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ABSTRACT
Anti-money laundering (AML) regulations play a critical role in
safeguarding financial systems, but bear high costs for institutions
and drive financial exclusion for those on the socioeconomic and
international margins. The advent of cryptocurrency has intro-
duced an intriguing paradox: pseudonymity allows criminals to
hide in plain sight, but open data gives more power to investigators
and enables the crowdsourcing of forensic analysis. Meanwhile
advances in learning algorithms show great promise for the AML
toolkit. In this workshop tutorial, we motivate the opportunity to
reconcile the cause of safety with that of financial inclusion. We
contribute the Elliptic Data Set, a time series graph of over 200K
Bitcoin transactions (nodes), 234K directed payment flows (edges),
and 166 node features, including ones based on non-public data;
to our knowledge, this is the largest labelled transaction data set
publicly available in any cryptocurrency. We share results from a
binary classification task predicting illicit transactions using varia-
tions of Logistic Regression (LR), Random Forest (RF), Multilayer
Perceptrons (MLP), and Graph Convolutional Networks (GCN),
with GCN being of special interest as an emergent new method for
capturing relational information. The results show the superiority
of Random Forest (RF), but also invite algorithmic work to combine
the respective powers of RF and graph methods. Lastly, we consider
visualization for analysis and explainability, which is difficult given
the size and dynamism of real-world transaction graphs, and we
offer a simple prototype capable of navigating the graph and ob-
serving model performance on illicit activity over time. With this
tutorial and data set, we hope to a) invite feedback in support of
our ongoing inquiry, and b) inspire others to work on this societally
important challenge.
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1 TOWARD FINANCIAL INCLUSION
“It’s expensive to be poor.” This is a common credo among advocates
for financial inclusion. It speaks to the fact that those on themargins
of society suffer from restricted access to the financial system and
higher relative costs of participation.

The problem of restricted access (e.g. the ability to sign up for
a bank account) is, in part, an unintended consequence of increas-
ingly stringent anti-money laundering (AML) regulations, which,
while essential for safeguarding the financial system, have a dis-
proportionately negative effect on low-income people, immigrants,
and refugees [16]. Approximately 1.7 billion adults are unbanked
[7]. The problem of higher relative costs is also, in part, a function
of AML policy, which enforces high fixed costs of compliance on
money service businesses (MSBs) along with the fear of criminal
and monetary penalties for noncompliance – “low value" customers
just aren’t worth the risk. Consider global remittances to low-and-
middle-income countries, which reached a record high $529 billion
in 2018, far outpacing the global aid contribution of $153 billion.
The current average cost of sending $200 is an expensive 7 per-
cent, with some countries suffering rates of over 10 percent. The
United Nations Sustainable Development Goal number 10.7 targets
a reduction to 3 percent by 2030.[12]

And yet AML regulations cannot be summarily dismissed as over
burdensome. Multi-billion dollar illicit industries like drug cartels,
human trafficking, and terrorist organizations cause intense human
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suffering around the world. The recent 1Malaysia Development
Berhad (1MDB) money laundering scandal robbed the Malaysian
people of over $11 billion in taxpayer funds earmarked for the na-
tion’s development [22], with mega-fines and criminal indictments
for Goldman Sachs among others implicated in the wrongdoing.
The even more recent Danske Bank money laundering scandal in
Estonia, which served as a hub for an estimated $200 billion in illicit
money flows from Russia and Azerbaijan, similarly extracted an
incalculable toll on innocent citizens of these countries and served
implicated institutions like Danske Bank and Deutsche Bank with
billions of dollars in losses [23].

Money laundering is not a victimless crime, and current methods
for the traditional financial system are doing a poor job of stopping
it. Without reducing this complex challenge to data analysis alone,
we pose the question: with the right tools and open data, can we help
reconcile the need for safety with the cause of financial inclusion?

1.1 AML in a cryptocurrency world
The advent of cryptocurrency introduced by Bitcoin [17] ignited an
explosion of technological and entrepreneurial interest in payment
processing. Around the world, money transfer startups spun up to
compete with legacy banks and MSBs like Western Union. They
focused on enabling low-cost, peer-to-peer transfers of cash within
and across borders using Bitcoin and other cryptocurrencies as the
“rails” (a commonly used term in this space). Many explicitly tar-
geted remittances and championed the cause of financial inclusion.
Alongside these entrepreneurs grew a community of academics and
policy advocates supporting updated regulatory considerations for
cryptocurrency.

Dampening this excitement was Bitcoin’s bad reputation. Many
criminals used Bitcoin’s pseudonymity to hide in plain sight, con-
ducting ransomware attacks and operating dark marketplaces for
the exchange of illegal goods and services.

In May 2019, the Financial Crimes Enforcement Network (Fin-
CEN) of the United States issued new guidance on how the Bank
Secrecy Act (BSA) of 1970 applies to cryptocurrency, or what Fin-
CEN calls convertible virtual currencies (CVC) [18]. Consistent
with the BSA, the guidance calls for MSBs to generate individual-
ized risk assessments measuring exposure to money laundering,
terrorism finance, and other financial crime. These assessments are
based on customer composition, geographies served, and financial
products or services offered. The assessments must inform the man-
agement of customer relationships, including the implementation
of controls commensurate with risk; in other words, MSBs must not
only report suspicious accounts, but must also take action against
them (e.g. freeze them or shut them down). The guidance defines a
“well-developed risk assessment” as “assisting MSBs in identifying
and providing a comprehensive analysis of their individual risk
profile.” Reinforcing the Know Your Customer (KYC) requirements
of the BSA, the guidance requires MSBs to “know enough about
their customers to be able to determine the risk level they represent
to the institution.”

What it means to “know enough” about one’s customer is the
subject of much debate in compliance and policy circles. In practice,
one of the most challenging aspects of this is an implicit but effec-
tively enforced requirement to not only know your customer, but to

know your customer’s customer. In the fragmented data ecosystem
of traditional finance, this aspect of compliance is often executed
by phone calls between MSBs. But in the open system of Bitcoin,
the full graph transaction network data is publicly available, albeit
in pseudonymous and unlabelled form.

To meet the opportunity this public data presents, cryptocur-
rency intelligence companies have emerged to provide AML solu-
tions tailored to the cryptocurrency domain.Whereas the pseudonymity
of Bitcoin is an advantage for criminals, the public availability of
data is a key advantage for investigators.

2 THE ELLIPTIC DATA SET
Elliptic is a cryptocurrency intelligence company focused on safe-
guarding cryptocurrency ecosystems from criminal activity. For
this tutorial and as a contribution to the research community, we
present The Elliptic Data Set, a graph network of Bitcoin transac-
tions with handcrafted features. As a contribution to the research
and AML communities, Elliptic has agreed to share this data set pub-
licly. To our knowledge, it constitutes the world’s largest labelled
transaction data set publicly available in any cryptocurrency.

2.1 Graph Construction
The Elliptic Data Set maps Bitcoin transactions to real entities
belonging to licit categories (exchanges, wallet providers, miners,
licit services, etc.) versus illicit ones (scams, malware, terrorist
organizations, ransomware, Ponzi schemes, etc.). From the raw
Bitcoin data, a graph is constructed and labelled such that the nodes
represent transactions and the edges represent the flow of Bitcoin
currency (BTC) going from one transaction to the next one. A given
transaction is deemed licit (versus illicit) if the entity initiating the
transaction (i.e., the entity controlling the private keys associated
with the input addresses of a specific transaction) belongs to a licit
(illicit) category1. Importantly, all features are constructed using
only publicly available information.

2.1.1 Nodes and Edges. There are 203,769 node transactions and
234,355 directed edge payments flows. For perspective, using the
same graph representation the full Bitcoin network has approxi-
mately 438M nodes and 1.1B edges as of this writing. In the Elliptic
Data Set, two percent (4,545) are labelled class1 (illicit). Twenty-one
percent (42,019) are labelled class2 (licit). The remaining transac-
tions are not labelled with regard to licit versus illicit, but have
other features.

2.1.2 Features. Each node has associated 166 features. The first 94
features represent local information about the transaction – includ-
ing the time step, number of inputs/outputs, transaction fee, output
volume and aggregated figures such as average BTC received (spent)
by the inputs/outputs and average number of incoming (outgoing)
transactions associated with the inputs/outputs. The remaining 72
features, called aggregated features, are obtained by aggregating
transaction information one-hop backward/forward from the cen-
ter node - giving the maximum, minimum, standard deviation and
correlation coefficients of the neighbour transactions for the same
information data (number of inputs/outputs, transaction fee, etc.).

1Note that for simplicity, this argument ignores mixer transactions where the inputs
are controlled by multiple entities.
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Figure 1: (Top) Fraction of illicit vs. licit nodes at different time steps in the data set. (Bottom) Number of nodes vs. time step.

2.1.3 Temporal Information. A time stamp is associated with each
node, representing an estimate of the time when the transaction is
confirmed by the Bitcoin network. There are 49 distinct time steps,
evenly spaced with an interval of about two weeks. Each time
step contains a single connected component of transactions that
appeared on the blockchain within less than three hours between
each other; there are no edges connecting different time steps.
Clearly the nodes in a specific time step have associated time stamps
very close to each other, so effectively each one of them can be
thought of as an instantaneous “snapshot” in time. The number of
nodes for each time step is reasonably uniform over time (ranging
from 1,000 to 8,000 nodes). See Figure 1.

2.2 Notes on Feature Construction
The licit versus illicit labelling process is informed by a heuristics-
based reasoning process. For example, a higher number of in-
puts and the reuse of the same address is commonly associated
with higher address-clustering [10], which results in a degrade of
anonymity for the entity signing the transaction. On the other hand,
consolidating funds controlled by multiple addresses in one single
transaction provides benefits in terms of transaction costs (fee). It
follows that entities eschewing anonymity-preserving measures for
large volumes of user requests are likely to be licit (e.g. exchanges).
In contrast, illicit activity may tend to favor transactions with a
lower number of inputs to reduce the impact of de-anonymizing
address-clustering techniques.

Additionally, there are two major challenges in building features
for Bitcoin transactions. The first is rooted in the size of the Bitcoin
blockchain amounting to 200GB of compressed data and about 400
million addressed transactions. Though not all transactions are
included in the subset used in this study, it is still necessary to
access the complete blockchain in order to observe the full history

of wallets participating in the selected transactions. To overcome
this, Elliptic uses a high-performance all-in-memory graph engine
for the computation of features.

The second challenge arises from the underlying graph structure
of the data and the heterogeneity in the number of neighbors a
transaction can have. In building the 72 aggregated features, the
problem of heterogeneous neighborhoods is addressed by naively
constructing statistical aggregates (minimum,maximum, etc.) of the
local features of a neighbor transaction. In general, this solution is
sub-optimal because it carries a significant loss of information. We
address this in our forthcoming discussion of graph deep learning
methods, which may better account for the local graph topology.

3 TASK AND METHODS
At a high level, AML analytics is an anomaly detection challenge of
accurately classifying a small number of illicit transactions in mas-
sive, ever-growing data sets. Industry standard high false positive
rates of upwards of 90% inhibit this effort. We want to reduce false
positive rates without increasing false negative rates, i.e. include
more innocent people without allowing more criminals. Logistic
Regression and Random Forest are among the benchmark methods
for this task. Graph deep learning has also emerged as potential
tool for AML [21].

In the case of the Elliptic Data Set, the task to be performed
on this data is transaction screening for assessing the risk associ-
ated with a given transaction to-and-from cryptocurrency wallets.
Specifically, each unlabelled Bitcoin transaction is to be classified
illicit or licit.
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3.1 Benchmark Methods
Given the features previously described, benchmark machine learn-
ing methods use the first 94 features in supervised learning for
binary classification. Such techniques include Logistic Regression
[1], Multilayer Perceptron (MLP) (ibid), and Random Forest [2]. In
MLP, each input neuron takes in a data feature and the output is a
softmax with a probability vector for each class. Logistic Regression
and Random Forest are popular for AML, especially when used in
concert with one another for their respective advantages—Random
Forest for accuracy and Logistic Regression for explainability. These
methods, however, do not leverage any graph information.

In the Elliptic Data Set, the local features are enhanced with a set
of 72 features that contain information about the immediate neigh-
bourhood. We will see the utilization of these features improves
performance.While this approach shows the graph structure carries
in the binary classification problem, and that this can be used with
standard machine learning techniques, it is challenging to extend
the purely feature-based method beyond the immediate neighbour-
hood. This drawback motivates the use of Graph Convolutional
Networks.

3.2 Graph Convolutional Networks (GCN)
Deep learning on graph structured data is a subject of rapidly in-
creasing interest [3, 6, 8, 9, 14]. Dealing with combinatorial com-
plexity inherent to graph structures poses scalability challenges
for practical applications, and significant strides have been made
in addressing these challenges [5, 11, 24]. Specifically, we consider
Graph Convolutional Networks (GCNs). A GCN consists of multiple
layers of graph convolution, which is similar to a perceptron but
additionally uses a neighborhood aggregation step motivated by
spectral convolution.

Consider the Bitcoin transaction graph from the Elliptic Data
Set as G = (N ,E), where N is the set of node transactions and E is
the set of edges representing the flow of BTC. The l-th layer of the
GCN takes the adjacency matrix A and the node embedding matrix
H (l ) as input, and uses a weight matrixW (l ) to update the node
embedding matrix to H (l+1) as output. Mathematically, we write

H (l+1) = σ (ÂH (l )W (l )), (1)

where Â is a normalization of A defined as:

Â = D̃− 1
2 ÃD̃− 1

2 , Ã = A + I , D̃ = diag

(∑
j
Ãi j

)
,

and σ is the activation function (typically ReLU) for all but the
output layer. The initial embedding matrix comes from the node
features; i.e., H (0) = X . Let there be L layers of graph convolutions.
In the case of node classification, the output layer is the softmax,
where H (L) consists of prediction probabilities.

One sees a graph convolution layer is similar to a feed forward
layer, except for the multiplication with Â in the front. This matrix
is motivated by spectral graph filtering on the graph Laplacian
matrix and it results from a linear functional of the Laplacian. On
the other hand, one may also interpret the multiplication with Â as
an aggregation of the transformed embeddings of the neighboring
nodes. The parameters of the GCN are the weight matricesW (l ),
for different layers l .

A 2-layer GCN, as often used, can be neatly written as

H (2) = softmax(Â · ReLU(ÂXW (0)) ·W (1)).

A “skip” variant, which we find practically useful, inserts a skip con-
nection between the intermediate embeddingH (1) = ReLU(ÂXW (0))
and the input node features X , resulting in the architecture

H̃ (2) = softmax(Â · ReLU(ÂXW (0)) ·W (1) + XW̃ (1)),

where W̃ (1) is a weight matrix for the skip connection. We call this
architecture Skip-GCN. WhenW (0) andW (1) are zero, Skip-GCN
is equivalent to Logistic Regression. Hence, Skip-GCN should be at
least as powerful as Logistic Regression.

3.3 Temporal Modeling
Financial data are inherently temporal as transactions are time
stamped. It is reasonable to assume there exists certain dynamics,
albeit hidden, that drive the evolution of the system. A prediction
model will be more useful if it is designed in a manner to capture the
dynamism. This way, a model trained on a given time period may
better generalize to subsequent time steps. The better the model
captures system dynamics, which are also evolving, the longer
horizon it can forest into.

A temporal model that extends GCN is EvolveGCN [19], which
computes a separate GCN model for each time step. These GCNs
are then connected through a recurrent neural network (RNN) to
capture the system dynamics. Hence, the GCN model for a future
time step is evolved from those in the past, where the evolution
captures the dynamism.

In EvolveGCN, the GCN weights are collectively treated as the
system state. The model is updated upon an input to the system
every time, by using an RNN (e.g., GRU). The input is the graph
information at the current time step. The graph information may
be instantiated in many ways; in EvolveGCN, it is represented by
the embeddings of the top-k influential nodes in the graph.

4 EXPERIMENTS
Here we show experimental results obtained on the Elliptic Data
Set. We performed a 70:30 temporal split of training and test data,
respectively. That is, the first 34 time steps are used for training
the model and the last 15 for test. We use a temporal split because
it reflects the nature of the task. As such, GCN is trained in an
inductive setting.

We first tested standard classification models for the licit/illicit
prediction using three standard approaches: Logistic Regression
(with default parameters from the scikit-learn Python package [4]),
Random Forest (also from scikit-learn, with 50 estimators and 50
max features), and Multilayer Perceptron (implemented in PyTorch).
Our MLP had one hidden layer of 50 neurons and was trained for
200 epochs by using the Adam optimizer and a learning rate of
0.001.

We evaluated these models by using all the 166 features (referred
to as AF ), as well as only the local ones, i.e., the first 94 (referred to
as LF ). The results are summarized in the top part of Table 1.

The bottom part of Table 1 reports the results achieved when
we leveraged the graph structure of the data. We trained the GCN
model for 1000 epochs using the Adam optimizer with a learning
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Figure 2: Illicit F1 results over test time span.

Table 1: Illicit classification results. Top part of the table
shows resultswithout the leverage of the graph information,
for each model are shown results with different input: AF
refers to all features, LF refers to the local features, i.e. the
first 94, and NE refers to the node embeddings computed by
GCN. Bottom part of the table shows results with GCN.

Illicit MicroAVG
Method Precision Recall F1 F1

Logistic RegrAF 0.404 0.593 0.481 0.931
Logistic RegrAF+NE 0.537 0.528 0.533 0.945
Logistic RegrLF 0.348 0.668 0.457 0.920

Logistic RegrLF+NE 0.518 0.571 0.543 0.945
RandomForestAF 0.956 0.670 0.788 0.977

RandomForestAF+NE 0.971 0.675 0.796 0.978
RandomForestLF 0.803 0.611 0.694 0.966

RandomForestLF+NE 0.878 0.668 0.759 0.973
MLPAF 0.694 0.617 0.653 0.962

MLPAF+NE 0.780 0.617 0.689 0.967
MLPLF 0.637 0.662 0.649 0.958

MLPLF+NE 0.6819 0.5782 0.6258 0.986

GCN 0.812 0.512 0.628 0.961
Skip-GCN 0.812 0.623 0.705 0.966

rate of 0.001. In our experiment we used a 2-layer GCN and, after
hyper-parameter tuning, we set the size of the node embeddings to
be 100.

The task is a binary classification and the two classes are im-
balanced (see Figure 1). For AML, more important is the minority
class (i.e., the illicit class). Hence, we trained the GCN model using
a weighted cross entropy loss to provide higher importance to the
illicit samples. After hyperparameter tuning, we opted for a 0.3/0.7
ratio for the licit and illicit classes. Table 1 shows the testing results
in term of precision, recall, and F1 score for the illicit class. For the
sake of completeness, we also show the micro-averaged F1 score.

Note that GCN and the variant Skip-GCN outperform Logistic
Regression, indicating the usefulness of the graph-based method
compared to one agnostic to graph information. On the other hand,

in this case, the input features are quite informative already. Using
these features alone, Random Forest achieves the best F1 score. The
representation power of the input features is also reflected by the
gain of Skip-GCN over GCN.

Another insight from Table 1 is obtained from the comparison
between methods trained on all the features (AF ) and those on
only the 94 local features (LF ). For all the three evaluated mod-
els, the aggregated information led to higher accuracy, indicating
the importance of the graph structure in this context. With this
observation, we further evaluated the methods with an enhanced
input feature set. The goal of this experiment was to show that
graph information was useful to enhance the representation of a
transaction. In this setting, we concatenated the node embeddings
obtained from GCN with the original features X . Results show that
with the enhanced feature set the accuracy of the model improves,
for both full features (AF + NE) and local features (LF + NE).

Table 2 compares the prediction performance between the non-
temporal GCN and the temporal EvolveGCN. EvolveGCN consis-
tently outperforms GCN, although the improvement is not substan-
tial for this data set. One avenue of further investigation is the use
of alternative forms of system input to drive the recurrent update
inside GRU.

Table 2: GCN v.s. EvolveGCN

GCN EvolveGCN
Precis. Recall F1 Precis. Recall F1

Illicit 0.812 0.623 0.705 0.850 0.624 0.720
MicroAVG 0.966 0.966 0.966 0.968 0.968 0.968

The Dark Market Shutdown. An important consideration for
AML is the robustness of a prediction model with respect to emerg-
ing events. One interesting aspect of this data set is the sudden
closure of a dark market occurring during the time span of the data
(at time step 43). As seen in Figure 2, this event causes all methods
to perform poorly after the shutdown. Even a Random Forest model
re-trained after every test time step, assuming the availability of
ground truth after each time, is not able to reliably capture new
illicit transactions after the dark market shutdown. The robustness
of methods to such events emerges as a major challenge to address.
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5 DISCUSSION
We have seen Random Forest significantly outperforms Logistic
Regression; in fact, it also outperforms GCN even though the latter
is empowered by the graph structure information. Random Forest
uses a voting mechanism to ensemble the prediction results from
a number of decision trees, each trained by using a subsample of
the data set. GCN, in contrast, like most deep learning models,
uses Logistic Regression as the final output layer; hence, it can be
considered a nontrivial generalization of Logistic Regression.

The question arises: Is it possible to combine a Random Forest
with a graph neural network? One simple idea is to augment the
node features with the embeddings computed from GCN before
running Random Forest. This idea helps only marginally according
to prior experimentation. Another idea, as proposed by [13], is to
parameterize every node in the decision tree(s) by using a feed-
forward neural network. This idea organically combines Random
Forest with neural networks, but it does not suggest how graph in-
formation can be incorporated. One possible approach is to replace
the Logistic Regression output layer in GCN by this differentiable
version of the decision tree, so that end-to-end training is enabled.
We leave the execution of this idea as future investigation.

6 GRAPH VISUALIZATION
Lastly, in support of analysis and explainability, which are impor-
tant for AML compliance, we have created a visualization prototype
called Chronograph. Visualizing a high-dimensional graph imposes
a layer of complexity on top of plain feature vectors with respect to
explaining model performance. Chronograph aims to address this
by supporting the human analyst with an integrated representation
of the model.

6.1 Visual Investigation of the Elliptic Data Set
In Chronograph, transactions are visualized as nodes of a graph
with edges representing the flow of BTC from one transaction to
the next. Node coordinates are computed simultaneously across all
time steps using the projection technique UMAP [15]. This global
computation makes layouts comparable across time. The time step
slider control at the top of the interface allows the user to navigate
through time by rendering only nodes in the selected time step.
Illicit transactions are dyed red; licit ones are blue. Unclassified
transactions are not colored.

When clicking a transaction node, or entering a transaction ID
in the control on the left (filters as substring) the visualization
highlights the selected transaction(s) in orange, and all neighboring
transactions (in-or-out-flowing) in green. On the left of the interface,
the user can see general statistics on the graph and a table about
transfer numbers between different transaction classes.

In this simple prototype, Chronograph enables simple explo-
ration scenarios to visually inspect clusters and their existence
over time, observe conspicuous transfer patterns, or detect other
deviations like single outliers. As a more involved use case we addi-
tionally facilitate the degree of freedom of the input to the UMAP
computation: raw transaction feature data (Figure 4a), as well as
neuron activations of the last layer of the network (Figure 4b) seem
to be two interesting alternatives; similar approaches have been
proposed for general neural networks Rauber et al. [20]. Differences

in the resulting visualizations would then hint towards peculiarities
of the model, i.e. we postulate shifts in similarities among the data
can be indicative to explain which underlying features matter to
the model.

Figure 4 shows the results from the two alternative inputs for
a single time step, with raw feature data in the top and model
activations in the bottom row. We further dye the nodes using
actual labels in the left column, and GCN-predicted labels in the
right column, and obtain a total of 4 network visualizations.

In the model-based layout illicit nodes are less scattered but
more concentrated, which seems to be a desirable property: illicit
nodes should share some important characteristics, and similarity
of nodes yields closer proximity in the layout. However, since they
are not perfectly collapsing in one location it is quite plausible
there are qualitative differences within the set of illicit nodes. The
visualizations further reveals where exactly the model is unable to
detect illicit nodes. In case of multiple erroneous predictions in a
nearby area this could further hint to a systemic underperformance
of the the model. Studying the characteristics of such transactions
in detail could inspire the discussion from new angles and lead to
further model improvements.

a) Projection of raw transaction feature vectors

b) Projection of last GCN layer activations

Figure 3: Two alternative inputs to UMAP projection. Left:
colored by input labels; right: colored by GCN prediction.

7 SUMMARY
In summary, we have set forth cryptocurrency forensics, and specif-
ically Bitcoin, as a unique ecosystem for crowdsourcing the develop-
ment of newmethods to fight criminal activity.We have contributed
a large, labelled transaction data set to the AML community, the
likes of which has never before been publicly available. We have
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Figure 4: Chronograph User Interface: User can navigate
through time-sliced transaction data and observe transac-
tion patterns and patterns of change. Illicit transactions are
dyed red. Further statistics are displayed on the left.

shared early experimental results using a variety of methods includ-
ing Graph Convolutional Networks, and discussed possible next
steps for algorithmic advances. We have provided a prototype for
visualization of such data and models for augmenting human anal-
ysis and explainability. Most important, we hope to have inspired
others to work on this societally important challenge of making
our financial systems safer and more inclusive.
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