg; 1 oz =
0.028 kg.

j
Constituent or
ratio

Min. cost Min. climate impact Bi-objective (w=0.5)

7000 9000 11000 7000 9000 11000 7000 9000 11000
1 Coarse agg., lb 709 1850 1628 793 1984 1377 736 1872 1341
2 Fine agg., lb 2472 1383 1674 2066 1195 1892 2135 1242 1953
3 Water, lb 175 154 126 286 173 137 283 195 125
4 Cement, lb 357 303 308 200 200 200 201 200 200
5 Fly ash, lb 144 196 188 200 200 200 200 199 200
6 Slag, lb 0 1 0 51 51 51 72 77 82
7 Silica fume, lb 0 1 6 50 49 49 29 23 19
8 HRWR adm., oz 0.1 23.1 38.0 0.1 3.7 35.7 0.1 9.6 39.7

9
Water reducing
adm., oz

0.3 0.3 0.1 0.4 0.1 0.2 0.3 0.2 0.3

10 Acc. adm., oz 0.4 0.6 0.1 0.4 1.0 0.3 0.3 0.1 0.6

11
Air-ent. adm.,
oz

1.4 1.2 1.2 1.3 0.9 1.0 0.9 0.8 0.8

12 Other adm, oz 0.0 0.8 0.2 0.2 0.6 0.1 0.2 0.8 0.2
w/cm 0.35 0.31 0.25 0.57 0.35 0.27 0.57 0.39 0.25
Slag ratio 0 0 0 0.1 0.1 0.1 0.14 0.15 0.16
Fly ash ratio 0.29 0.39 0.37 0.4 0.4 0.4 0.4 0.4 0.4
Silica fume ratio 0 0 0.01 0.1 0.1 0.1 0.06 0.05 0.04
SCM ratio 0.29 0.4 0.39 0.6 0.6 0.6 0.6 0.6 0.6
Agg. ratio 0.72 0.73 0.75 0.65 0.72 0.74 0.65 0.71 0.75
Cost 48 52 54 53 57 59 51 55 56
Climate impact 199 175 178 126 128 130 127 129 132
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Figure 13: Predicted strength trajectories from our GP model for the three optimal con-
crete mixes based on the baseline cost scenario (see Table 6) identified from bi-objective
optimization (minimizing both climate impact and cost) for a 28-day target strength of
7000, 9000, and 11000 psi (48.3, 62.1 and 75.9 MPa). The solid lines represent the mean
predictions while shadow regions represent 95% confidence level.

removal, e.g., 5-8 MPa (725-1,160 psi) [59, 60] and 10 MPa (1,450 psi) [61].
The 2-day/28-day strength ratios are ∼33%, ∼46% and ∼64%, respectively,
which correspond to medium, medium, and rapid strength development of
concrete, respectively, according to standard EN 206-1:2000 [62]. Overall,
the predicted strength trajectories for the optimal mixes from bi-objective
optimization are seen to be reasonable. However, we have also calculated
the 3-day (and 28-day) strengths of these optimized mixes using the RF and
MPL models (Figs. 6(b) and (c)), which are 700-3200 (4500-6200), 2700-5100
(6100-7700), and 4700-5300 (8200-8400) psi, respectively. These strength
values are generally lower than those from the GP model. Future research
is needed to experimentally verify the strength trajectories of the mixes in
Tables 6 and 7. These additional data can then be used to improve the
performance of the GP model and the optimization framework. Furthermore,
given the GP model’s ability to give time-series prediction, it is worthwhile
in the future to incorporate early-age strengths as constraints or targets (as
opposed to only 28-day strength) into the optimization framework.
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4.5. Incorporation of uncertainty into optimization

Due to the ability of the GP model to estimate the prediction uncertainty,
here we explored the possibility to incorporate the prediction uncertainty into
the optimization. As outlined in Section 3.3.1, one way to do it is to imple-
ment “the predicted strength of a given mix is larger than the design strength
with a certain (e.g., 95%) probability” as opposed to “the mean predicted
strength is higher than the design strength” used in previous sections. Fig.
14a shows the probability density curves of the predicted strength for all the
mixes generated from fifty independent optimization runs (minimizing cli-
mate impact only) with the imposed probability constraint, compared with
the case of the original constraint. The implementation of this probability
constraint increases the mean strength of the optimized mixes by ∼1,300 psi
(∼9 MPa), which essentially generates a safety factor. Depending on how
conservative the design needs to be, one could also tune this safety factor by
changing the probability (e.g., 90%, 95%, or 99%).

Fig. 14b and 14c show how this probability constraint impacts the dis-
tribution of climate impact and cost of the optimized mix design (i.e., mix
formulation which gives the global minimal of climate impact among the fifty
local minima), respectively. It is clear that the probability constraint leads
to slightly higher average climate impact (∼1% increase, Fig. 14b) and cost
(∼7% increase, Fig. 14c) for the optimized mix formulations. Nevertheless,
the average climate impact (∼132 kg CO2-eq/CY = ∼ 174 kg CO2-eq/m3)
and cost (∼57 $/CY = ∼75 $/m3) are still ∼60% and ∼20% lower than those
of the industry-adopted mixes, which have an average climate impact and
cost of ∼305 kg CO2-eq/CY (∼ 401 kg CO2-eq/m3) and ∼68 $/CY (∼89
$/m3), respectively, for concrete mixes with a strength of ∼10,000 psi.

Furthermore, by imposing the 95% probability constraint, the resulting
optimal concrete mix exhibits higher early age strengths than the optimal mix
design obtained using the original constraint, as illustrated in Fig. 15. This
elevation of early age strength, to a certain extent, alleviates the problem
of slow strength development for adopting high content of SCMs in concrete
design. Overall, this preliminary analysis on probability constraint here has
demonstrated the potential of incorporating prediction uncertainty (readily
estimated from the GP model) into the computational framework for more
realistic concrete mix design.
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Figure 14: Impact of implementing the probability constraint (i.e, ”the predicted strength
of a given mix has a 95% probability higher than the target design strength of 10,000
psi”) on (a) the strength, (b) climate impact (in kg CO2-eq/CY), and (c) cost (in $/CY)
distribution of the optimized concrete mixes (minimizing climate impact). 10,000 psi =
69.0 MPa; 1 CY = ∼0.76 m3.
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Figure 15: Impact of the imposed probability constraint on the predicted strength tra-
jectory of the optimal mix design (obtained from single-objective optimization of climate
impact) for a target 28-day strength of 10,000 psi (69.0 MPa). The 28-day is indicated
by the vertical dashed line. The lines in the middle are the average predictions, with the
shaded area representing one standard deviation.

5. Broader Impact and Limitations

This study presents an analysis of a large and complex concrete mix design
and strength data set (the largest of its kind, as far as we are aware) from the
industry. We have shown that it is possible to generate reasonable concrete
mix designs with significant reductions in climate impact and cost (compared
with industrial mix designs) by combining domain knowledge-informed GP
models with an inverse optimization scheme. This integrated computation
framework can be readily extended for the design and optimization of in-
creasingly more complex concrete materials, which is likely to be the case in
the future concrete industry as the research community is actively exploring
a wide range of new SCMs and concrete additives. It also allows optimal so-
lutions to be readily generated for any given cost and climate impact factors
(as given in Tables 2 and 3), which are known to evolve with time, source
and region. Furthermore, this integrated computation framework might also
be extended to study and optimize (i) other important concrete properties
which evolve as a function of time (e.g., pore structure, transport proper-
ties, and durability) and (ii) other complex materials systems with evolving
properties (e.g., batteries).
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Nevertheless, a number of limitations of this study warrant some discus-
sion. First, as explained in Section 2, this study focuses on 12 main con-
stituent categories without detailed information on, for example, the chem-
istry, mineralogy, and particle sizes of different types of cements, BFSs, and
FAs used (not available in our data set). This is actually the case for all ex-
isting concrete strength data sets and ML-based inverse optimization studies,
where the chemical and mineralogical information is not available, as far as
we are aware. However, the chemistry, mineralogy, and particle sizes of SCMs
[63, 64] and cements [65, 66] (and to some extent, aggregates [67]) can have
significant impacts on the mechanical strength of concrete, as well as other
properties. Provision of this detailed information would empower these ML
models to capture more chemistry and physics, leading to improved property
predictions (with lower uncertainty) and hence more realistic mix designs
from the inverse optimization process.

Second, the current study uses 28-day compressive strength as the de-
sign target (performance requirement), similar to many existing optimization
studies. However, there are other equally important performance require-
ments that concrete design needs to consider. For example, the concrete
mixture needs to maintain a certain level of workability (e.g., slump), ex-
hibit proper early-age strength development, and contain a certain amount
of entrained air depending on the requirement for freeze and frost resistance
for a given application. In the current study, we have done a final check
on the early-age strength trajectories of the optimized concrete mix (Sec-
tion 4.5) and considered scenarios with an imposed constraint on AEA. We
have also constrained the aggregate ratio to 0.65-0.75 to avoid generation of
mixes with excessively large amount of aggregate, which is known to cause
workability issues [51]. Further studies on this data set should explore the
incorporation of strength trajectories (as opposed to a single age strength),
as well as air content, and slump as the design targets, which would enable
the generation of more realistic mix designs.

6. Conclusions

In this work, we developed a data-driven computational framework that
can accelerate and optimize concrete mix design with respect to climate im-
pact and/or cost. We first use a large industry concrete data set (containing
9,296 mixes and 38,332 strength measurements collected at different sites
across the USA during 2017-2020 by a concrete producer) to develop a novel
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amortized Gaussian process (GP) model for predicting concrete strength as
a function of mix proportions. In spite of the inherent uncertainty and com-
plexity of the industry data, we show that the domain knowledge-informed
GP models give reasonable predictions of strength and strength trajectories
with R2 values of ∼0.88, RMSE of ∼909 psi, and MAPE of ∼10.8%. These
error statistics are seen to be comparable to those achieved using random
forest and artificial neural network models. Although the prediction accu-
racy is lower than many published ML models based on smaller and simpler
lab data sets, it is higher than that achieved in other ML studies also based
on industry concrete strength data.

We then developed an optimization framework based on the GP model
that enables rapid generation of concrete mix designs for a given target 28-
day strength ranging from 6000 to 13000 psi (∼41.1 to ∼89.7 MPa). Both
single-objective (minimize cost or climate impact) and bi-objective (minimize
both cost and climate impact) optimization have been carried out subject to
bounds and constraints estimated from the raw data. The optimization re-
sults demonstrate that this integrated computational framework can be used
to generate reasonable mix designs that satisfy set performance requirements
(including the target 28-day strength and early-age strength development)
while substantially reducing the cost (up to ∼30%) and climate impact (up
to ∼60%) compared with industry mixes with similar strength. These re-
ductions are mainly attributed to the generally higher replacement ratio of
cement with supplementary cementitious materials (SCMs, up to the set
limit of 60%) in the predicted optimal designs than in the industry data,
which has an average SCM replacement ratio of ∼16%. This suggests the
existence of huge environmental and economic benefits for the data-driven
concrete mix optimization (presented here) compared to the prescriptive and
trial-and-error approaches commonly used by the industry. Our bi-objective
optimization reveals a trade-off between cost and climate impact, with a cost
increase of 0.5-1$ for every kg CO2-eq saved for most of the target strengths.
We further showed that the GP model can enable the incorporation of predic-
tion uncertainty into the computational framework, leading to more realistic
mix designs. Nevertheless, more research is needed to validate the generated
optimal mix designs, further improve the optimization process and overcome
its associated limitations.

Finally, in light of the potential price increase of SCMs, we have studied
three price increase scenarios, which show that the cost of optimized concrete
mixes is more sensitive to the price increase of fly ash (FA) than blast furnace
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slag (BFS). The bi-objective optimization shows that this price increase can
significantly increase the climate impact of the optimized concrete mixes
when cost minimization is heavily weighted. The shortage of high-quality FA
and BFS, which are the main SCMs used in the industry currently, highlights
the need to develop approaches that enable the utilization of low-quality FAs
and BFSs and alternative sources of SCMs (e.g., volcanic ashes, calcined clay,
and waste glass powder, just to name a few) by the industry. To achieve this
goal, data-driven concrete mix design, as presented in this work, exhibits
huge potential given its ability to capture the highly complex mix design-
property correlations within increasingly complex concrete systems.

7. Acknowledgments

The work is based on the financial support of the MIT-IBM Watson AI
Lab. We thank our industry partner for providing the industry data set.

45



Figure S1: Principle component analysis of our industry data set and the Yeh data set

Appendix A. Supplementary Material

Appendix A.1. Principle component analysis

Principle component analysis (PCA) is statistic method commonly used
to lower the dimensionality of high dimensional data set. Here we performed
PCA analysis on both our industry data set and the Yeh data set [15]. Fig.
S1 shows the results of the first and second principle components, which
explain the most variance in the data. The comparison clearly shows that
the industry data set contains more variance than the Yeh data set.

Appendix A.2. Correlation between HRWR admixture and w/cm

Fig. S2 compares the HRWR quantity with the corresponding w/cm ratio
for all the industry mixes, which shows a general inverse correlation.

Appendix A.3. Gaussian Process Model Constraint Details

As noted in Section 3.1, the prior distribution on compressive strength, y
is Gaussian. Therefore, we can use the cumulative distribution function of a
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Figure S2: Correlation between quantity of high-range water-reducing (HRWR) admixture
and w/cm of all concrete mixes in our industrial data set

Gaussian distribution to calculate the probability that the predicted strength
exceeds a threshold value.

p(yi ≥ smin|t,θi, σt, ϕ) = 1 − Φ
(smin − µ

σ

)
(A.1)

Φ(x) =
1√
2π

∫ x

−∞
exp−t2/2 dt (A.2)

where µ and σ are the mean and standard deviation of the conditional dis-
tribution, respectively.

Appendix A.4. AEA relative to cement

Fig. S3 gives the quantity of total air-entraining admixture (in oz) per
100 lb of cement powder for all the industry mixes, which shows that the
most probable ratio is ∼0.39 (oz/100 lb).

Appendix A.5. More details on the single-objective optimization

We used the differential evolution (DE) algorithm, a heuristic optimiza-
tion algorithm developed by Storn and Price [52], to search for the optimal
mix designs in the design space (bounds and constraints in Section 3.3.1)
with respect to the objective. Heuristic methods are typically stochastic di-
rect search methods which involve the generation of variations of a candidate
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Figure S3: Histogram of the ratio of air-entraining admixture quantity (in oz) per 100 lb
of cement for all the air-entrained concrete in the data set.

solution vector. These methods are able to search large spaces with reason-
able computation costs. DE is a highly versatile evolutionary algorithm for
solving multidimensional and continuous minimization problems. Unlike ge-
netic algorithms, DE is specifically designed for real-valued functions. The
full optimizations are summarized in Eqs. A.3 and A.4.

Minimize Climate Impact.

min fg(z)

subject to smin ≤ fs(z, 28)

0.99 ≤ V ≤ 1.01

LBj ≤ zj ≤ UBj ∀j
0 ≤ RSCM ≤ 0.6

0 ≤ RFA ≤ 0.4

0 ≤ RSL ≤ 0.6

0 ≤ RSF ≤ 0.1

0.2 ≤ RWCM ≤ 0.6

0.65 ≤ Vagg ≤ 0.75

(A.3)
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Minimize Cost.
min fc(z)

subject to smin ≤ fs(z, 28)

0.99 ≤ V ≤ 1.01

LBj ≤ zj ≤ UBj ∀j
0 ≤ RSCM ≤ 0.6

0 ≤ RFA ≤ 0.4

0 ≤ RSL ≤ 0.6

0 ≤ RSF ≤ 0.1

0.2 ≤ RWCM ≤ 0.6

0.65 ≤ Vagg ≤ 0.75

(A.4)

In their study, Storn and Price [52] evaluate the performance of the DE al-
gorithms on ten different optimization test problems, in comparison with two
simulated annealing methods, namely Annealed Nelder and Mead (ANM)
and Adaptive Simulated Annealing (ASA). Their results, based on 20 min-
imization runs, revealed that DE successfully finds the global optimum for
all ten test problems, while ANM and ASA experienced convergence issues
on five and three of the test problems, respectively. Moreover, DE exhib-
ited a tendency to converge in fewer function evaluations compared to ANM
and ASA, rendering it advantageous for our work because a large number of
highly non-linear constraints makes function evaluation costly.

In this study, we have performed multiple runs (50 runs) of DE at each
target strength and preference weighting factor (in the case of bi-objective)
to account for the possible impact of the initial guess and increase the diver-
sity of the solutions. We selected the ”best” mutation strategy (as opposed
to ”random”) due to the nature of our highly constrained search space (with
nine non-linear and one linear constraint) and a large number of decision
variables (12). We selected the control parameters, including NP (popula-
tion size), F (mutation constant controlling diversity amplification within
the range of [0,2]), and CR (crossover constant determining the threshold for
keeping mutations within the range of [0,1]), following the rules of thumb
proposed by Storn and Price. According to their guidelines, NP should be
set between 5 and 10 times the number of dimensions of the objective func-
tion; thus, we set NP to 15. Selecting a high mutation constant increases
the search radius but will slow down convergence. Thus, we have set F to
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randomly change between 0.5 and 1 throughout the minimization process in
order to speed up convergence. Lastly, large crossover values keep more mu-
tants, which may lead to population instability, while smaller values cause
slow convergence. Through trial and error, we have found CR of 0.7 to be a
reasonable middle ground.

Appendix A.6. Random forest and multi-layer perceptron models

We trained the random forest (RF) and artificial neural network (ANN)
models using the same training set used to train the GP model. The RF
model used to generate strength prediction results in Fig. 6b of the main
article uses bootstrapping and contains 100 decision trees and a maximum
of 3 features at each split, which are determined via hyperparameter tuning.

The multi-layer perceptron (MPL) model used to generate strength pre-
diction results in Fig. 6c of the main article adopt a hidden layer size of (64,
64, 64), a mini-batch size of 200, and the ReLU activation function. We op-
timized the model weights using the Adam solver [68]. The model converges
after 236 iterations based on the specified convergence tolerance (i.e., loss
improvement lower than 10−4 for 10 consecutive iterations) with a constant
learning rate of 0.001.

Appendix A.7. Distribution of optimized constituent quantities in Fig. 9

Appendix A.8. Cost distribution of concrete constituents

Fig. S5 shows the average proportion of cost for the twelve concrete
constituent in all the industry mixes. The cost is estimated using the unit
price data in Table 3.

Appendix A.9. SCM ratios as a function of design strength

Fig. S6 shows how the ratios of cement replacement with different SCMs
(FA, BFS, and FA) evolve as a function of 28-day target strength. These
ratios are calculated from the single-objective optimization results in Fig. 9.

Appendix A.10. More details about Fig. 11 of the main article

Fig. S7 shows the bi-objective optimization results for the 9,000 psi target
strength, as a weighting factor of 0 (minimizing cost only) and 0.1.
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Figure S4: Distribution of the quantities of each constituent (as labelled in each figure)
in the optimized concrete mixes (based on 50 runs) for schemes i (minimizing cost) and ii
(minimizing climate impact) and a target strength of 10,000 psi (69 MPa) in Fig. 9. The
distribution of the constituent quantities of the industry mix designs in our database with
strength in the range of 10,000-11,000 psi (69-75.9 MPa) are given in the figures (light
blue) for comparison. 1 lb = 0.45 kg; 1 oz = 0.028 kg.
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Figure S5: Average percentage cost of each concrete constituent, based all the industry
mix formulations. The error bars are one standard deviation.
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Figure S6: Evolution of (a) FA replacement ratio, (b) BFS replacement ratio, (c) SF
replacement ratio, (d) total SCM ratio, and (e) W/CM ratio of the optimized concrete
mixes calculated based on the optimization results in Fig. 9. as a function of the target
design strength in psi (1000 psi = 6.9 MPa).
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Figure S7: Comparison of the cost-climate impact of the fifty independent production runs
for a weight factor of 0 (red) and 0.1 (blue).
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E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman,
I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy 1.0 Contributors, Scipy
1.0: Fundamental algorithms for scientific computing in python, Nat.
Methods 17 (2020) 261–272.

[54] R. Marler, J. Arora, Survey of multi-objective optimization methods for
engineering, Struct. Multidiscipl. Optim. 26 (2004) 369–395.

[55] G. Habert, D. Arribe, T. Dehove, L. Espinasse, R. Le Roy, Reducing
environmental impact by increasing the strength of concrete: quantifi-
cation of the improvement to concrete bridges, J. Clean Prod. 35 (2012)
250–262.

[56] G. Xu, Q. Tian, J. Miao, J. Liu, Early-age hydration and mechanical
properties of high volume slag and fly ash concrete at different curing
temperatures, Constr. Build. Mater. 149 (2017) 367–377.
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