
ALGEBRAIC DISTANCE ON GRAPHS

JIE CHEN∗ AND ILYA SAFRO†

Abstract. Measuring the connection strength between a pair of vertices in a graph is one of
the most important concerns in many graph applications. Simple measures such as edge weights
may not be sufficient for capturing the effects associated with short paths of lengths greater than
one. In this paper, we consider an iterative process that smooths an associated value for nearby
vertices, and we present a measure of the local connection strength (called the algebraic distance,
see [25]) based on this process. The proposed measure is attractive in that the process is simple,
linear, and easily parallelized. An analysis of the convergence property of the process reveals that
the local neighborhoods play an important role in determining the connectivity between vertices.
We demonstrate the practical effectiveness of the proposed measure through several combinatorial
optimization problems on graphs and hypergraphs.

Key words. Graph connectivity measure, combinatorial scientific computing, stationary itera-
tive process

AMS subject classifications. 05C50, 05C85

1. Introduction. Measuring the connectivity between two vertices in a graph is
one of the central questions in many theoretical and applied areas in computer science.
The edge weights are often used to measure how close the vertices are to each other.
However, edge weights may not always be available or sufficient because of practical
limitations, including a lack of other than Boolean information and the difficulty in
determining all pairwise vertex relationships. In many graph algorithms, we often
need to choose the most suitable pair of vertices, for example the “heaviest” edge in
some sense. In such situations, without a better choice a greedy strategy might have
to arbitrarily break the ties due to equal edge weights. A better performance might
be possible if the strategy could recognize a pair of vertices that are not connected by
an edge but pose a strong indirect connection.

Because of the practical significance of vertex connectivity, many algorithms have
been proposed to model it. Examples include the length of the shortest path, the num-
ber of simple paths between a pair of vertices, maximum flows, and minimum edge
cuts/vertex separators. In a random-walk approach [12, 30], the average first-passage
time/cost and average commute time were used. A similarity measure between nodes
of a graph integrating indirect paths, based on the matrix-forest theorem, was pro-
posed in [5]. Effective resistance [15] was used to model a connectivity with electrical
circuit conductance. A convergence of the compatible relaxation [2] was measured in
algebraic multigrid (AMG) schemes [4] in order to detect strong connections between
fine and coarse points. A similarity method based on a probabilistic interpretation of
a diffusion was introduced in [23]. Our goal is to design a family of algorithms (and
measures) that are fast and easy to implement and parallelize and that can be applied
locally to the data.

∗Department of Computer Science and Engineering, University of Minnesota at Twin Cities,
Minneapolis, MN 55455. Current address: Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL 60439. Email: jiechen@mcs.anl.gov. Work of this author was
supported by NSF grant DMS-0810938, a University of Minnesota Doctoral Dissertation Fellowship,
and the CSCAPES institute, a U.S. DOE project.

†Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439.
Email: safro@mcs.anl.gov. This work was funded by the CSCAPES institute, a U.S. DOE project,
and in part by U.S. DOE Contract DE-AC02-06CH11357.

1

2 J. CHEN AND I. SAFRO

The proposed measure is called the algebraic distance. We will give a formal
definition (inherited from [25]) in Section 2; for now we note that it is based on a
stationary iterative process that smooths an associated value for nearby vertices. The
process can also be considered one that propagates some information about every
vertex to its neighborhood. After a few iterations, the propagated values define a
distance between all pairs of nodes. Conceptually, a small distance means a strong
connection because, by the propagation, closely connected vertices will converge to
similar values.

The algebraic distance is motivated by the bootstrap algebraic multigrid (BAMG)
method [3] for solving linear systems Ax = b. In the heart of any multigrid [29] lies
a coarsening process that creates a hierarchy of projections of the original problem
domain onto smaller spaces. In contrast to the geometric multigrid that exploits a
regular geometric pattern (of the underlying domain) in choosing coarse variables,
AMG creates a coarse system by automatic exploration of the “geometry” behind the
problem using sophisticated rules of “closeness” between variables. Traditional AMG
approaches typically use edge weights as an indicator of the closeness. While this is
frequently acceptable, there are situations where they don’t yield satisfactory results.
On the other hand, BAMG defines such a closeness by running several Gauss-Seidel
(GS) relaxations with a random initial vector on the corresponding homogeneous
system Ax = 0. The speed of convergence of the iterate x signifies the closeness be-
tween variables, and it is used to determine the rules of aggregation and interpolation.
This paper considers a similar process, where GS is replaced by Jacobi overrelaxation
(JOR) and A is replaced by the graph Laplacian L.

Recently, the algebraic distance was used as a component of an AMG-based coars-
ening scheme for graph linear ordering problems [25]. Despite considerable empirical
evidence of success in multilevel linear ordering and partitioning algorithms, where
the algebraic distance was used as a tool for separating long and short-ranged edges in
multilevel aggregation and interpolation, however, the concept of algebraic distance is
still not well understood and has not been used widely in combinatorial optimization
problems. This paper studies some properties of this relaxation process and inter-
prets the algebraic distances under a mutually influenced environment model, where
the neighborhood connectivity information governs the connectivity of the vertices.
With this interpretation, the applications of this measure are no longer restricted to
multilevel algorithms. Whenever the concept of vertex connectivity is applicable, we
can use the algebraic distance to measure the connection strengths between vertices.
We show a few such applications in this paper.

2. Notation and preliminaries. Let G = (V,E) denote a weighted undirected
graph, where the set of vertices (nodes) V is {1, 2, ..., n} and E is the set of edges.
Let W = [wij]n×n be the weighted adjacency matrix of G, where wij ≥ 0 is the
weight of the undirected edge ij between nodes i and j; if ij /∈ E, then wij = 0.
Algorithm 1 updates a vector x from a random initialization x(0). We use superscripts
to distinguish successive iterates and subscripts to mean vector entries.

We define s
(k)
ij , the algebraic distance between vertices i and j, at the kth iteration,

to be

s
(k)
ij :=

∣∣∣x(k)
i − x

(k)
j

∣∣∣ . (2.1)

With R initial vectors x(0,r), r = 1, . . . , R, each vector is independently updated by

ALGEBRAIC DISTANCE ON GRAPHS 3

Algorithm 1 Computing algebraic distances for graphs

Input: Parameter ω, initial vector x(0)

1: for k = 1, 2, . . . do

2: x̃
(k)
i ←

∑
j wijx

(k−1)
j /

∑
j wij , ∀i.

3: x(k) ← (1− ω)x(k−1) + ωx̃(k)

4: end for

using Algorithm 1, and the extended p-normed algebraic distance %
(k)
ij is defined as

%
(k)
ij :=

(
R∑

r=1

∣∣∣x(k,r)
i − x

(k,r)
j

∣∣∣p)1/p

, (2.2)

where the superscript (k,r) refers to the kth iteration on the rth initial random vector.

For p =∞, by convention, %
(k)
ij = maxr=1,...,R

∣∣∣x(k,r)
i − x

(k,r)
j

∣∣∣.
The analysis in this paper is based on the spectral graph theory, whereby the

spectrum and the eigenvectors of the graph Laplacian play a central role. The graph
Laplacian matrix is defined as L = D − W , where D is the diagonal matrix with
diagonal elements di equal to

∑
j wij . It is positive semi-definite. Let (λi, ui) denote

the eigen-pairs of L ordered in nondecreasing order of λi:

Lui = λiui, i = 1, 2, . . . , n. (2.3)

It is well known that the smallest eigenvalue(s) of L is zero, and the multiplicity of
λ1 = 0 is c if and only if the graph has c connected components. In particular, if the
graph is connected, λ1 is simple. Then the smallest nonzero eigenvalue λ2 is called
the algebraic connectivity of the graph, and the corresponding eigenvector u2 is called
the Fiedler vector.

We will also need to consider the matrix pencil (L,D), which has the same spec-
trum as the normalized Laplacian L = D−1/2LD−1/2. Let (µi, vi) denote the eigen-
pairs of (L,D) ordered in nondecreasing order of µi:

Lvi = µiDvi, i = 1, 2, . . . , n. (2.4)

Similar to L, the multiplicity of the zero eigenvalues of (L,D) is the number of con-
nected components of the graph. On the other hand, the largest eigenvalue µn ≤ 2.
In particular, µn = 2 if and only if there exists a connected component of the graph
that is bipartite. Note that the second smallest eigenvalue µ2 ≤ 1 whenever the graph
is not complete. For a comprehensive treatment of the spectral properties of the
normalized Laplacian, see, e.g., [6].

It is obvious that Algorithm 1 is the JOR iteration for solving the linear system

Lx = 0, (2.5)

using the relaxation parameter ω. Of course, we are not interested in actually “solv-
ing” this system, which has infinitely many solutions, but the convergence properties
of the iteration is key to the understanding of the algebraic distance. A basic result
is that JOR converges for any 0 < ω < 2/µn. Most results are in the next.

4 J. CHEN AND I. SAFRO

3. Iterative methods for graph Laplacians. Standard iterative methods by
matrix splitting for solving a linear system can be written in a general form

x(k+1) = Hx(k), k = 0, 1, 2, . . . , (3.1)

where H is the iteration matrix. Let the Laplacian L = D −WL −WU , where WL

and WU are the strict lower and upper triangular parts of W , respectively. Then the
iteration matrices for Gauss-Seidel, Jacobi, SOR, and JOR are, respectively,

HGS = (D −WL)
−1WU , HSOR = (D/ω −WL)

−1
((1/ω − 1)D +WU) ,

HJAC = D−1(WL +WU), HJOR = (D/ω)
−1

((1/ω − 1)D +WL +WU) .

We will use the notation H when the discussions are general or apply to all the
iterative methods; we will add subscripts when an individual method is emphasized.

A matrix A ∈ Rn×n is said to be convergent if limk→∞ Ak exists.1 Let αi denote
the eigenvalues of A, where i = 1, . . . , n. Then, A is convergent if and only if (i)
|αi| ≤ 1, (ii) |αi| = 1 implies αi = 1, and (iii) the algebraic multiplicity of the
eigenvalue 1 equals its geometric multiplicity. In other words, the Jordan canonical
form of a convergent matrix looks like

[
It×t 0
0 J

]
, where t ≥ 0 is the algebraic/geometric

multiplicity of the eigenvalue 1, and J consists of Jordan blocks for all the other
eigenvalues |αi| < 1. The following theorem implies that unless the graph has a
bipartite connected component and Jacobi iterations are used (or equivalently JOR
with ω = 1), the iteration matrix H for the system (2.5) is always convergent. A
proof of the theorem can be found in [10].

Theorem 3.1. The iteration matrix H for the linear system (2.5) has the fol-
lowing properties.

(i) The matrices HGS, HSOR and HJOR are convergent.
(ii) The matrix HJAC is convergent if and only if none of the connected compo-

nents of the graph is bipartite.
(iii) The spectral radii of HGS, HJAC , HSOR, and HJOR are all 1.
When H is convergent, we denote its similarity transform to the Jordan canonical

form as PHP−1 =
[
It×t 0
0 J

]
, where P is nonsingular. The initial vector x(0) can

be uniquely decomposed as the sum of a vector in range(I − H) and a vector z in
null(I − H), i.e., x(0) = (I − H)y + z. Since z ∈ null(I − H), we have Hz = z.
Therefore,

x(k) = Hkx(0) = Hk(I −H)y +Hkz

= P−1

[
It×t 0
0 Jk

] [
0 0
0 I − J

]
Py + z.

Note that the limit of Jk is zero. Thus, x(k) → z. This result is summarized in the
following theorem.

Theorem 3.2. When the iteration matrix H for the linear system (2.5) is con-
vergent, the iterative process (3.1) converges. In such a case, the iterate x(k) converges
to zero if the initial vector x(0) ∈ range(I −H); otherwise x(k) converges to a vector
in null(I −H).

1Some authors (e.g., [17]) use the term convergent for a matrix A where the limit Ak is zero.
However, the interesting case in this paper is that the limit is nonzero. Thus, we make a broader
inclusion in the definition here.

ALGEBRAIC DISTANCE ON GRAPHS 5

In particular, if the graph is connected, the eigenvalue 1 of H is simple, and the
subspace null(I−H) is spanned by the vector 1. Hence in such a case, x(k) converges
to either zero or a nonzero scalar multiple of 1. An immediate consequence is that

the algebraic distance s
(k)
ij for all pair (i, j) vanishes as k goes to infinity.

As a result, the definition of the algebraic distance as a measure of the connection
strength seems to be meaningless. However, we are actually interested in comparing

the relative magnitudes of s
(k)
ij for different (i, j) pairs. In other words, a concurrent

scaling of the quantity s
(k)
ij for all i and j will not compromise the measure.

To derive a suitable scaling, we consider a connected graph and make an additional
mild assumption that H is diagonalizable. Let (σi, φi) denote the eigen-pairs of H:

Hφi = σiφi, i = 1, . . . , n, (3.2)

where the eigenvalues are labeled in the order

1 = σ1 > |σ2| ≥ |σ3| ≥ · · · ≥ |σn|

according to Theorem 3.1 (note the absence of the absolute value sign surrounding σ1

and the strict inequality after σ1). Correspondingly, the eigenvector φ1 = 1. Let the
initial vector x(0) be expressed as a linear combination of the eigenvectors:

x(0) = a1φ1 + a2φ2 + · · ·+ anφn. (3.3)

Then, the kth iterate x(k) = Hkx(0) = a1φ1 + a2σ
k
2φ2 + · · ·+ anσ

k
nφn. The algebraic

distance is then

s
(k)
ij =

∣∣∣(ei − ej)
Tx(k)

∣∣∣ = ∣∣∣∣∣(ei − ej)
T

n∑
`=2

a`σ
k
` φ`

∣∣∣∣∣ ,
where ei is the ith column of the identity matrix. Note that the summation starts
from ` = 2. Since σk

2 is a common factor for all the (i, j) pairs, we define the quantity

ŝ
(k)
ij := s

(k)
ij /σk

2 (3.4)

and name it scaled algebraic distance. It turns out that, in contrast to s
(k)
ij , the scaled

quantity ŝ
(k)
ij does not always converge. When it does, however, it converges to some

value other than zero. For this, we consider two cases. The first case is that σ2 is real,
and −σ2 is not an eigenvalue of H. This case occurs for most of the real-life graphs,

and ŝ
(k)
ij converges in such a case. The second case, which is the complement of the

first case, also happens for some graphs. A special situation of this case is that σ2

and σ3 are a conjugate pair, which makes ŝ
(k)
ij “oscillate”.

Theorem 3.3. Assume that the graph is connected, with the iteration matrix H
convergent and diagonalizable. Let the initial vector x(0) be expanded in the eigenbasis
of H as in (3.3).

(i) If σ2 = σ3 = · · · = σt and |σt| > |σt+1| for some t ≥ 2, and if a2, . . . , at are

not all zero, then the quantity ŝ
(k)
ij defined in (3.4) approaches the limit

∣∣(ei − ej)
T ξ
∣∣

in the order O
(
|σt+1/σt|k

)
, where ξ is an eigenvector corresponding to the eigenvalue

σ2 (with multiplicity t− 1).

6 J. CHEN AND I. SAFRO

(ii) If |σ2| = |σ3| = · · · = |σt| > |σt+1| for some t ≥ 3, where σ2, . . . , σt are
not all the same, a2, . . . , at are not all zero, and if there exists an integer m such

that (σ`/σ2)
m = 1 for ` = 3, . . . , t, then the pth subsequence {ŝ(mk+p)

ij }k=0,1,2,... ap-

proaches the limit
∣∣(ei − ej)

T ηp
∣∣ in the order O

(
|σt+1/σt|mk

)
, where ηp = a2φ2 +

a3(σ3/σ2)
pφ3 + · · ·+ at(σt/σ2)

pφt for p = 0, 1, . . . , (m− 1).

Proof. Case (i): Equation (3.4) becomes ŝ
(k)
ij =

∣∣(ei − ej)
T ξ(k)

∣∣, where
ξ(k) = a2φ2 + · · ·+ atφt +

n∑
`=t+1

a`

(
σ`

σ2

)k

φ`.

When k tends to infinity, the summation term in ξ(k) vanishes. Let ξ = a2φ2 +

· · ·+ atφt, then ŝ
(k)
ij →

∣∣(ei − ej)
T ξ
∣∣, and ŝ

(k)
ij converges in the order O(|σt+1/σ2|k) =

O(|σt+1/σt|k).
Case (ii): Equation (3.4) becomes ŝ

(k)
ij =

∣∣(ei − ej)
T η(k)

∣∣, where
η(k) = a2φ2 + a3τ

k
3 φ3 + · · ·+ atτ

k
t φt +

n∑
`=t+1

a`

(
σ`

σ2

)k

φ`,

and τ` = σ`/σ2 for ` = 3, . . . , t. If there exists a positive integer m such that τm` = 1
for all `, then η(k) has m limit points η0, . . . , ηm−1.

4. Further results for Jacobi overrelaxations. For JOR, the eigenvalues
and vectors of the iteration matrix HJOR are closely related to those of the matrix
pencil (L,D). Thus, results in the preceding section can be further polished by using
properties of the graph Laplacian. In particular, the relaxation parameter ω can be
chosen such that the eigenvector φ2 coincides with the eigenvector corresponding to
the second smallest eigenvalue of (L,D). Meanwhile, because of the distributions of
the eigenvalues, the convergence of Algorithm 1 often is slow. Hence, we in addition
study the behavior of the iterations at an early stage.

4.1. The limiting case. Observe the following equivalence:

HJOR φi = σiφi ⇐⇒ Lφi =
1− σi

ω
Dφi.

An immediate result is that HJOR is diagonalizable and all the eigenvalues of HJOR

are real. More precisely, if µj is an eigenvalue of (L,D), then µj = (1−σi)/ω for some
i. In general, we may not have the exact correspondence j = i, since the eigenvalues
of HJOR are sorted in the order of their absolute values, whereas the eigenvalues
of (L,D) are sorted in their natural order. Figure 4.1 pictorially shows the relative
positions of the eigenvalues σi of HJOR. Clearly σ1 = 1 − ωµ1 = 1 regardless of the
value ω, since µ1 = 0. However, σ2 can be either 1 − ωµ2 or 1 − ωµn, depending on
the choice of ω. A special case is that 1−ωµ2 = −(1−ωµn). In this case, σ2 = −σ3,

and case (ii) of Theorem 3.3 indicates that the scaled algebraic distance ŝ
(k)
ij will

not converge; rather, it oscillates when k is large. Otherwise, we enumerate all the
other possible cases for ω, and have the following theorem as a corollary of case (i) of
Theorem 3.3.

Theorem 4.1. Given a connected graph, let (µi, vi) be the eigen-pairs of the
matrix pencil (L,D), labeled in nondecreasing order of the eigenvalues, and assume

ALGEBRAIC DISTANCE ON GRAPHS 7

−1 0 1

1 − ωµn 1 − ωµ3 1 − ωµ2 1 − ωµ1· · ·

Fig. 4.1. Pictorial description of the locations of the eigenvalues of HJOR.

that µ2 6= µ3 6= µn−1 6= µn. Unless ω = 2/(µ2 + µn), the quantity ŝ
(k)
ij defined

in (3.4) will always converge to a limit |(ei − ej)
T ξ| in the order O(θk), for some ξ

and 0 < θ < 1.
(i) If 0 < ω < 2/(µ3 + µn), then ξ ∈ span{v2} and θ = (1− ωµ3)/(1− ωµ2);
(ii) If 2/(µ3 + µn) ≤ ω < 2/(µ2 + µn), then ξ ∈ span{v2} and θ = −(1 −

ωµn)/(1− ωµ2);
(iii) If 2/(µ2 + µn) < ω < min{2/(µ2 + µn−1), 2/µn}, then ξ ∈ span{vn} and

θ = −(1− ωµ2)/(1− ωµn);
(iv) If 2/(µ2 +µn−1) ≤ ω < 2/µn, then ξ ∈ span{vn} and θ = (1−ωµn−1)/(1−

ωµn).
A graphical illustration of the dependence of θ on ω is shown in Figure 4.2.

2

µ2+µn

2

µ3+µn

2

µ2+µn−1

0

1

θ

ω

1− ωµ3

1− ωµ2

−

1− ωµn

1− ωµ2 −

1− ωµ2

1− ωµn

1− ωµn−1

1− ωµn

Fig. 4.2. The θ as a function of ω. Note that the value 2/µn can be less than, equal to, or
greater than 2/(µ2 + µn−1).

Proof. In case (i), −(1−ωµn) < (1−ωµ3) < (1−ωµ2); therefore we have φ2 = v2,
σ2 = 1 − ωµ2 > 0, and σ3 = 1 − ωµ3 > 0. In case (ii), (1 − ωµ3) < −(1 − ωµn) <
(1− ωµ2); therefore φ2 = v2, σ2 = 1− ωµ2 > 0, and σ3 = 1− ωµn < 0. In case (iii),
−(1− ωµn−1) < (1− ωµ2) < −(1− ωµn); therefore φ2 = vn, σ2 = 1− ωµn < 0, and
σ3 = 1 − ωµ2 > 0. In case (iv), (1 − ωµ2) < −(1 − ωµn−1) < −(1 − ωµn); therefore
φ2 = vn, σ2 = 1− ωµn < 0, and σ3 = 1− ωµn−1 < 0. The theorem is established by
following case (i) of Theorem 3.3.

Sometimes, µ2 = µ3 or µn−1 = µn, for graphs from real-life problems. Thus,
Theorem 4.1 does not apply. However, we can use the same technique as in the proof

to analyze the convergence of ŝ
(k)
ij , by checking the possible values of σ2 and σ3.

The above theorem shows two possible limits (v2 or vn) for ŝ
(k)
ij depending on

the choice of the value ω, which in turn is related to the eigenvalues µi. In practice,

8 J. CHEN AND I. SAFRO

the eigenvalues are not numerically computed, but we can analytically derive some
upper/lower bounds for the cutting point 2/(µ2+µn) and estimate which of the cases
in Theorem 4.1 applies. A simple bound exploits the fact that µ2 ≤ µn ≤ 2; thus
2/(µ2 + µn) ≥ 1/2, which indicates that for any ω < 1/2, case (i) or (ii) applies.
When the graph is not complete, a slightly better bound is 2/(µ2 + µn) ≥ 2/3, since
in such a case µ2 ≤ 1. For more sharper bounds of µ2 and µn, see, for example, [6].

Since in practice we deal with sparse graphs and set ω = 1/2, the quantity ŝ
(k)
ij always

converges to |(ei − ej)
T ξ| with ξ ∈ span{v2}.

4.2. At early iterations. For real-life graphs, the θ corresponding to ω = 1/2

is so close to 1 that the theoretical convergence of ŝ
(k)
ij is of little practical use—it

takes an enormous number of steps before it gets close enough to the limit. (As
observed, θ often can be as high as 0.9999.) However, an interesting phenomenon is
that in practice x(k) soon becomes “stable”; that is, the two iterates x(k+1) and x(k)

are almost parallel even when k is small.
To make the above statement precise, we want to measure the angle between two

consecutive iterates. Specifically, we are interested in how close

1−

〈
x(k)∥∥x(k)

∥∥ , x(k+1)∥∥x(k+1)
∥∥
〉2

is to zero (this is the squared sine of the angle between x(k) and x(k+1)). Note that
even though x(k) and x(k+1) become close to parallel at early iterations, it does not

necessarily mean that x(k) has converged, nor has the quantity s
(k)
ij or ŝ

(k)
ij .

Theorem 4.2. Given a graph, let (µi, vi) be the eigen-pairs of the matrix pencil
(L,D), labeled in nondecreasing order of the eigenvalues. Denote V = [v1, . . . , vn].
Let x(0) be the initial vector of the JOR process, and let a = V −1x(0) with a1 6= 0. If
the following two conditions are satisfied:

1− ωµn ≥ 0, (4.1a)

fk :=
αrk

2k(1− rk)
2

1 + αrk2k(1 + rk)2
≤ 1

κ
, (4.1b)

where α =
(∑

i 6=1 a
2
i

)
/
(
4a21
)
, rk is the unique root of the equation

2αr2k+2 + 2αr2k+1 + (k + 1)r − k = 0 (4.2)

in the interval [0, 1], and κ is the condition number of D, then

1−

〈
x(k)∥∥x(k)

∥∥ , x(k+1)∥∥x(k+1)
∥∥
〉2

≤ 4κfk
(1 + κfk)2

. (4.3)

Since the proof of the above theorem is long and technical, it is deferred to the
Appendix. We address several important issues in this theorem. First, since we use
ω = 1/2, condition (4.1a) is satisfied. Second, fk is defined as a rational polynomial
of rk, which is the unique root of the polynomial (4.2) in the interval [0, 1]. Therefore,
fk can be easily evaluated and it is typically close to zero. For example, when α = 100
and k = 50, we have rk = 0.9475, which gives fk = 4.6× 10−4. Third, the condition

ALGEBRAIC DISTANCE ON GRAPHS 9

number κ of D is usually not large. For many graphs arising from application areas
such as VLSI design and finite-element meshes, if the graph edges have a uniform
weight equal to 1, then di is the degree of a vertex, and thus for the whole graph the
vertex degrees may not vary too much.2 All this means is that condition (4.1b) is
not a strong requirement. The final bound in (4.3), for k = 30 or 50, typically drops
to the order of 10−4. Note that sin2(π/180) = 3.05 × 10−4, which indicates that the
angle between x(k) and x(k+1) is O(1◦).

Of course, not every graph with an arbitrary initialization will yield x(k) close
to parallel to x(k+1) for a small k. Hence, some assumptions, such as the ones in
Theorem 4.2, are needed. On closing this section, we present a “bad” example. In
this example, for any k we can construct a corresponding initialization such that x(k)

and x(k+1) are far from parallel.
Example 4.3. (An adversary example.) Consider a graph with only two vertices

and an edge between them. The JOR iteration matrix for this graph is

HJOR =

[
1− ω ω
ω 1− ω

]
.

Its two eigenvalues are σ1 = 1 and σ2 = 1 − 2ω. Given an initialization x(0) =
[1 + δ,−1 + δ]T , the iterations generate the iterates x(k) = [σk

2 + δ,−σk
2 + δ]T . Then,

1−

〈
x(k)∥∥x(k)

∥∥ , x(k+1)∥∥x(k+1)
∥∥
〉2

=
(1− σ2)

2

1 + σ2
2 +

(
σ2k+2
2

δ2
+

δ2

σ2k
2

) .

If we choose δ = σk+0.5
2 = (1− 2ω)k+0.5, then the above equation becomes

1−

〈
x(k)∥∥x(k)

∥∥ , x(k+1)∥∥x(k+1)
∥∥
〉2

=
(1− σ2)

2

(1 + σ2)2
=

(
ω

1− ω

)2

.

When ω approaches 1/2, the angle between x(k) and x(k+1) can be arbitrarily close to
90◦. In other words, when the relaxation parameter ω is not small, for any k, we can
choose an appropriate δ such that x(k) and x(k+1) are far from parallel. An example
set of such parameters is

ω = 1/8, k = 20, δ = 0.7520.5 ≈ 0.0027.

In this case, the angle between x(20) and x(21) is 8.21◦.

5. Connections to spectral partitioning and random walks. Analysis in

the preceding section indicates that the scaled algebraic distance ŝ
(k)
ij , at convergence,

resorts to the second eigenvector v2 of the matrix pencil (L,D), assuming we adopt
the practical choice ω = 1/2. Eigenvector approaches constitute a large component
in both theoretical analysis and practical applications of graphs. In particular, the
first or second eigenvectors of some matrices related to the graph are widely used
in spectral techniques. In this section, we draw connections and distinctions to our
approach and two other subjects: spectral partitioning and random walks.

2This may not be true for power-law graphs.

10 J. CHEN AND I. SAFRO

The general goal of partitioning a graph is to minimize the edges that cross the
two partitions, subject to some size constraints. There exist many variants in the
problem formulation (in Section 8 we consider a different one from the one here). A
classical formulation is the graph bisection—to cut the vertex set in two parts π and
V \π such that the sum of the weights of the edges along the cut is minimized; that
is,

min
π

f(π) =
∑

i∈π,j∈V \π

wij ,

while enforcing the sizes of the two partitions to be the same, that is, |π| = |V \π|. It
turns out that if we define a vector q, where qi = 1 if i ∈ π and qi = −1 otherwise,
then the objective function becomes f = 1

4q
TLq, and the constraint is qT1 = 0.

Therefore, an approximate solution is to let q = u2, the second eigenvector of L, and
split the entries of the vector q by their median. A slight variant of the formulation,
the normalized cut [27, 24, 22], uses the eigenvector v2 as an approximate solution.

The corresponding eigenvalue of the second eigenvector of, either L or (L,D),
plays a central role in characterizing the global connections between the vertices in
the graph. Apart from the basic fact that the magnitudes of λ2 and µ2 indicate the
connectivity of the graph (i.e., λ2, µ2 6= 0 if and only if the graph is connected), µ2

also bounds the Cheeger’s constant

hG :=

∑
i∈π,j∈V \π 1

min
{∑

i∈π di,
∑

j∈V \π dj

} ,
which in a rough term indicates how high a cost will be even when the graph is
optimally partitioned, as in the Cheeger’s inequality [6]

h2
G/2 < µ2 ≤ 2hG.

We stress that this is a global property of the graph, and it does not represent the
local variations of the vertex connectivity.

In contrast to using the second eigenvector in spectral partitioning, the random
walk model emphasizes the dominant eigenvector. To be more general, we consider a
lazy random walk, where the walker does not change states with probability 1 − ω;
when he does, the transition probability from state i to state j is wij/di. Thus,
the random walk matrix is (1 − ω)I + ωD−1W , which happens to be the iteration
matrix HJOR. Therefore, the stationary distribution of the walk is the dominant
left eigenvector of HJOR, and this vector signifies the probability of a random walker
landing on each vertex in the final steady state. The convergence rate to the steady
state (by iteratively applying a vector to the left-hand side of the matrix) is given
by O(|σ2|k). Indeed, the idea of iteratively applying a vector to the matrix can be
exploited to measure a connection of the vertices and to perform a local partitioning of
the graph [28, 1]. Our case bears some similarities to the random walk; in particular,
we also repeatedly apply a vector on the matrix HJOR. However, the vector is applied
to the right of the matrix, and it is not the limit of the vector but, rather, the limit
of the entries when the vector undertakes a nontrivial scaling, that actually defines
the connectivity measure. The limit of interest is φ2, the second right eigenvector of
HJOR, and the rate of convergence is O(|σ3/σ2|k). In the next section, we offer an
explanation of the meaning of this iterative process.

ALGEBRAIC DISTANCE ON GRAPHS 11

6. Mutually influenced model and the local effect. A practical attraction
of the algebraic distance defined based on Algorithm 1 is that the iteration is never
run until convergence. A direct saving is in the computational cost. Of course, if
one really needs the eigenvector v2, a more practical method (such as the Lanczos
algorithm [20, 26, 16]) will need to be employed; nevertheless, a few steps of JOR
are still more efficient than Lanczos. Regardless of the computational aspects, we see
that spectral theories based on eigenvectors may not explain why such a “premature”
termination is sufficient to yield a good distance estimate. In this section, we consider
a mutually influenced model that captures the essence of the measure of a local effect.

In a mutually influenced environment, entities are influenced by their neighbors.
Therefore, two entities are close, or similar, if they are placed in two similar neighbor-
hoods. In this case, we say that the entities have a strong connection. Concretely, we
consider the graph as such an environment, and we denote xi a quantity associated
with each entity/vertex i. We need to build a model for all the xi’s such that the
absolute difference |xi − xj | indicates the strength of the connection between i and
j. Since each vertex is influenced by its neighborhood, we quantify that a 1− µ por-
tion of xi is a weighted combination of its neighbors xj . The weight of the influence
is naturally indicated by the edge weight wij , normalized by the sum

∑
j wij = di.

Therefore, the model is

xi = µxi +
∑
j

wij

di
xj 0 ≤ µ ≤ 1. (6.1)

Note that in the model, µ is not a free parameter; rather, it is an innate property of
the graph. It indicates in such an environment how strongly a neighborhood acts on
each entity. When µ is close to zero, the neighborhood plays a major role, whereas
when µ tends to one, a vertex is so stubborn that its neighbors cannot have a strong
impact on it. It turns out that in the matrix form, (6.1) is equivalent to

Lx = µDx. (6.2)

The JOR process as presented in Algorithm 1 computes an exact solution for the
model at convergence, and it yields an approximate solution even when the iteration is
prematurely terminated. According to Theorem 4.1, in the limit, the scaled algebraic

distance ŝ
(k)
ij converges to a value proportional to

∣∣(ei − ej)
T v2
∣∣. In other words, we

have µ = µ2 and x = v2 in (6.2). On the other hand, even when far from convergence,
the normalized iterate x̂(k) = x(k)/‖x(k)‖ approximately satisfies the model with
µ = µ2 and x = x̂(k), namely, Lx̂(k) ≈ µ2Dx̂(k), thanks to the stabilization result
of x(k) in Theorem 4.2.

We remark that for a small k the iterate x(k) can be quite different from v2 and
then for different initializations x(k) will be different. However, they all satisfy (or
approximately satisfy) the mutually influenced model (6.1). This feature gives us the
flexibility to interpret vertex connectivity. The JOR process can be considered one
that smooths the associated value for nearby vertices in each iteration. Therefore, in k
steps, the values xi cannot be propagated more than k hops away, and this smoothing
process affects only small neighborhoods if k is not large. Thus, the resulting iterate
x(k) measures only local influences, and the impact of faraway vertices can come in
only when k becomes sufficiently large. As k increases, the range of local impact also
expands, and thus the concept of “local connectivity” becomes weaker and weaker.
To the extreme, at convergence (which in practice it may require k to be thousands
or millions), the “local” effect becomes “global”, and that validates one of the reasons

12 J. CHEN AND I. SAFRO

why the second eigenvector can be used for partitioning purposes—it encodes a global
measure of the vertex connectivity.

In an experiment in the next section, we show that as long as x(k) stabilizes, it
makes no significant difference if the JOR iteration is run further. In other words,
the measure of vertex connectivity will yield similar qualities when applied to various
graph problems, regardless of whether k is only a small number (yet sufficient to
make x(k) stabilize) or k tends to infinity. As such, a practical stopping criterion of
JOR is not a prescribed maximum number of iterations, but rather, a threshold of
the angle between two successive iterates. This situation comes back to the question
why we would run a few steps of JOR rather than computing the eigenvector v2—the
computational cost rules.

7. Numerical examples. In this section we show some numerical examples to
assist the interpretation of algebraic distances as a connectivity measure, especially
how they represent the local connectivity and neighborhoods. Sometimes, the use of
algebraic distances is closely tied to specific applications. However, the interpretation
of the measure should not be application dependent. The practical uses of algebraic
distances and in different application scenarios are the subject of Section 8.

7.1. Noise edges of a graph. To understand how the algebraic distance mea-
sures a local connectivity, one may consider perturbing a well-structured graph with
random long-ranged edges. The design that these perturbed/noise edges are long-
ranged (for example, having a long shortest path) implies that the two end points,
although directly connected in the perturbed graph, do not pose a strong connection.
For this, we used two unweighted graphs generated from finite element instances (air-
foil and 3elt [9]). For every edge ij we define the quantity lij , which is the length of a
shortest path between i and j if ij is deleted. Since the graphs are triangular meshes,
lij = 2 for each edge ij. We extended the graph by creating 10% of additional random
unweighted edges with 3 < lij < 11. Figure 7.1 plots both the original and the noise
edges, sorted according to their algebraic distances. It is clear that the noise edges in
general have a connection strength much weaker than those of the original edges, and
the algebraic distance can serve as a separator between them. The strong correlation
between the algebraic distance and the quantity lij indicates that the former takes
into consideration short paths between a pair of vertices when measuring their con-
nectivity. As the number k of iterations increases, even the long-ranged edges with
short algebraic distances will eventually pose a long distance.

7.2. A path graph with two regions. Consider a path graph with n vertices.
For simplicity let us assume that n is even and call the vertex n/2 the “mid point”.
Each edge to the left of the mid point has a weight 1, whereas each one to the right
has a weight ε that is smaller than 1. This graph can come from, for example, a
discretization of a one dimensional elliptic PDE where the spacing between the grid
points in the left region are smaller than that in the right region, but in the same
region the spacing is uniform. In a multigrid solver for solving a linear system arising
from this grid, it is natural to require a coarsening strategy to recognize that all
edge strengths are about equal in each region with the exception of the transition
occurring around the mid point. In Table 7.1 we show the algebraic distance for the
edge e immediately to the left of the mid point, and that for the edge f immediately
to the right of the mid point (two middle columns). We also show the average of
(the inverse of) the algebraic distances in each of the two regions (two right columns).
One sees that across all iterations k < ∞, the connection strength for e is always

ALGEBRAIC DISTANCE ON GRAPHS 13

0 3000 6000 9000 12000
edges ordered from the longest algebraic distance to the shortest

2

4

6

8

10

12

sh
or

te
st

 p
at

h
le

ng
th

 a
ft

er
 e

dg
e

de
le

tio
n

(a) airfoil

0 3000 6000 9000 12000
edges ordered from the longest algebraic distance to the shortest

2

4

6

8

10

12

sh
or

te
st

 p
at

h
le

ng
th

 a
ft

er
 e

dg
e

de
le

tio
n

(b) 3elt

Fig. 7.1. Experiments with finite element meshes. Experimental setup: p = 2, k = 15. Each
tick on the x-axis corresponds to one edge, and the edges are ordered from the longest algebraic
distance to the shortest. The respective y-coordinate of every point (i.e., edge ij) is lij .

Table 7.1
Experiments with the path graph. Experimental setup: n = 2000, R = 10, ε = 0.1. Results of

experiments with smaller ε do not differ significantly.

Iterations k 1/%e 1/%f avg(1/%ij), left avg(1/%ij), right
2 · 101 220 31 91 89
2 · 102 829 105 240 249
2 · 103 3751 487 692 704
2 · 104 12012 1527 2398 2249
2 · 105 15135 1861 8225 8143

∞ 66678 6668 393024 39302

much stronger than that for f , and the average connection strength for the edges in
the left region is more or less the same to that for the right region. The case k =∞
is equivalent to computing the algebraic distances from the exact eigenvector v2 of
(L,D). In such a case, there is also a clear distinction of the connection strengths
between e and f ; however, the averages of the two regions are no longer close. This
comparison has two implications. First, running JOR iterations either in a few steps
or until convergence will yield a sufficiently good measure to distinguish the edges e
and f . Second, it is arguable whether making comparisons about the connectivity
among regions is sensible. On the one hand, since edge weights in the right region are
smaller than in the left, one would expect that the connectivities in the two regions are
different. On the other hand, a coarsening strategy does not need to recognize the two
regions; whether they have similar connectivity or not does not affect coarsening or
aggregation. The real need is to be able to distinguish between e and f for mid point
coarsening. In this regard, we consider that both the iterate x(k) and the eigenvector
v2 are sufficient to measure the connectivity.

7.3. Comparison with converged eigenvectors. The preceding example im-
plies that the exact eigenvector v2 has a similar impact to the JOR iterate in measuring
vertex connectivity. Here we consider a comparison with the Fiedler vector u2 in a
specific application: graph minimum linear arrangement (MinLA) problem [19]. For

14 J. CHEN AND I. SAFRO

a multilevel solver of MinLA, the strength of connection in a graph coarsening step is
computed based on u2 [19]. We, on the other, computed the strength of connection
based on a small number of JOR iterations (k ≤ 100). Then, the numerical results of
MinLA were improved in an average by 4.8%. Note that similar improvements caused
by early interrupted iterations have also been seen in [8] for the minimum bandwidth
problem and spectral sequencing. These results suggest that practical uses of the
algebraic distances do no need to rely on the exact eigenvector. More advanced uses
of the algebraic distance in multilevel schemes for linear arrangement problems are
described in [25], and in Section 8 we discuss some other uses in more applications.

7.4. Impact of number of iterations. The example in Section 7.2 shows that
there is no significant difference between a small k and a large one. Here we further
study the impact of k under the context of the classical spectral partitioning method
(SPEC) for graphs, where the 2-partitioning is approximated by using the Fiedler
vector (see Section 5). Assuming SPEC a block-box solver, we redefined the edge
weights as the inverse of the algebraic distances and ran the solver using this redefined
graph. Results are as follows.

Table 7.2 shows the improvements under edge weight substitution. The row
“average improvement” is the ratio of the cut cost of SPEC to that of SPEC plus
algebraic distance preprocessing. It suggests that the improvement obtained by using
20 iterations dominates longer runs; however, in many cases the observed difference
is insignificant. Thus, a large k is useless in most of the cases from the perspective of
expensive computational costs. In the next couple of rows, we show the number
of graphs with an average cut-cost ratio larger than 1.03 and smaller than 0.97,
respectively. We use a cut-through 1.00 ± 0.03 instead of the strict cutting point
1.00 to differentiate between “real” improvements and worsening, by considering the
impact of random effects in the initialization. The row “# graphs where S5 � Si”
demonstrates the number of graphs whereby using 10, 000 iterations yields cuts better
than using fewer iterations. The numbers show that running longer iterations does
not necessarily yield better results. Indeed, this is true for any k as shown in the
last row. Here we also take into account only those improvements by at least 3% to
minimize the influence of the initial randomization. The improvement ratios for each
graph are plotted in Figure 7.2.

Instead of trying to find a suitable k that led to the best result, we terminated
the JOR iterations when the angle between two successive iterates x(k) fell below a
threshold. In Figure 7.2(d), we show only those graphs that yielded an improvement
ratio less than 1.9, as the behavior of other graphs is similar. Clearly, when the angle
becomes smaller, the improvements become greater. Thus, in practice, it is advised to
specify a small angle threshold to detect the stabilization of the iterate, rather than
using a fixed k to terminate the JOR iteration.

8. Applications. In addition to simple substitutes as edge weights, there are
more sophisticated uses of the algebraic distances. In this section we show four ap-
plications: maximum weighted matching (MWM), maximum independent set (MIS),
and partitioning of graphs (GP) and hypergraphs (HGP). The experimental graphs
we used had different sizes (103 < |E| < 107) and structures and were selected from
[9, 21] based on their non-triviality for several state-of-the-art solvers for optimization
problems. The algebraic distances for MWM, MIS, and GP problems were calculated
by using the standard JOR relaxation with ω = 1/2. For the HGP problem, we
extended the definition of algebraic distances for hypergraphs and demonstrate the
results based on both GS and JOR relaxations.

ALGEBRAIC DISTANCE ON GRAPHS 15

0 10 20 30 40
experimental graphs ordered in a ratio-increasing order

0.6

0.8

1

ra
tio

s
be

tw
ee

n
SP

E
C

 a
nd

 S
PE

C
+

A
D

(a) Graphs that were not improved

40 60 80 100 120 140
experimental graphs ordered in a ratio-increasing order

1

1.2

1.4

1.6

1.8

2

ra
tio

s
be

tw
ee

n
SP

E
C

 a
nd

 S
PE

C
+

A
D

(b) Graphs with improvement ratio less than 2

140 142 144 146 148 150
experimental graphs ordered in a ratio-increasing order

1

2

3

4

5

6

7

8

9

10

11

12

ra
tio

s
be

tw
ee

n
SP

E
C

 a
nd

 S
PE

C
+

A
D

(c) Graphs with improvement ratio higher than 2

0 20 40 60 80
experimental graphs ordered in a ratio-increasing order

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

ra
tio

s
be

tw
ee

n
SP

E
C

 a
nd

 s
ta

bi
liz

ed
 S

PE
C

+
A

D

convergence < 3 degrees
convergence < 0.5 degrees

(d) Improvement ratios when JOR stabilized

Fig. 7.2. Impact of number of iterations. The meaning of each curve for (a) to (c) is shown
in Table 7.2. Each point corresponds to the ratio of the cut cost between the baseline algorithm and
our algorithm with algebraic distance preprocessing.

Table 7.2
Comparisons on different numbers of iterations. Total number of graphs: 150.

Cases S1 (–) S2 (- - -) S3 (©) S4 (4) S5 (∗)
k 5 20 100 1000 10000
Average improvement 1.17 1.24 1.23 1.20 1.15
improvements ≥ 1.03 63 80 87 89 91
improvements ≤ 0.97 21 29 22 20 29
graphs where S5 � Si 59 47 33 23 -
graphs where Si � others 13 7 8 4 9

In all applications, existing fast and practically used baseline algorithms were
modified by performing an algebraic distance processing. The comparison of numer-
ical results is presented in Figure 8.1. Each point in the curves corresponds to a
ratio of the numerical results between the modified algorithm and the baseline algo-
rithm. Each ratio is an average of 50 executions of the same algorithm (fixed k) with
different random seeds and random permutations of the input (hyper)graphs. This

16 J. CHEN AND I. SAFRO

0 20 40 60 80 100
graphs sorted in a ratio-increasing order

1

1.1

1.2

1.3

1.4

1.5

ra
tio

s
be

tw
ee

n
G

M
W

M
+

A
D

 a
nd

 G
M

W
M

(a) weighted matching

0 50 100 150
graphs sorted in a ratio-incrasing order

0.95

1

1.05

1.1

1.15

1.2

1.25

ra
tio

s
be

tw
ee

n
G

M
IS

+
A

D
 a

nd
 G

M
IS

(b) independent set

0 20 40 60 80 100
graphs sorted in a ratio-decreasing order

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

ra
tio

s
be

tw
ee

n
H

M
et

is
2+

A
D

 a
nd

 H
M

et
is

2

(c) graph partitioning

0 50 100 150 200
hypergraphs sorted in a ratio-decreasing order

0

0.2

0.4

0.6

0.8

1

ra
tio

s
be

tw
ee

n
H

M
et

is
2+

A
D

 a
nd

 H
M

et
is

2

GS relaxation
JOR relaxation

(d) hypergraph partitioning

Fig. 8.1. Comparisons of our algorithm with algebraic distance preprocessing and the corre-
sponding baseline algorithm for (a) maximum weighted matching, (b) maximum independence set,
(c) graph partitioning, and (d) hypergraph partitioning. Each point corresponds to the ratio of the
resulting objective value between the two compared algorithms. The objectives are (a) weight of the
matching, (b) size of the independence set, (c) and (d) cut costs.

demonstrates the stability of experiments for different representations of the input.

8.1. Maximum weighted matching (MWM). A matching M of a graph is
a subset of the graph edges such that no vertex is incident to more than one edge in
M . A matching M is said to be maximum if |M | ≥ |M ′| for any other matching M ′.
Similarly, a matching M is said to be maximum weighted if w(M) ≥ w(M ′) for any
other matching M ′, where w(M) =

∑
ij∈M wij .

Although the MWM problem admits a polynomial time solution, often two well-
known 2-approximation methods, which have a linear time complexity (without sort-
ing), are used in practice. One is a textbook greedy algorithm, which successively
adds a next legal heaviest edge to the existing matching (GMWM); the other is an
improved version of the greedy algorithm, based on a path-growing principle. Both
algorithms are presented in [11].

In both algorithms, there exists a greedy step in which the next heaviest edge (one
that has the largest edge weight) has to be chosen. We modify this criterion according
to the following heuristic observation: a better matching can be found in a dense graph

ALGEBRAIC DISTANCE ON GRAPHS 17

with less effort than in a sparse graph. Thus, we give preference to matching two
nodes that are not well connected with other nodes from their neighborhood, to give
a chance to the less connected nodes to participate in the matching. Specifically, we

first define for each vertex a quantity ai =
∑

ij∈E 1/%
(k)
ij that captures the connectivity

between this vertex and its neighborhood. Then we define another quantity s′ij as the
weighted average between ai and aj . In each greedy step, we choose the edge that
has the smallest s′ij , rather than one with the largest weight. The modified algorithm
is summarized in Algorithm 2 (GMWM+AD).

Algorithm 2 Greedy MWM with algebraic distance preprocessing

1: For all edges ij ∈ E calculate %
(k)
ij for some k (cf. (2.2)). . Preprocessing

2: For all nodes i ∈ V compute ai =
∑

ij∈E 1/%
(k)
ij .

3: For all edges ij ∈ E compute s′ij = ai/δi + aj/δj , where δi is the degree of i.
4: M ← ∅. . Start of greedy algorithm
5: while E 6= ∅ do
6: e← edge with smallest s′ij .
7: Add e to M .
8: Remove e and all its incident edges from E.
9: end while

10: return M

The experimental results are presented in Figure 8.1(a), which shows for each
graph the ratio of the sizes of the matchings between the modified algorithm and
the textbook greedy algorithm. All ratios were higher than 1, which indicates that
our algorithm yielded a better matching than did the baseline algorithm. Almost
identical results were obtained by improving a greedy path growing algorithm from
[11]. These results were obtained with k = 20, R = 10, and p = 1. However, results
of almost the same quality have been obtained with many different combinations of
R ≥ 5, 10 ≤ k ≤ 100, and p = 2,∞.

8.2. Maximum independent set (MIS). An independent set I is a subset of
V in which no two vertices are incident. An independent set I is said to be maximum
if |I| ≥ |I ′| for any other independent set I ′. Finding the maximum independent set
in a graph is an NP-complete problem [13], and fast and qualitative approximations
are of great interest for many applications.

Although many approximation algorithms for MIS have been proposed, a popular
one in practice is still a textbook greedy algorithm [7]. In this algorithm, the vertices
are examined in increasing order of their degrees, and the greedy step consists of
choosing the next available vertex that does not contradict the current independent
set (GMIS). We exploit a similar heuristic to the one in maximum weighted matching.
That is, for each vertex i, we define a quantity bi that indicates the connection strength
between the vertex itself and its neighborhood. To be precise, a small bi means a
weak connection, and we sort the vertices in the increasing order of bi. Hence, we
give preference to including a vertex that is weakly connected to its neighbors. The
first four lines of Algorithm 3 show the computation of this quantity.

The experimental results are presented in Figure 8.1(b), which shows for each
graph the ratio of the sizes of the independent sets between our algorithm (sorting
the vertices according to connection strengths) and the textbook greedy algorithm
(sorting the vertices according to vertex degrees). A ratio higher than 1 means that

18 J. CHEN AND I. SAFRO

Algorithm 3 Greedy MIS with algebraic distance preprocessing

1: For all edges ij ∈ E calculate s
(k)
ij for some k. . Preprocessing

2: For all nodes i ∈ V compute ai =
∑

ij∈E 1/s
(k)
ij .

3: For all edges ij ∈ E compute s′ij = (1/s
(k)
ij)/(ai + aj).

4: For all nodes i ∈ V compute bi =
∑

ij∈E s′ij .
5: Relabel the vertices i in the increasing order of bi. . Start of greedy algorithm
6: I ← ∅.
7: for i = 1, 2, . . . , n do
8: If {i} ∪ I is an independent set, add i to I.
9: end for

10: return I

our algorithm computes a larger independent set. As can be seen from the figure, for
almost all the graphs our algorithm yielded a better result.

8.3. Graph/Hypergraph partitioning (GP/HGP). Both GP and HPG are
well known NP-hard problems [14]. Let H = (V, E) be a hypergraph, where V is the
set of vertices and E is the set of hyperedges. Each h ∈ E is a subset of V. The goal
of HGP is to find a partitioning of V into a family of τ disjoint nonempty subsets
(πp)1≤p≤τ , restricted to the following:

minimize
∑

h∈E s.t. ∃i,j∈h and

i∈πp⇒j 6∈πp

wh

such that ∀p, |πp| ≤ (1 + α) · |V |/τ ,

(8.1)

where α is a given imbalance factor. The GP problem can be considered a special
case of HGP with |h| = 2 for all h ∈ E . For both GP and HGP we deal with τ = 2
and as a baseline algorithm a multilevel solver HMetis2 [18] is employed. We define
its extension “HMetis2 with algebraic distance preprocessing” in Algorithm 4.

In the case of GP we substitute the edge weights with the inverses of algebraic

distance s
(k)
ij and use HMetis2 to produce the 2-partitioning. In the case of HGP

we consider a bipartite graph model for hypergraphs. We create a bipartite graph
G = (V,E) with the vertex set V = V

⋃
E and the edge set E with ih ∈ E if i ∈ V

appears in hyperedge h ∈ E . After running k iterations with R random initial vectors

on the bipartite model of H, we define %
(k)
S , the extended p-normed algebraic distance

for a subset of nodes S in H, as(
R∑

r=1

max
i,j∈S

∣∣∣x(k,r)
i − x

(k,r)
j

∣∣∣p)1/p

. (8.2)

We can use any reasonable relaxation process to compute the iterates x(k,r). Here we
consider GS and JOR with ω = 1/2.

In Figures 8.1(c) and (d) we show for each (hyper)graph the ratio of the cut costs
(the objective value in (8.1)) between our extension and the original HMetis2. In
the case of GP, our extension yielded a smaller cut for most of the graphs, and in
the best case the cut cost was reduced by more than 30%. For HGP, similar results
were obtained, and in the best case the cut cost was reduced by around 90%. We

ALGEBRAIC DISTANCE ON GRAPHS 19

Algorithm 4 HMetis2 with algebraic distance preprocessing, HMetis2+AD

1: (GP) For all edges ij ∈ E calculate s
(k)
ij for some k (typically 50).

(HGP) For all hyperedges h ∈ E calculate %
(k)
h for some k.

2: For all (hyper)edges ij ∈ E modify the weight wij = 1/s
(k)
ij (wh = 1/%

(k)
h).

3: Produce the (hyper)graph cut using HMetis2 with modified (hyper)edge weights.
4: Return the cut weight computed from the original (hyper)edge weights.

also see that a GS relaxation process in general yielded slightly better results than
did the standard JOR process. Note that in both cases a better way to apply the
algebraic distances is to use them at all levels, as was demonstrated in [25], rather than
substituting the edge weights only at the top level. However, even in such a simplified
extension, the obtained improvement is systematic and significant. To the best of our
knowledge, this is the first evidence that multilevel hypergraph partitioning schemes
admit such a great improvement.

The numerical results for comparison have been achieved by using a greedy first-
choice coarsening scheme and moderate refinement at uncoarsening for α = 0.01.
Other coarsening schemes of HMetis2 do not change the picture significantly. The
strategy that slightly decreased the gap between baseline and modified algorithms
was a “slow” refinement. In many cases, however, more aggressive refinement is
expected to reduce this gap for any type of meaningful coarsening.

9. Conclusion. We have presented an iterative process for smoothing initially
random values on graph vertices through direct neighbors, and we have defined a
notion of algebraic distance as the difference between two smoothed values. The
process is equivalent to a JOR relaxation run on the graph Laplacian matrix L.
An analysis shows that the scaled algebraic distance between two vertices i and j
converges to a value proportional to the difference between the ith and the jth entry
of the second smallest eigenvector of the pencil (L,D). Also, it reveals that the
convergence is often extremely slow; however, the iterate soon stabilizes: the change
between consecutive iterates is very small after only a few iterations. This stabilization
effect fits a mutually influenced model, where the range of the impact of a vertex is
restricted to its local neighborhood. Thus, the algebraic distance represents a local,
instead of global, connectivity between vertices.

We have shown several applications to demonstrate how algebraic distances can
be used to define quantities that replace the graph edge weights in algorithms for
combinatorial optimization problems. The experiments show that with an algebraic
distance preprocessing, the quality of several baseline algorithms can be significantly
improved. Furthermore, the computation of the algebraic distances occupies only a
small fraction of the overall solution time. Thus, its easy parallelization makes it
particularly attractive for dealing with large-scale instances.

10. Acknowledgments. We thank two anonymous referees whose suggestions
helped improve this article significantly.

Appendix. Proof of Theorem 4.2. The proof requires two lemmas.

Lemma A.1. Define a series of column vectors (indexed by k)

ζ(k) := [a1σ
k
1 , a2σ

k
2 , . . . , anσ

k
n]

T ∈ Rn,

20 J. CHEN AND I. SAFRO

where σ1 = 1, 0 ≤ σi ≤ 1 for i = 2, . . . , n, and a1 6= 0. If

fk :=
αrk

2k(1− rk)
2

1 + αrk2k(1 + rk)2
≤ 1,

where α =
(∑

i 6=1 a
2
i

)
/
(
4a21
)
and rk is the unique root of (4.2) on [0, 1], then

1−

〈
ζ(k)∥∥ζ(k)∥∥ , ζ(k+1)∥∥ζ(k+1)

∥∥
〉2

≤ 4fk

(1 + fk)
2 . (A.1)

Proof. Let bi = (1 + σi)/2 and ci = (1− σi)/2 for all i. Then,

1−

〈
ζ(k)∥∥ζ(k)∥∥ , ζ(k+1)∥∥ζ(k+1)

∥∥
〉2

= 1−
(∑

a2iσ
2k+1
i

)2(∑
a2iσ

2k
i

) (∑
a2iσ

2k+2
i

)
= 1−

(∑
a2iσ

2k
i (b2i − c2i)

)2(∑
a2iσ

2k
i (bi + ci)2

) (∑
a2iσ

2k
i (bi − ci)2

)
≤

4
(∑

a2iσ
2k
i b2i

) (∑
a2iσ

2k
i c2i

)(∑
a2iσ

2k
i (b2i + c2i)

)2 . (∗)

Denote t =
(∑

a2iσ
2k
i c2i

)
/
(∑

a2iσ
2k
i b2i

)
, then,

(∗) = 4

(1 + t)(1 + 1/t)
.

We would like to find an upper bound for t.
Note that σ1 = 1; it is not hard to see that t achieves maximum only when

σ2 = σ3 = · · · = σn. Let them all be equal to r. Then t becomes(∑
i 6=1 a

2
i

)
r2k(1− r)2

4a21 +
(∑

i 6=1 a
2
i

)
r2k(1 + r)2

=: fk(r).

The stationary points of fk(r) satisfy the first-order condition (4.2). Note that the
polynomial on the left-hand side of (4.2) is a monotonically increasing function of
r for any k ≥ 1. Therefore, it’s not hard to see that (4.2) has a unique root in the
interval [0, 1]. Compared with the boundaries, we conclude that this root is the global
maximum of fk(r). Thus, t ≤ fk ≤ 1, and therefore

(∗) ≤ 4

(1 + fk) (1 + 1/fk)
=

4fk

(1 + fk)
2 .

Lemma A.2. Let the squared sine of the angle between two unit vectors x, y ∈ Rn

be ε, i.e., 1− 〈x, y〉2 = ε, and let a diagonal matrix D ∈ Rn×n have condition number
κ. If ε and κ satisfy

κ2

(
1−
√
1− ε

1 +
√
1− ε

)
≤ 1, (A.2)

ALGEBRAIC DISTANCE ON GRAPHS 21

then

1−
〈

Dx

‖Dx‖
,

Dy

‖Dy‖

〉2

≤ 4[
1 + κ2

(
1−
√
1− ε

1 +
√
1− ε

)][
1 +

1

κ2

(
1 +
√
1− ε

1−
√
1− ε

)] . (A.3)

Proof. Let z = (x+ y)/2 and δ = (x− y)/2. Then,

1−
〈

Dx

‖Dx‖
,

Dy

‖Dy‖

〉2

= 1− (yTD2x)2

(yTD2y)(xTD2x)

= 1− [(z − δ)TD2(z + δ)]2

[(z − δ)TD2(z − δ)][(z + δ)TD2(z + δ)]

≤ 4(zTD2z)(δTD2δ)

(zTD2z + δTD2δ)2
. (∗∗)

Denote t = (δTD2δ)/(zTD2z). If xT y ≥ 0, then we have

t =
δTD2δ

zTD2z
≤ d2max ‖δ‖

2

d2min ‖z‖
2 = κ2

(
1− xT y

1 + xT y

)
= κ2

(
1−
√
1− ε

1 +
√
1− ε

)
≤ 1,

otherwise

t =
δTD2δ

zTD2z
≥ d2min ‖δ‖

2

d2max ‖z‖
2 =

1

κ2

(
1− xT y

1 + xT y

)
=

1

κ2

(
1 +
√
1− ε

1−
√
1− ε

)
≥ 1,

where dmax and dmin are the maximum and the minimum of the absolute values of
the diagonal elements of D, respectively. For both cases, we have

(∗∗) = 4

(1 + t)(1 + 1/t)
≤ 4[

1 + κ2

(
1−
√
1− ε

1 +
√
1− ε

)][
1 +

1

κ2

(
1 +
√
1− ε

1−
√
1− ε

)] .
Proof of Theorem 4.2. From condition (4.1a), we know that all the eigenvalues of

HJOR, 1− ωµi are nonnegative. Therefore, we have σi = 1− ωµi and φi = vi for all
i. Thus, x(k) =

∑
i aiσ

k
i φi =

∑
i aiσ

k
i vi. In the matrix form, we denote

x(k) = V ζ(k),

where ζ(k) = [a1σ
k
1 , a2σ

k
2 , . . . , anσ

k
n]

T . Then by Lemma A.1,

1−

〈
ζ(k)∥∥ζ(k)∥∥ , ζ(k+1)∥∥ζ(k+1)

∥∥
〉2

≤ 4fk

(1 + fk)
2 . (A.4)

To simplify notations, let x′ = ζ(k)/
∥∥ζ(k)∥∥ and y′ = ζ(k+1)/

∥∥ζ(k+1)
∥∥. Then,

1−

〈
x(k)∥∥x(k)

∥∥ , x(k+1)∥∥x(k+1)
∥∥
〉2

= 1− 〈V x′, V y′〉2

‖V x′‖2‖V y′‖2
= 1−

(
y′TV TV x′)2

(y′TV TV y′) (x′TV TV x′)
.

Let V TV have the eigen-decomposition UTΣU , where U is orthogonal and Σ is posi-
tive definite diagonal, then

1−

〈
x(k)∥∥x(k)

∥∥ , x(k+1)∥∥x(k+1)
∥∥
〉2

= 1−
(
y′TUTΣUx′)2

(y′TUTΣUy′) (x′TUTΣUx′)
= 1−

〈
Σ1/2Ux′,Σ1/2Uy′

〉2∥∥Σ1/2Ux′
∥∥2 ∥∥Σ1/2Uy′

∥∥2 .

22 J. CHEN AND I. SAFRO

Let x = Ux′ and y = Uy′. Then

1−

〈
x(k)∥∥x(k)

∥∥ , x(k+1)∥∥x(k+1)
∥∥
〉2

= 1−

〈
Σ1/2x∥∥Σ1/2x

∥∥ , Σ1/2y∥∥Σ1/2y
∥∥
〉2

.

Let the right-hand side of the inequality (A.4) be εk. We have four facts. First,
‖x‖ = ‖y‖ = 1. Second,

1− 〈x, y〉2 = 1− 〈Ux′, Uy′〉2 = 1− 〈x′, y′〉2 ≤ εk.

Third, by noting that V is D-orthogonal, that is, V TDV = I, we have

κ2(Σ1/2) = κ(Σ) = κ(V TV) = κ(V V T) = κ(D−1) = κ.

Fourth, since εk and fk satisfy the relation

1−
√
1− εk

1 +
√
1− εk

= fk,

we have

κ2(Σ1/2)

(
1−
√
1− εk

1 +
√
1− εk

)
= κfk ≤ 1.

Therefore, by Lemma A.2, we conclude that

1−

〈
Σ1/2x∥∥Σ1/2x

∥∥ , Σ1/2y∥∥Σ1/2y
∥∥
〉2

≤ 4

(1 + κfk)(1 + 1/(κfk))
.

REFERENCES

[1] R. Andersen, F. Chung, and K. Lang, Local graph partitioning using pagerank vectors, in
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
2006.

[2] A. Brandt, General highly accurate algebraic coarsening, Electronic Trans. Num. Anal., 10
(2000), pp. 1–20.

[3] A. Brandt, Multiscale scientific computation: Review 2001, in Multiscale and Multiresolution
Methods, vol. 20, Springer Verlag, 2002, pp. 3–95.

[4] A. Brandt and D. Ron, Multigrid solvers and multilevel optimization strategies, in Multilevel
Optimization and VLSICAD, J. Cong and J. R. Shinnerl, eds., Kluwer, 2003.

[5] P. Chebotarev and E. Shamis, On proximity measures for graph vertices, Automation and
Remote Control, 59 (1998), pp. 1443–1459.

[6] F. R. K. Chung, Spectral Graph Theory, American Mathematical Society, 1997.
[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

McGraw-Hill, 2nd ed., 2001.
[8] G. M. D. Corso and F. Romani, Heuristic spectral techniques for the reduction of bandwidth

and work-bound of sparse matrices, Numerical Algorithms, 28 (2001), pp. 117–136.
[9] T. Davis, University of Florida Sparse Matrix Collection, NA Digest, 97 (1997).

[10] A. Dax, The convergence of linear stationary iterative processes for solving singular unstruc-
tured systems of linear equations, SIAM Rev., 32 (1990), pp. 611–635.

[11] D. E. Drake and S. Hougardy, A simple approximation algorithm for the weighted matching
problem, Inf. Process. Lett., 85 (2003), pp. 211–213.

[12] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, Random-walk computation of simi-
larities between nodes of a graph with application to collaborative recommendation, IEEE
Transactions on Knowledge and Data Engineering, 19 (2007), pp. 355–369.

ALGEBRAIC DISTANCE ON GRAPHS 23

[13] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the Theory of
NP-Completeness, Freemann and Company, 1979.

[14] M. R. Garey, D. S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph
problems, Theoretical Computer Science, 1 (1976), pp. 237–267.

[15] A. Ghosh, S. Boyd, and A. Saberi, Minimizing effective resistance of a graph, SIAM Rev.,
50 (2008), pp. 37–66.

[16] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press,
1996.

[17] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1990.
[18] G. Karypis and V. Kumar, Metis A Software Package for Partitioning Unstructured Graphs,

Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, Univer-
sity of Minnesota, Department of Computer Science and Engineering, Army HPC Research
Center, Minneapolis, MN, Sept. 1998.

[19] Y. Koren and D. Harel, Multi-scale algorithm for the linear arrangement problem, Proceed-
ings of 28th Inter. Workshop on Graph-Theoretic Concepts, (2002).

[20] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators, Research of the National Bureau of Standards, 45 (1950), pp. 255–
282.

[21] J. Leskovec, Stanford Network Analysis Package (SNAP).
http://snap.stanford.edu/index.html.

[22] U. Luxburg, A tutorial on spectral clustering, Statistics and Computing, 17 (2007), pp. 395–
416.

[23] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, Diffusion maps, spectral clus-
tering and eigenfunctions of Fokker-Planck operators, in Advances in Neural Information
Processing Systems, vol. 18, MIT Press, 2005, pp. 955–962.

[24] A. Y. Ng, M. Jordan, and Y. Weiss, On spectral clustering: Analysis and an algorithm, in
Advances in Neural Information Processing Systems 14, 2002.

[25] D. Ron, I. Safro, and A. Brandt, Relaxation-based coarsening and multiscale graph organi-
zation, Multiscale Modeling & Simulation, 9 (2011), pp. 407–423.

[26] Y. Saad, Numerical Methods for Large Eigenvalue Problems, Halstead Press, 1992.
[27] J. Shi and J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal.

Machine Intell., 22 (2000), pp. 888–905.
[28] D. A. Spielman and S.-H. Teng, A local clustering algorithm for massive graphs and its

application to nearly-linear time graph partitioning, arXiv, cs.DS/0809.3232 (2008).
[29] U. Trottenberg and A. Schuller, Multigrid, Academic Press, Inc., Orlando, FL, USA, 2001.
[30] S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications, Structural

Analysis in the Social Sciences, Cambridge University Press, 1994.

The submitted manuscript has been created in
part by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Ar-
gonne, a U.S. Department of Energy Office of Sci-
ence laboratory, is operated under Contract No.
DE-AC02-06CH11357. The U.S. Government re-
tains for itself, and others acting on its behalf,
a paid-up nonexclusive, irrevocable worldwide li-
cense in said article to reproduce, prepare deriva-
tive works, distribute copies to the public, and
perform publicly and display publicly, by or on
behalf of the Government.

