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Abstract

We present a pipeline to reconstruct complete geometry of architectural
buildings from point clouds obtained by sparse range laser scanning. Due
to limited accessibility of outdoor environments, complete and sufficient scan-
ning of every face of an architectural building is often impossible. Our pipeline
deals with architectures that are made of planar faces and faithfully constructs
a polyhedron of low complexity based on the incomplete scans. The pipeline
first recognizes planar regions based on point clouds, then proceeds to compute
plane intersections and corners1, and finally produces a complete polyhedron.
Within the pipeline, several algorithms based on the polyhedron geometry
assumption are designed to perform data clustering, boundary detection, and
face extraction. Our system offers a convenient user interface but minimizes
the necessity of user intervention. We demonstrate the capability and advan-
tage of our system by modeling real-life buildings.

Keywords 3D scanning; range image; geometry reconstruction

1 Introduction

Acquiring 3D models of real-world objects has been an interesting and challenging
problem in the computer vision and graphics communities, and is beneficial to
many applications such as urban planning, architectural design, surveillance, and
entertainment, to name just a few. Image-based techniques [2, 8, 17] can only
achieve simple 3D geometry and generally are not robust or require significant
human input. In the last decade researchers have started to employ laser scanning
technology to directly perform 3D measurement of real objects; examples include
the Michelangelo project [1] and the IBM Pietà project [3]. The objects that are of
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interest in these projects are usually of small to medium size (up to several meters
tall); scans can be carefully set up to ensure a fairly complete and dense sampling
of the entire object. Constructing 3D geometry from such scans is performed by
triangulating the dense point clouds [13, 6]. Strategies have been developed to patch
holes where data is missing in the scans. More recent work has explored using
context [16], atomic volumes [15], or example models [14] in achieving geometry
completion. However, there still does not exist a general technique that can be
applied to objects that come in a wide variety of shapes.

For large outdoor architectural object scanning, it is intrinsically difficult to
always obtain complete and sufficient sampling of all the surfaces due to the physical
constraint of positioning the scanner. Scans obtained under these conditions can
partially or completely miss entire faces (such as roof tops). Moreover, reflective
surfaces such as glass windows and walls often return invalid signals to the scanner
and hence are often missed. The sampling rate of a surface is sensitive to its distance
and relative orientation to the scanner location. Given these additional challenges,
we strive to generate complete geometry from sparse point clouds. Our strategy is
to take a top down approach to geometry construction, instead of the conventional
bottom up scheme of direct triangulation. At the current stage, we handle only
buildings that fulfill the following condition:

Basic Assumption. Surfaces of a building exhibit planarity and it can be repre-
sented by a (possibly non-convex) bounded polyhedron.

A majority of architectures in existence nowadays satisfy this assumption. The
planarity property allows faithfully fitting a polyhedron to the scanned data. Our
polyhedral models are of significantly low polygon count compared to those with
millions of triangles obtained by conventional triangulation methods. Fitting in
polyhedron rather than triangulation makes the geometry construction process more
immune to the usual deficiency of point cloud data in outdoor scanning. Moreover,
our modeling process is mostly automatic and requires user’s assistance only when
certain ambiguities cannot be resolved computationally; in such cases, the user
input is extremely straightforward and simple, i.e., merely selecting planes, lines or
corners.

There has been research on employing certain knowledge or priors to improve
modeling accuracy. For example, certain properties such as near perpendicularity
between walls and floors can be leveraged when performing data fitting and shape
parameter estimation [9]. Our approach can generally benefit further from such
assumptions or constraints.

2 Overview

For consistency, throughout this paper, our polyhedral model representation is de-
fined combinatorially as a collection of faces, edges and corners. The term vertex is
reserved for the discussion of graphs. Each bounded face lies on an infinite plane,
which is fitted to a set of scanned points. An edge of the polyhedron resides on a
plane intersection (line), i.e., it is finite and its end points are polyhedral corners.

Before introducing the modeling pipeline, we first quote the following observa-
tion from our experience of outdoor environment scanning:
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Data Deficiency. Data obtained from outdoor long range scanning suffers from
noise, self and inter-object occlusion, and uncontrollable physical conditions (e.g.,
light and wind2). A laser scanner emitting lights that pass through glassed surfaces
(such as windows) does not obtain valid data representing these regions.

The scans we usually work with are missing large portions of data, and the
high level of noise makes the traditional approach of triangulating point clouds
inappropriate. This calls for an alternative method for modeling objects.

Our modeling process begins with identifying planar regions of the scanned data
and computing their plane representations. This is accomplished by defining reli-
ability measure for the data points, and performing clustering according to their
confidence. Then neighboring information for the resulting clusters can be easily
confirmed and adjacency between planes is computed. To deal with building faces
that are completely missing, we devise a boundary detection algorithm to compute
the piecewise linear boundaries of the identified clusters. These boundary line seg-
ments are used to guide the recovery of all the missing planes and intersections
through an efficient and simple user interface.

Now that we have all the planes and intersection lines, we extract the faces of the
target polyhedron. Each face is represented by one (or more) bounded polygon(s).
An elegant algorithm based on dual polyhedron can be used to facilitate this oper-
ation with the condition that each face falls on a distinct plane and no two edges
rest on the same line. We relax this restriction and solve for the face boundaries
by introducing a new concept—the cluster graph, which shares a similar spirit with
dual polyhedron but is more accommodating in practice. For certain ambiguous
cases, the user provides cues or selections to carry forward the extraction. The final
polyhedron consists of a collection of oriented faces that are defined as ordered lists
of corners.

Figure 1 illustrates individual steps of the whole pipeline.

3 Planar Regions and Their Intersections

This basic step is to detect all the planar surfaces captured in the scanned data.
Choosing a maximal subset of points that can be fitted by a plane within an error
threshold can be done via progressive regression. However, such fitting is vulnerable
to the presence of outliers.

Several statistical models have been proposed to fit a function to a (sub)set
of data points by pruning outliers. Fleishman et al. [10] use a forward search
approach that grows a cluster of points to its maximal size and iteratively works on
the remaining points such that several clusters, each of which represents a smooth
part, are found. The algorithm robustly fits a piecewise smooth surface to a point
set, but the search process is time consuming, with quadratic complexity to the size
of the clusters.

Our approach is more economic and is similar to the one introduced in Stamos
2Wind will affect unstable objects. For example, tree branches and leaves shake because of

wind, which is a typical problem for outdoor tree scanning. However, for architectural objects,
it seems that the influence of wind is minimal. Still, for reliability, a long range laser scanner is
advised to be operated under mild weather conditions.
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(a) Scanned data. (b) Points are clustered and
representative planes are fit-
ted. (Section 3.1 and 3.2)

(c) Some of the plane inter-
sections are computed. (Sec-
tion 3.3)

(d) All the planes and inter-
sections are recovered. (Sec-
tion 4)

(e) Some of the faces of
the target polyhedron are ex-
tracted. (Section 5)

(f) User intervention incorpo-
rated, the final model is recon-
structed.

Figure 1: Pipeline of the modeling process.

et al. [18], which progressively merges points that are coplanar3. Note that since
points on a plane share the same normal orientation, the Gauss map maps a poly-
hedron to a discrete set of points on the unit sphere. Considering noise, the normals
of the data points form clusters whose centers best approximate the normals of the
polyhedron’s faces. This inspires us to cluster points according to their normals,
where a cluster is defined as a collection of points who are approximately coplanar.
Figure 2 shows an example of the Gauss map of a building. Several clusters are
clearly found. Note the ‘bands’ in between the clusters. They represent points
whose normals deviate from two clusters. Most likely they are close to the inter-
section of two planes, where estimation of normal rely on points from two different
clusters.

3.1 Normal Estimation

Normal of a point p can be computed by least-squaredly fitting a plane to the set of
points within its neighborhood. The neighborhood is defined as a 7×7 pixels region
centered at p in the range image. A complete set of neighbors of p are formed by
taking the union of the results from each image. Further cleaning-up, such as using
segmentation techniques, distance thresholding, etc, can be performed to exclude
points belonging to surfaces different from on which p lies [19].

Let {pi}i=1:N denote the set of neighboring points of p. The eigenvectors v1, v2,
v3 of the covariance matrix

M =
1
N

N∑

i=1

(pi − p̄)(pi − p̄)T , (1)

3Their method performs clustering on 2D range images and uses labeling algorithm to find
connected components, while ours does clustering in 3D and no ‘connected’ concept is involved.
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(a) Gauss map of the scanned
data. Color opacity indicates
confidence rate, the lighter in
color the lower in confidence.

(b) Clustering result of the data
with confidence higher than 0.9.
Note that the two clusters, yel-
low and green, overlap, which in-
dicates that they share the same
normal orientation.

Figure 2: Gauss map of the scanned data corresponding to Figure 1(a).

where centroid p̄ =
∑N

i=1 pi/N , form a local coordinate system originating at p̄. Let
the corresponding eigenvalues λ1, λ2, λ3 be ordered as 0 ≤ λ1 ≤ λ2 ≤ λ3. The plane
being fitted to {pi} has a normal in the same direction4 as the least eigenvector,
i.e., v1. Oriented towards the scanner, it is assigned to be the normal of p.

The eigenvalues of M indicate the principal components variances. The smaller
λ1 is relative to λ2 and λ3, the flatter the distribution of {pi} is. We define the
confidence rate of p, denoted κp, as

κp = 1− 3λ1

λ1 + λ2 + λ3
∈ [0, 1]. (2)

When κp approaches 1, the neighborhood of p can be safely approximated by a
plane, and the noise on the points {pi} is relatively small. Thus κp is a reliability
estimate of p.

3.2 Scanned Data Clustering

We now cluster data points based on the computed normals np of each point p.
The objective is that all points belonging to the same cluster are captured from
the same planar surface of the building. Thereafter principal component analysis
(PCA, as in (1)) can be performed on each cluster to derive plane representations
which will make the faces of the target polyhedron.

In order to do fast clustering, we design an efficient algorithm that utilizes the
confidence rates of the data points. They have two impacts:

• Low κ occurs on points whose neighborhood is not flat or is noisy, which means
that these points occur either at the discontinuity of surfaces or where noise
is high. A threshold κT can be introduced to filter points with low reliability.

• Points with high κ are reliable and can serve as seeds when growing clusters.
4We use the term direction in representing both of the opposite directions of a normal vector

without differentiation. Only the term orientation exactly represents the vector direction.
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Our algorithm first prunes out points with low confidence rate. For the remain-
ing set, we pick the point p with the highest confidence (called the seed), search
points that potentially lie on the same plane as p, and form a cluster. We set a
threshold NT to supervise the size of the cluster. In the event that the cluster is
too small, it is suspected to be highly influenced by noise and we conservatively
ignore point p. After a cluster is found, the process proceeds recursively with the
remaining points and finds more clusters.

We set two criteria to check whether a pair of points, p and q, lie on the same
plane:

1. np and nq are roughly parallel, i.e., np · nq is close to 1.

2. p−q is roughly orthogonal to both np and nq, i.e., max{np ·(p−q), nq ·(p−q)}
is close to 0. This criterion excludes the possibility that the two points lie on
two different planes that are parallel.

Again, we can set two thresholds, pT and oT , to screen the parallelism of the normals
of p and q, and their orthogonality to the vector p− q.

In order to obtain more accurate clustering, we grow a cluster in multiple passes,
within each the centroid of the cluster and the normal of the approximated plane is
used as the seed to grow the cluster in the next pass. We stop iterating these passes
once we confirm that the normals of the planes computed in successive passes are
close enough. In practice the convergence is very fast and two passes is sufficient to
obtain accurate clusters.

Algorithm 1 summarizes these details. Figure 2(b) shows the clustering result
of an example building.

This algorithm runs O(N) time to prune out points with low confidence. Let Nr

denote the number of surviving points. To grow one cluster, the cost is linear to the
size of the remaining set of points. To one extreme, if each time the point selected
as seed does not successfully grow a cluster, or the grown cluster is of too small
size, then the time to grow all the clusters is O(N2

r ), or O(Nr) with a very large
coefficient. To the other extreme, if most of the points each belongs to some cluster,
and there are only a limited number of clusters found, then the running time is only
O(Nr). In summary, the time cost for Algorithm 1 depends on two parts: the total
number of points in the dataset, and the number of points with high confidence.
The asymptotic cost falls somewhere between O(N + Nr) and O(N + N2

r ).

3.3 Plane Intersections

Given two non-parallel planes P1 and P2 fitted from clusters C1 and C2, their plane
intersection line lP1P2 is easy to compute. If in each of the clusters, there exist data
points close to lP1P2 , then these two planes are confirmed as neighboring faces of
the building. We use this criterion to conservatively find the adjacent plane pairs.
Nevertheless, due to deficiency of the scanned data, some pairs may not be detected
this way, e.g., one plane has perfect sampling but the other one has missing data
near their intersection. In such cases, the user can intervene to provide further
guidance as discussed in Section 4.2.
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Algorithm 1 Clustering Scanned Data
1: C ← {p | κp ≥ κT }
2: while C 6= ∅ do
3: p∗ ← arg maxp∈C{κp}
4: Set seed s ← p∗, ns ← np∗

5: repeat
6: C ′ ← ∅
7: for all p ∈ C do
8: if np · ns ≥ pT and |max{np · (p− s), ns · (p− s)}| ≤ oT then
9: C ′ ← C ′ ∪ {p}

10: end if
11: end for
12: if |C ′| ≥ NT then
13: Fit a plane to C ′. Compute cluster centroid and plane normal
14: Set seed s ← centroid, ns ← normal
15: end if
16: until convergence of plane normal or |C ′| < NT

17: if |C ′| < NT then
18: C ← C\{p∗}
19: else
20: A new cluster C ′ is thus formed. C ← C\C ′.
21: end if
22: end while

4 Boundary Detection

As a more significant situation of data deficiency, a face of a building can be entirely
missed during scanning, such as roof top. The intersection of such a plane with
neighboring planes can only be inferred from the boundaries of the captured data.
For this purpose, we design an algorithm to compute the boundary of each identified
cluster in 2D space.

4.1 Cluster Boundary

2D edge detection is a topic in image processing that has prevailed for a long time
in computer vision and graphics. One can either use feature detecting filters [20], or
apply the Hough Transform [4] on a particular shape, to detect edges presented in
an image. Several 3D edge detection techniques have also been developed, mainly
to solve the problem of range image segmentation [12]. We propose a novel method
that computes the piecewise linear boundary indicated by a set of 3D points.

By projecting a cluster onto its representative plane, we obtain a discrete set
of points, denoted Q ⊂ R2. See Figure 3(a). Locally if a point q sits exactly on
the boundary, all its neighboring points lie on one side of the local boundary line
passing through q (Figure 3(b)), unless q is close to a concave corner. In order to
find this line, let the set U = {ui} ⊂ Q\{q} denote all points within r distance to
q, and let t of unit length represent the direction of the line. We setup the problem
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(b) The local neighborhood
of a point q.

(c) Fast filtering out points far
way from the boundary.

Figure 3: Analysis on a cluster of points projected onto plane.

as finding t such that

max
∑

i

t× ūi, where ūi = (ui − q)/‖ui − q‖. (3)

Since t× ūi points towards the same direction for all i (perpendicular to the plane),
and the sign of t× ūi indicates on which side of the line ui lies, maximizing

∑
t× ūi

gives a t such that as many ui’s are on the positive side of t as possible.
In the simplest computation, t is a direction orthogonal to

∑
ūi. In other words,∑

ūi is the normal direction of the line passing through q. Orienting it outward,
we assign −∑

ūi to be the normal of q.
Let the signed distance of a point ui to the line l be negative when the angle

between ui − q and nq is acute. We set a threshold δT < 0 to screen the smallest
signed distance (denoted δ) between all the ui’s and l. |δ|/r ∈ [0, 1] indicates how
close q is to the boundary. When δ/r ≤ δT , q can hardly be considered close to the
boundary. When δ > 0, all the points {ui} are on the inner side of the line. Hence
using δT , we can identify all the boundary points.

Then we cluster the boundary points and compute the local boundary line seg-
ments. This process is simply the 2D version of Algorithm 1. 1 − |δ|/r serves as
the confidence rate. Points are equipped with normals, and the plane equation of
the cluster becomes line equation. The fitted line segments are also computed from
PCA.

Considering efficiency, we need a fast way to collect points within r-distance to
point q. kd-tree [5] is the most appropriate data structure that properly supports
distance queries. We use a simpler way to quickly identify and ignore the points
that are not close to the boundary. See Figure 3(c). We first discretize the plane
into cells of size r× r. Points lying inside a cell whose 8-neighbors all contain data
points are pruned out. For each surviving point q, we collect its neighboring points
from only its neighboring 3 × 3 cells. These points go through a further check to
see if they are within r-distance to q.

Algorithm 2 summarizes the details. An advantage of this algorithm is its sim-
plicity to implement, meanwhile it is efficient. Let Nc denote the total number of
points in a cluster. It takes O(Nc) time to discretize the plane into cells and prune
out non-boundary cells. If Ncr is the number of points in boundary cells, and Ng
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Algorithm 2 Boundary Detection for A Cluster
1: Project the cluster C onto its representative plane P . Denote the new set of

points Q.
2: Discretize the plane into cells of size r × r.
3: Find all cells whose 8-neighbors all contain points in Q. Denote the union of

these cells C.
4: Initialize Q′ ← ∅
5: for all q ∈ Q and q /∈ C do
6: Collect points from the cell that q lies in and its 8-neighbors.
7: Prune out points whose distance to q is greater than r. Denote the surviving

set Uq.
8: for all ui ∈ Uq do
9: ūi ← ui − q. ūi ← ūi/‖ūi‖.

10: end for
11: nq ← −∑

ūi. nq ← nq/‖nq‖.
12: δq ← mini{−(ui − q) · nq}
13: κq ← 1− |δq|/r
14: if δq ≥ δT then
15: Q′ ← Q′ ∪ {q}
16: end if
17: end for
18: Cluster points in Q′ in a way similar to Algorithm 1. Use normal nq and

confidence rate κq for each q ∈ Q′. Fit a line segment to each cluster. Return
all the computed line segments.

is the expected number of points inside a cell, then to compute normals and con-
fidence rates for all such points takes O(Ncr × Ng) time. Hence the total cost is
O(Nc + Ncr × Ng). This approach is empirically cheaper than using kd-tree, who
takes O(Nc log Nc) construction time, and costs O(log Nc) in each query for a single
neighbor. The cost for the remaining clustering procedure to find boundary line
segments is the same as in Algorithm 1. Due to the limited number of boundary
lines, this is done very efficiently.

By virtue of occlusion and scanning quality, not every cluster has a clear bound-
ary. Some boundary lines are hard to infer. Moreover, special structures of each
face, such as glass windows and doors, present fake boundaries. See Figure 4.
Adding more carefully planned scans can potentially give a better outer boundary
inference, but inner boundaries are largely unavoidable. It is not safe to assume
that all lines computed from Algorithm 2 serve as real boundaries of the cluster,
otherwise missing planes could all be automatically recovered. This necessitates the
next section that discusses manual repair of missing planes and intersections.

4.2 Recovering All Planes and Intersections

We utilize the boundary line segments output from Algorithm 2 to infer faces that
have not been captured by the scanner (such as roof top), and specify all the non-
detected intersections. For each missing face, the user picks at least two boundary
line segments and fits a plane to them. She can further indicate the missing intersec-
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(a) Incomplete data that
misses partial boundary.

(b) Fake boundary lines
caused by windows.

(c) A cluster ambiguously
split into two parts.

Figure 4: Boundary detection results for different clusters.

tion lines by choosing pairs of planes. A complete set of planes and their neighboring
information is necessary before we proceed to construct the target polyhedron.

5 Constructing the Polyhedron

In this section, we describe an algorithm that reconstructs a polyhedron given all
faces and edges, by way of its dual. Then we relax the restriction and introduce
another way of solving the polyhedron, if only the planes and lines that its faces and
edges reside on are given. Iterative user interaction is needed to resolve ambiguous
situations, but such effort is minimal. We begin with introducing the concept
of dual polyhedron in combinatorics and computational geometry in the following
subsection.

5.1 Dual Polyhedron

Every polyhedron G is associated with its dual G∗, where each vertex corresponds
to a face of the other. There’s an edge connecting two vertices in G∗ if and only if
the two corresponding faces share an edge in G. Steinitz’s Theorem (1922) reveals
the isomorphism between a polyhedron and a 3-connected planar graph [11].

The nice duality produces a neat algorithm to reconstruct the polyhedral model
from its dual. Given the faces and edges, we form a planar graph by using vertices
to represent the faces and connect a pair of vertices if the two faces have an inter-
section edge. Each region of the planar graph corresponds to a vertex corner in the
polyhedral model. By tracing all the regions in the graph, all the corners of the
target polyhedron are computed and hence the model is clear.

This appealing algorithm fails for the case that several separate faces fall on the
the same fitted plane, and/or different edges rest on the same computed intersection
line. See Figure 5 for an example. As can be seen from the previous Figure 4(c),
due to scanning quality, it is very difficult to tell whether a cluster represents a
single face or several. We state the following fact that prompts other more robust
approaches to constructing the final shape.

Building Structure. Some separate faces of a building may be (nearly) coplanar,
and more than one edge may lie on the same line. By observation, most corners of
a building are incident to exactly three faces.
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(a) A u-shape polyhe-
dron.

b b b b b b b b

b

b

(b) Its dual polyhedron embed-
ded to plane.

b b b b b b b

b

b

(c) Two red vertices in (b)
are collapsed into one.

Figure 5: A u-shape polyhedron where two of its faces (red) are coplanar. Its dual has a
planar graph embedding. But if the two faces are considered as one whole plane, its ‘dual’
graph as shown in (c) cannot be planar.

5.2 Cluster Graph

We introduce the term cluster graph in a similar sense to the dual polyhedron. Each
vertex in the cluster graph G+ represents a cluster of the scanned data. Since each
cluster is fitted by a plane, we also say that each vertex represents a plane of the
model. There’s an edge in G+ connecting a pair of vertices if the two representative
planes share an intersection line.

The cluster graph for a plane P , denoted G+
P , is a subgraph of G+. G+

P consists
of all the vertices representing the neighboring planes of P and all original edges in
G+ that connect these vertices. Figure 6 shows a polyhedral model whose planes
are labeled, followed by several example cluster graphs regarding to different planes.

For the simplest case, a corner in the polyhedral model is the intersection of
three planes: P and two of P ’s neighbors. By traversing the corners on one face
of the target polyhedron, in G+

P it equivalently means that we are walking a cycle
passing through all the vertices where each pair of consecutive vertices represents
two of P ’s neighbors that together with P form a corner in the polyhedron. See
Figure 6(b) that shows the cluster graph G+

α for plane α, and the cycle formed.
However, a corner need not be the intersection of only three planes. Figure 6(c)

shows an example case of what G+
P looks like if there’s a corner being the intersection

of four planes. Around plane β, two planes δ and λ are intercepted by a fourth plane
(not shown) that does not share a line with β. All these four planes intersect to form
the corner. It is sufficient to add a pseudo edge connecting the two involved vertices
of G+

β as in Figure 6(d), and traversing the corners of the face β is equivalent to
traversing the yellow circuit.

The above observation gives an algorithm to tracing out most of the faces of the
polyhedral model. For a plane P , a cluster graph G+

P related to all P ’s neighbors is
formed. In case two vertices in G+

P do not represent two planes that intersect on a
line, but they are part of the set of planes (including P ) that intersect at a corner,
we add a pseudo edge connecting these two vertices. If there exists a Hamiltonian
circuit (HC) on G+

P , then for every pair of consecutive vertices on the circuit, the
planes they represent together with P intersect at a corner. By traversing the circuit
a sequence of corners are computed, where they define the unique polygonal face
that lies on plane P .

Finding the Hamiltonian circuit is an NP-complete problem, but there exist
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(a) The target polyhedron.
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(b) G+
α
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(c) G+
β
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(d)

b

b b

b

ζ

λ

η

(e) G+
γ

Figure 6: The target polyhedron and several example cluster graphs G+
P . The polyhedron

will be repeated in Figure 7 for ease of illustration. In the cluster graphs, whenever
possible, we label the vertices by the planes they represent. (b) is the cluster graph for the
plane α. Hamiltonian circuit (colored in yellow) is found. (c) is the cluster graph for the
plane β. After a pseudo edge is added (as in (d)), the Hamiltonian circuit is also found.
(e) is the cluster graph for the plane γ. It does not have a Hamiltonian circuit.

many heuristic low-exponential polynomial time algorithms, e.g. [7], which meet
the interactive time requirement, for graphs that are not large. In practice, many
of the vertices in G+

P are of degree 2 (a corner results from the intersection of only
three faces), which accelerates the finding of the circuit.

5.3 Polygonal Faces

A polygonal face can also be extracted from all its corners (order unknown) and lines
passing through them, provided that the polygon is simple and no three consecutive
corners are collinear, which is fulfilled in our situation. The given lines should be
where the actual edges potentially lie on, and no redundant lines are presented. See
Figure 7(b) for an example.

Given a line lP1P2 that is the intersection of P1 and P2, if there are n polygon
edges lying on it, then there are exactly 2n corners related to the plane intersection
of P1, P2 and their common neighbors. Let the corners be w1, w2, w3, . . . , w2n, in
increasing-x (or y) order. The segments [w1, w2], [w3, w4], . . ., [w2n−1, w2n] define
these n edges. Extracting such edges for all the intersection lines that lie on plane
P , we have the exact contour of the face on P . Note that the corners w1 . . . w2n are
not defined in a geometric sense, hence there may be some corners coincidentally
falling on the line lP1P2 but they are not caused by the intersection of P1 and P2.

This method has the capability of solving general cases, such as:

• Several mutually exclusive faces fall on the same plane. Figure 8(a) illustrates
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(a) The target polyhedron.
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(b) The polygonal face λ. The vertices
and blue dotted lines are used as input
to trace the polygon.

Figure 7: The polygonal face λ. Note that (b) is a graph different from the cluster graphs
shown in Figure 6. Rather, it is the edge-vertex graph extracted from plane λ of the
polyhedron. We draw the graph such that its shape is very similar to the actual shape of
plane λ.
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(a) The polygonal
faces lying on plane
γ, Figure 6(a).
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(b) A face having holes. This is
a real face from the model in Fig-
ure 13.

Figure 8: Illustrations of faces that consist of multiple polygons.

an example, where two polygons fall on the same plane γ.

• Faces are not simply connected, i.e, having holes. Note that these holes are
different from the window boundaries as shown in Figure 4(b); they are the
concave or convex part of the building geometry. See Figure 8(b) for an
example.

5.4 Interaction Feedback

To one extreme, we could let the user manually specify all the corners and throw
them into the algorithm in Section 5.3 to compute all the polygonal faces. But to
alleviate the burden on the user, we exploit the power of cluster graphs as introduced
in Section 5.2 and design a user interaction loop to complete the target polyhedron
in a most convenient way.

It’s not difficult to see that the Hamiltonian circuit of G+
P (after pseudo edges

are added) exists if and only if there’s only one face resting on plane P and no two
edges lying on the same plane intersection line. (This equivalently means that G+

P

is connected and the circuit does not pass a vertex more than once.) This condition
is the most common situation that can be utilized.
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First we compute for the user a set of potential locations where actual corners
may stand, then the interaction loop begins. We compute those faces that have
a Hamiltonian circuit and expose computed corners. After the user specifies some
additional corners, especially those resulting from the intersection of more than
three planes, we attempt to compute Hamiltonian circuits for the rest of the planes.
This loops until no more planes have a potential Hamiltonian circuit. Then the
user has to pick out all the remaining corners and the algorithm in Section 5.3 is
run to extract all remaining faces.

Note that a Hamiltonian circuit can be traversed in two opposite directions.
Hence the listing order of corners for each face of the polyhedron may need to be
reversed so as to conform to the orientation of the face. Algorithm 3 gives the
detailed steps of this interactive procedure.

Algorithm 3 Reconstructing the Polyhedral Model
1: Initialize corner list V ← ∅
2: for all planes Pi do
3: Mark Pi undone
4: end for
5: repeat
6: for all planes Pi that are undone do
7: Form cluster graph G+

Pi

8: Add pseudo edges if existing, according to corner list V
9: if HC(G+

Pi
) exists then

10: Trace out the polygonal face lying on plane Pi

11: Add new computed corners to the corner list V
12: Mark Pi done
13: end if
14: end for
15: Receive user input of new corners
16: until no new Pi is marked done
17: repeat
18: Receive user input of new corners
19: until all corners of the target polyhedron are in corner list V
20: for all planes Pi that are undone do
21: From V , get all corners being the intersection of Pi are other planes
22: Get all intersection lines that lie on plane Pi

23: Trace out all polygonal faces lying on plane Pi

24: end for
25: for all planes Pi that are are fitted from scanned data do
26: Adjust the listing order of corners according to Pi’s orientation
27: end for
28: for all planes Pi that have no scanned data attached to do
29: Adjust the listing order of corners according to other polygons
30: end for
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6 Experimental Results

We’ve experimented with the above ideas on two buildings—the McNamara Alumni
Center (Figure 14) and the Phillips Wangensteen Building (Figure 13), both located
at the University of Minnesota, Twin Cities campus. The alumni center has many
interesting slanted faces that are not parallel to the principal axes of the object
coordinate system. It is difficult to construct from parametric primitives such as
cuboid, prism or tetrahedron. The other building with gigantic body effectively
demonstrates the difficulty in outdoor long range scanning and the deficiency of
obtained data. It consists of about 2.5 million points, while only 15% of them has
confidence rate higher than 0.9. A lot of parts have missing data, but we manage
to reconstruct the building by using above algorithms.

It takes several hours to obtain a reasonable amount of data for a real life
building even the scanning activity is well planned. In our situation we have a few
to ten scans for each building. We preprocess the dataset, including registration and
normal estimation as in [19]. We also manually trim out unrelated captured data
such as pedestrians, trees, lamp-posts, etc. This is easily done via a simple user
interface; however, it is not essential since scanned points on such bodies usually
have low confidence rates and they will be pruned out before clustering anyways.

We first analyze our proposed algorithms and give intermediate experimental
results in the following subsections.

6.1 Confidence Rates and Clustering

The effectiveness of normal based clustering rely on the scanning quality. Figure 9
shows the confidence rate distributions of the two datasets. The alumni center
model contains a large portion of data with high reliability. Almost 40% of points
have κ > 0.9. It leaves no hesitation for us to set κT = 0.9 as the threshold.
The clustering result is shown in Figure 2(b). For the other building, the near-
linear plot indicates that confidence rates are more or less evenly distributed. As
a consequence, it’s difficult to set the threshold κT that results in good clustering.
We experimented with three values. κT = 0.9 gives reasonable clustering that we
use for demonstration throughout the paper, κT = 0.85 results in some extra small
spurious clusters, and κT = 0.8 makes the program run forever which indicates that
too many points do not grow a cluster and are thrown away.

Other controlling parameters are not as critical as the confidence rate threshold.
For both datasets, we dictate from experience that if two normals deviate no more
than 10 degrees, and if their distance along the normal direction is less than 1,
then they are considered coplanar. The minimum size of a cluster is 100. This
corresponds to a 10 × 10 pixel area in the range image. Statistical information
about the clustering will be summarized later in Section 6.4.

6.2 Boundary Detection

Our boundary detection algorithm in 2D space successfully computes real boundary
line segments of a cluster of points. The effectiveness of the method rely on two
parameters: the neighborhood size r and the minimum number of points in a cluster.
Since r is also used as the grid size, it’s easy to see that decreasing r prunes out
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(b) Phillips Wangensteen Building.

Figure 9: Cumulative distribution of confidence rates for two datasets. The vertical axis
is the rate κ ∈ [0, 1]. The horizontal axis indicates the number of points with confidence
rate lower than κ.

more non-boundary cells and the location of neighboring points is more efficient.
However, using a smaller neighborhood tends to produce spurious boundaries, since
a point is more prone to being considered on the boundary. To justify this, let’s
look at the the first row in Figure 10. They show the detection results of a face of a
building using different parameters. The actual shape is a four-sided polygon. The
large portion of missing data in the middle is due to an irregularly shaped window.
Other stripes are caused by design structure. The actual boundaries are only the
outer four line segments. By enlarging the neighborhood size, the ‘boundary lines’
in the inner part of the face are successfully ignored. But of course, it also has the
risk that some actual boundary lines are omitted, as in Figure 10(c).

The other important parameter is the minimum size of a cluster, NT , in grouping
boundary points. Requiring larger cluster size tends to throw away ‘rough’ lines and
keep those with good sampling. Currently the setting of this parameter is empirical,
and it depends on the quality of data.

The problem of fake boundary lines exists from the nature of our algorithm and
from the actual object structure. In Figure 11 we show some example building
faces that exhibit bad sampling because of glass, windows, occluding trees etc. The
detection algorithm outputs a lot of unwanted line segments. But a positive aspect
is that the real shape and actual boundaries are able to be successfully detected.

6.3 User Interaction

The purpose of developing all the algorithms in previous Sections 3, 4 and 5 is
to alleviate the user’s burden. Nevertheless user input is inevitable due to the
complicated datasets obtained from outdoor scanning. Different from the abstract
pipeline shown in Figure 1, we show the concrete sequence of operations that build
up the alumni center polyhedral model in Figure 12. It demonstrates that user
intervention is very simple and never demanding. It costs an experienced user
about ten minutes to finish up the model.

First the program processes the data, finds clusters, computes plane intersec-
tions, and detects boundaries. Most of the computations are devoted to this step,
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(a) r = 0.2, NT = 20. (b) r = 0.5, NT = 20. (c) r = 1.0, NT = 20.

(d) r = 0.5, NT = 10. (e) r = 0.5, NT = 30. (f) r = 0.5, NT = 40.

Figure 10: Boundary detection results using different neighborhood size r and cluster size
threshold NT .

(a) (b)

Figure 11: Spurious boundary lines are obtained due to window structure and occlusion.

which takes several minutes. The result is shown in Figure 12(a). Coloring in-
dicates different clusters, solid brown lines are confirmed plane intersections, and
dotted black lines are detected boundaries. As can be seen, not all the planes are
represented by the scanned data. This is where the user starts interacting with the
program. See Figure 12(b). She picks a collection of boundary lines to indicate a
missing plane, and selects two planes to add an uncomputed intersection line. Note
that these actions are much simpler than requiring the user to manually move a
plane or a line to an accurate position. With all the planes and their adjacency
information available, the program automatically computes potential corners and
extracts faces, as in Figure 12(c). If not all faces are computable at once, the user
clicks at potential corners and let the program do the extraction again. Figure 12(c),
12(d) and 12(e) show the progression. For this typical example, the user needs only
to specify three corners (emphasized by big red circles in the figures) in order to
make a complete polyhedral model.
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(a) Automatic. (b) Manual.

(c) Automatic. (d) Manual. (e) Manual.

Figure 12: The algorithmic computations and user interaction during the whole modeling
process. Most of the computation is devoted to the processing achieving (a). The cost for
achieving (c) is in interactive time. The user interaction is not demanding. As can be seen
in (b) (d) and (e), it requires only picking computed lines, planes or corners.

6.4 Final Constructed Models

Figure 13 shows the model reconstruction of the Phillips Wangensteen Building.
Figure 14 shows the texture mapped result of McNamara Alumni Center. The
ground truth image is on the left for comparison. Statistical information is listed
in Table 1.

(a) Scanned data. (b) The reconstructed polyhe-
dron.

(c) Texture mapping result.

Figure 13: The reconstruction of Phillips Wangensteen Building from scanned point clouds.

As indicated previously, the Phillips Wangensteen Building has inferior scanning
quality as to missing data and low confidence rate. The reconstructed model as
shown in Figure 13(b) is simple yet the best we can get. The overall shape is
well recovered and some structures such as the two concave parts are preserved.
Windows and floors are hard to reconstruct due to data deficiency. For applications
that require a high level of realism, texture mapping can be performed on the model
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(a) (b)

Figure 14: McNamara Alumni Center reconstructed. (a) is a photo of the center taken from
http://www.alumnicenter.umn.edu/about/index.html. (b) shows two different views of
the reconstructed texture model.

Table 1: Statistical data about the models.

Alumni Center Building
# Points 1,759,804 2,510,123
Clustering 161s 63s
Boundary detection 104s 78s
# Pts w/ high κ 689,393 376,572
# Clusters 10 35
# Faces 17 82
# Edges 43 234
# Corners 28 156
# Holes 0 2

hence surface details are represented.

7 Conclusion and Future Work

We have proposed a new representation of large-scale architectures—polyhedra, as
well as a pipeline achieving this model representation from deficient range scanned
data. A bounded polyhedron with low complexity is capable of representing a
wide range of architectures whose faces exhibit planarity. This representation is
suitable for modeling from noisy range data that contains large portions of missing
or invalid values due to scanning constraints and limitation of the scanner accuracy.
Our approach combines high-level automatic computations and an efficient user
interface, and is proven to be effective through our experiments.

Within our processing pipeline, clustering of the scanned data based on normals
and point locations is first executed. We introduce the concept of confidence rate
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in guiding the process of clustering and identifying planar regions. We also propose
a boundary detection algorithm so as to compute the piecewise linear boundary
of a cluster of 3D points that are close to a plane. The algorithm effectively rec-
ognizes boundary points and clusters them into linear segments. Finally, we use
cluster graph, sharing some spirit with dual polyhedron, to extract bounded faces
of the polyhedron. This involves finding Hamiltonian circuits; because of the low
complexity of the target polyhedron the circuits can be computed efficiently.

When geometry loss or ambiguity becomes unresolvable by the computer, the
modeling process is facilitated by a simple user interface which simply asks the
user to make a selection from computed options. For example, to specify a missing
plane, the user only needs to select two computed boundary line segments; to define
a missing edge, she selects two incident planes; to confirm a corner, she only clicks
within its approximate location. This interface accelerates the modeling process
while yielding more accuracy.

There are many avenues of future research to improve the existing modeling
pipeline. The boundary detection algorithm is based on the assumption of planarity
of the geometry and piecewise linearity of the boundary. Some inner boundaries
(see Figure 4(b)) are not the real edges of the polyhedral model and may inter-
fere with the modeling process. By exploiting more knowledge or designing more
sophisticated algorithms we expect to improve the accuracy of boundary extraction.

The major motivation of this paper is to utilize the unique geometric properties
of architectures to devise efficient algorithms and alleviate the burden of a user. So
far our approach is limited by the fact that it accommodates only planar structures.
Our approach can be extended to handle non-planar shapes; perhaps the easiest is
to accommodate simple natural shapes such as spheres and cylinders, as they can
be analytically expressed. For that, we first cluster and identify planar points; we
can then fit the remaining points with parameterized shapes. The intersections
of different shapes can be computed since they either have close form solutions or
can be easily represented. Constructing the geometry for more general shapes is
possible, but will likely require guidance from the user on the basic characteristics
of the shapes.

8 Acknowledgment

This research was funded by NSF CCF-0238486 (CAREER), NSF CCF-0530673
(REU), NSF DMS-0528492 (MSPA-MCS), NSF EIA-0324864 (ITR), Ted & Linda
Johnson Gift, Riegl Gift, UMN McKnight and UMN DTC Seed Grants. The authors
would like to thank Michael Kaeding and Patrick Weygand for their help on laser
scanning and postprocessing (the texture mapping of the constructed polyhedral
models was conducted by Michael Kaeding). Thanks are also due to Nathan Gossett
for his generous help on the scanning project. The final version of the manuscript
has also greatly benefited from the many suggestions of the reviewers, for which we
thank them.

20



References

[1] The digital Michelangelo project. http://graphics.stanford.edu/papers/
dmich-sig00/.

[2] MIT city scanning project. http://city.csail.mit.edu/.
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