
Relaxation-Based Coarsening for Multilevel Hypergraph

Partitioning

Ruslan Shaydulin
School of Computing
Clemson University
rshaydu@clemson.edu

Jie Chen
IBM Thomas J. Watson

Research Center
chenjie@us.ibm.com

Ilya Safro
School of Computing
Clemson University
isafro@clemson.edu

January 11, 2019

Abstract

Multilevel partitioning methods that are inspired by principles of multiscaling are the most
powerful practical hypergraph partitioning solvers. Hypergraph partitioning has many applica-
tions in disciplines ranging from scientific computing to data science. In this paper we introduce
the concept of algebraic distance on hypergraphs and demonstrate its use as an algorithmic
component in the coarsening stage of multilevel hypergraph partitioning solvers. The alge-
braic distance is a vertex distance measure that extends hyperedge weights for capturing the
local connectivity of vertices which is critical for hypergraph coarsening schemes. The practical
effectiveness of the proposed measure and corresponding coarsening scheme is demonstrated
through extensive computational experiments on a diverse set of problems. Finally, we propose
a benchmark of hypergraph partitioning problems to compare the quality of other solvers.

1 Introduction

Hypergraphs are generalizations of graphs. Both graphs and hypergraphs are ordered pairs of sets
(V,E), where V is the vertex set and E is the set of (hyper)edges such that each e ∈ E is a subset of
vertices. The difference is that in a graph, the cardinality of each edge is exactly two, whereas in a
hypergraph, a hyperedge can contain an arbitrary number of vertices. The hypergraph partitioning
(HGP) problem is therefore a generalization of the graph partitioning (GP) problem. In GP the
goal is to split the set of vertices into multiple sets (usually called partitions) of similar sizes, such
that a cut metric is minimized. Here, a cut defines a set of (hyper)edges spanning more than one
partition. In the HGP generalization, the hyperedges can possibly span more than two partitions.
There exist several versions of minimization objectives, constraints, and cut metrics in both GP
and HGP [5, 10]. Hypergraph partitioning has many applications, including VLSI design [33, 2],
parallel matrix multiplication [12], classification [55], cluster ensembling [51], and combinatorial
scientific computing [41], among others [5, 43].

1.1 Multilevel partitioning

One of the most popular and fastest approaches for solving HGP problems is multilevel: first, the
hypergraph is iteratively coarsened by merging its vertices; then, the solution (i.e., the partitioning)

1



is computed at the coarsest level; and finally, the coarsest solution is gradually uncoarsened back to
the finest level (see fig. 1). Coarsening consists of two steps, namely, aggregation and contraction.
During the aggregation step, the decision is made on which vertices to merge. At the contraction
step, these vertices are merged and hyperedges are dropped. The reverse process, uncoarsening, also
consists of two steps, namely, interpolation and refinement. In the interpolation step, the solution
for coarse vertices (i.e., the assignment of vertices into corresponding partitions) is interpolated into
the next-fine level. The refinement step improves the interpolated solution, typically, by iteratively
solving a sequence of local optimization problems that refine the objective or constraints of HGP. In
many state-of-the-art solvers, such refinement is implemented using vertex-moving heuristics that
accommodate a vertex in a better partition.

The multilevel method captures the global structure of a hypergraph in the solution by combin-
ing local information at different scales of coarseness. The aims of coarsening are (a) preserving the
structural properties of the original hypergraph throughout the entire multilevel hierarchy until the
smallest hypergraph is obtained, and (b) allowing an effective interpolation in which the solution
of coarse level variables is correctly projected into the corresponding fine level ones. Typically, a
high-quality coarsening should also preserve the spectral properties of the (hyper)graph adjacency
matrix (even though it is not directly required by a coarsening algorithm). The coarsest hypergraph
is partitioned, and the solution is projected on larger, finer-level hypergraphs all the way back to
the original one. At each level the projected solution is refined.

As a result, the multilevel method ends up with a solution that is aware of the global structure
and is locally optimal as well. Note, however, that the global optimality of the final solution heavily
depends on the quality of coarsening. Therefore, it is paramount to have a good distance/similarity
measure on vertices, one that captures not only how vertices are similar locally, but also how close
they are globally. In other words, a sophisticated similarity measure for vertices (and a resulting
more accurate aggregation) allows for a more accurate interpolation of the solution in the next
step.

In most cases, multilevel algorithms for HGP are generalizations of those for GP and other cut
optimization problems; they are, in turn, simplified adaptations of multigrid and other multiscale
optimization strategies [7]. There exist a few coarsening methods for different cut problems on
graphs; e.g., various versions of weighted aggregations inspired by algebraic multigrid for graph
reordering [45, 47, 44, 29], and matching-based methods for GP [33, 48], vertex separator problem
[25], and clustering [20]. For GP, advanced similarity measures used in coarsening include flows
[17], diffusion [36], and algebraic distances [46]. For an in-depth overview, the reader is referred
to a survey by Buluç et al. [10]. However, to the best of our knowledge there exist few advanced
similarity concepts for coarsening applied to HGP.

1.2 Our contribution

We introduce a similarity measure for vertices of hypergraphs, as well as a relaxation-based coars-
ening scheme for multilevel hypergraph partitioning. The measure is called algebraic distance
for hypergraphs. It generalizes the algebraic distance developed for graphs [15, 44], used in ap-
plications such as graph partitioning [46], sparsification [31], and other problems [47, 38]. The
algebraic distance takes into account distant neighborhoods of vertices and addresses the issue
of unweighted and noisy hyperedges. At each level of coarsening, we compute algebraic dis-
tances on a bipartite representation of the hypergraph and modify the hyperedge weights that
are used for agglomerative inner-product matching [13]. This way, we penalize cutting hyper-

2



Coarsening
Un

co
ar

se
nin

g

Initial Partitioning

InterpolationContraction

Aggregation Refinement

Figure 1: Outline of multilevel hypergraph partitioning scheme. On the left side of the V-cycle
(named after the shape of the coarsening-uncoarsening hierarchy), the hypergraph is iteratively
coarsened by aggregating (horizontal arrows) and contracting (vertical arrows) vertices. On the
right side of the V-cycle, the initial partitioning is repeatedly interpolated (vertical arrows) into
the next-fine level and refined (horizontal arrows).

edges that contain similar vertices measured by the algebraic distances between them. Our imple-
mentation is available at https://github.com/rsln-s/algebraic-distance-on-hypergraphs.
We also propose a comprehensive benchmark of hypergraphs and the partitioning results for a
broad scientific community to evaluate the quality of their solvers. Our benchmark is available at
http://shaydul.in/hypergraph-partitioning-archive/.

2 Preliminaries

A hypergraph is an ordered pair of sets (V,E), where V is the set of vertices and E is the set of
hyperedges. Each hyperedge is a subset of V . Another terminology is also used in the literature,
wherein a hypergraph is defined as a triplet (V,H, P ), where V is the set of vertices, H is the
set of hyperedge labels and P is the set of pins. Each pin connects a vertex from V with a label
from H. A net (a synonym of hyperedge) is therefore a set of pins connecting the vertices to the
corresponding label [5]. In this paper, we will use only the former terminology. We will also refer to
a hyperedge as simply an “edge” when it does not cause confusion. Both vertices and hyperedges
can have weights, namely, w(v) ∈ R≥0 and w(e) ∈ R≥0 respectively for each v ∈ V, e ∈ E. A zero
weight for a hyperedge assumes that it is not present in the hypergraph.

3

https://github.com/rsln-s/algebraic-distance-on-hypergraphs
http://shaydul.in/hypergraph-partitioning-archive/


2.1 Hypergraph partitioning

Hypergraph partitioning is a generalization of graph partitioning. The aim is to partition the set of
vertices into a number of disjoint sets such that a cut metric is minimized subject to some imbalance
constraint. Partitioning into two parts is often referred to as bipartitioning, and partitioning into
k parts, k-way partitioning.

More formally, if V is the set of vertices and E is the set of edges, a partitioning is a set of k
mutually disjoint subsets Vi ⊆ V , 1 ≤ i ≤ k, such that V1∪V2∪ ..∪Vk = V . Then, the cut is defined
as Ecut ⊂ E such that for e ∈ E holds e ∈ Ecut if and only if ∃i, j ∈ N, i 6= j: e∩Vi 6= ∅, e∩Vj 6= ∅.

Several cut metrics have been introduced over the years [32, 2, 12] for HGP. Two of the most
commonly used are hyperedge cut and connectivity. The hyperedge cut cost is equal to the total
weights of edges that span more than one partition, i.e.,∑

e∈Ecut

w(e).

The connectivity objective is defined as ∑
e∈Ecut

(λ(e)− 1),

where λ(e) is the number of partitions spanned by the hyperedge e [18]. In this paper we aim at
minimizing the hyperedge cut metric.

The imbalance constraint specifies to what extent the partitions can differ in their size. In this
paper we will use the imbalance constraint defined in the state-of-the-art hypergraph partitioner
Zoltan [18]. Imbalance is defined as the sum of vertex weights in the maximum partition over the
average sum of vertex weights in a partition. For k-way partitioning:

imbal =

∑
v∈Vmax

w(v)
1
k

∑
v∈V w(v)

,

where Vmax is the largest partition (i.e.
∑

v∈Vmax
w(v) = maxi

(∑
v∈Vi w(v)

)
).

2.2 Multilevel method

The multilevel method for graph partitioning was initially introduced to speed up existing algo-
rithms [3], but was quickly recognized as a good way to improve the quality of partitioning [34, 26].
It is used as a global suboptimal heuristic framework [10], in which other heuristics are incorporated
at different stages. These three stages are coarsening, initial partitioning, and uncoarsening.

During the coarsening stage a hypergraphH = (V,E) is approximated via a series of successively
smaller hypergraphs H i = (V i, Ei), 1 ≤ i ≤ l, where l is the number of levels in the hierarchy.
The superscript denotes the number of the corresponding level for hypergraphs, nodes, and edges,
respectively. Each next-coarse hypergraph is constructed by merging or aggregating vertices in the
previous one according to some heuristic: vik = {vi−1k1

, ..., vi−1kj
}. That is, a vertex vik in the coarse

hypergraph Gi at the ith level is created by grouping a set of vertices vi−1k1
, ..., vi−1kj

from the finer

hypergraph H i−1. Vertices can be grouped by using different criteria, with the aim of interpolating
solution from coarse level nodes to the corresponding fine level nodes with minimum loss of solution

4



quality. In the case of pairwise grouping of vertices, such a coarsening is referred to as matching.
The weight of the new coarse vertex is equal to the sum of weights of the merged vertices:

w(vik) = w(vi−1k1
) + ...+ w(vi−1kj

).

A coarse vertex is contained in all hyperedges that contain the merged vertices. Hyperedges of
cardinality one are discarded. Coarsening terminates when the size of the hypergraph is below a
certain threshold or when a solution is easy to compute.

In the partitioning stage, the coarsest hypergraph H l is partitioned using exact or approximate
solver. In many existing implementations, the solver is a local search heuristic. This partitioning is
anticipated to approximate the global solution in the sense that it incorporates the global structure
of the hypergraph. In some cases, when H l is sufficiently small, an exact solution can be computed.

The uncoarsening stage consists of two steps, namely, interpolation and refinement. During
uncoarsening, the partitioning from the coarse hypergraph H i+1 is projected onto the fine H i (in-
terpolation) and refined using a local search heuristic such as Kernighan-Lin (KL) [35] or Fiduccia-
Mattheyses (FM) [21] (refinement). This retains the global information of the partitioning of the
coarse hypergraph while optimizing it locally. Typically, solving a local search subproblem only
improves the global solution at the same level.

3 Related work

Because HGP is NP-complete [23], many heuristics and approximations have been developed. The
most common practical approach to HGP is the multilevel framework. This section begins with a
brief description of non-multilevel techniques, followed by multilevel ones.

3.1 Spectral methods

An important family of non-multilevel techniques is spectral methods. It is necessary to point out
that while they can be used as standalone methods, they are also often used within the multilevel
framework. As we discussed in section 2.2, the multilevel method for combinatorial optimization
problems is a heuristic that incorporates other heuristics as well, such as different similarity concepts
and iterative refinement techniques. Spectral hypergraph partitioning generalizes spectral graph
partitioning methods to hypergraphs. It usually utilizes the spectral properties of the adjacency
matrix. Two main approaches are identified.

The first one is to construct a graph from the hypergraph [24] and then apply spectral graph
partitioning methods that are more well-developed [42, 22]. Two of the most common approaches
are star and clique expansions. In the case of clique expansion, a hyperedge is replaced by a set
of edges that form a complete subgraph for the vertices in the hyperedge. In the case of star
expansion, a hyperedge is replaced by a new vertex, which is connected by new edges to all vertices
previously contained in the hyperedge.

This approach suffers from an obvious loss of information: when a hyperedge is expanded (i.e.,
replaced by a clique or a star), its vertices are connected by a number of edges. The information that
they are equal members of a hyperedge is lost. Ihler et al. show [30] that even for bi-partitioning
there exists no min-cut graph model of a hypergraph. That is, one cannot create a graph whose edge
cut is equal to the hyperedge cut in the original hypergraph, if negative weights are not allowed [30].
Finally, the hypergraph-to-clique conversion greatly increases the size of the problem. Nevertheless,

5



we point out that despite these limitations, good practical results can still be obtained by using
graph models of a hypergraph.

The second approach is to build hypergraph Laplacian and to study its properties, bypassing the
graph representation. This can be done in various ways. Bolla defines an unweighted hypergraph
Laplacian matrix and shows the link between its spectral properties and the hypergraph cut [6].
Zhou et al. define a Laplacian matrix and show a way to use it for k-way partitioning [55]. Hu
et al. argue that Laplacian tensors naturally extend the graph Laplacian matrices to hypergraphs.
They describe a Laplacian tensor for an even uniform hypergraph and define algebraic connectivity
for it [28]. Chan et al. define a Laplacian operator induced by a stochastic diffusion process on the
hypergraph and generalize Cheeger’s inequality for it [14]. However, these recent advances of the
spectral approaches, while promising, are not yet well developed for large-scale instances.

3.2 Multilevel methods

Most state-of-the-art hypergraph partitioners (such as hMetis2 [33], PaToH [11], Zoltan [18] and
Mondriaan [54], to name a few) use a multilevel approach inspired by simplified multigrid and
principles of multiscale computing.

In the coarsening stage of the V-cycle, most hypergraph partitioners use, with some variations,
a heuristic that greedily aggregates neighboring vertices, with some preference based on a similarity
metric. These similarity metrics are local and usually very simple. The metric used by Mondri-
aan [54], hMetis2 [33] and Zoltan [18] is inner product matching. The inner product of two vertices
is defined as the Euclidean inner product of their hyperedge incidence vectors [18]. In other words,
the inner product of two vertices is the number of hyperedges they have in common or, in the
weighted case, total weight of those hyperedges. PaToH uses a different metric as a default option,
called absorption matching :

am(u, v) =
∑

e=(u,v)∈E

1

|e| − 1
,

where |e| is the cardinality of an edge e. However, there are scenarios where these simple solu-
tions, while computationally efficient and easy to implement, are not very effective and can be
improved [15]. This is the major reason for us to revise the coarsening strategy for hypergraphs.
In the refinement step, all of the aforementioned partitioners use some variation of Fiduccia-
Mattheyses [21] or Kernighan-Lin [35] including their advanced efficient implementation introduced
in [1].

However, there is relatively little research on how to improve the coarsening of a hypergraph.
Existing research was motivated mainly by the intuition that a decision made earlier in the coars-
ening stage has substantial influence on the quality of the final cut: any error or wrong decision
would be propagated all the way down the V-cycle and accumulate. Some methods that improve
the coarsening include a use of rough set theory [39], as well as some variations on the greedy
heavy matching scheme. A very promising but unfinished attempt to generalize HGP coarsening
using algebraic multigrid was published in Sandia Labs Summer Reports [9]. Another extension
of a multilevel method, namely, the n-level recursive bisection, was introduced in [49]. For a more
extensive review of hypergraph partitioning algorithms the reader is referred to [53].

6



Compute 
clustering on H using

agglomerative 
inner-product 

matching

Contraction at kth level

Hypergraph H 
at coarsening level k

Star expansion 
graph G

of the hypergraph H

Compute 
algebraic distances

on graph G

Compute 
hew hyperedge

weights on H

Contraction at (k+1)th level

Ag
gr

eg
at

io
n 

at
 (k

+1
)th

 le
ve

l

Figure 2: Outline of the algorithm used to aggregate vertices at kth coarsening level.

4 Algebraic Distance on Hypergraphs

In this section, we introduce a new distance measure that plays a crucial role in improving the
quality of coarsening. To demonstrate its effectiveness, we use Zoltan [18] as the baseline solver.

The outline of our approach is as follows. At each level of coarsening, we compute new weights
for the hyperedges. These weights are passed to Zoltan’s coarsening subroutine, allowing it to
use this additional information for making matching decisions. After the matching is computed,
the weights are set back to the original hyperedge weights and the multilevel algorithm continues.
In other words, we leverage the hyperedge weights to pass information on the structure of the
hypergraph, derived by our algorithm, to the HGP solver’s coarsening scheme. We refer to these
weights as algebraic weights. The outline is shown in fig. 2.

Discussion of this algorithm would not be complete without a brief description of the coarsening
scheme used by Zoltan. Zoltan uses an agglomerative matching technique known as inner-product
matching [13], or called heavy-connectivity clustering in PaToH [12]. In this technique, the vertices
are visited in random order. If the visited vertex v is unmatched, an adjacent vertex u with the
highest connectivity is selected and the current vertex is added to its cluster Cu. The connectivity is
defined as Nv,Cu/Wv,Cu , where Nv,Cu is the total weight of the edges connecting v with the vertices
in the cluster Cu, and Wv,Cu is the total weight of the vertices in the candidate cluster [12].

4.1 Algorithm

Recall that the hypergraph is denoted as H = (V,E). We call the star expansion graph G. In
general, we use primed variables when referring to the elements of G and non-primed for the
elements of H. At each coarsening level the following happens:

1. Build the star expansion graph G = (V ′, E′) of H [52]. Each hyperedge is replaced by a new
vertex, which is connected to every vertex contained in the original hyperedge, i.e., V ′ = V ∪E
and E′ = {(v, h) | v ∈ h, h ∈ E} [52]. This way, each hyperedge is replaced by a “star” in the
bipartite graph G, with all vertices v ∈ V in one part and hyperedges h ∈ E in another (hence
the new set of vertices is V ′ = V ∪ E). The weights of the vertices stay the same. The vertices
introduced to replace hyperedges are assigned the weights of the corresponding hyperedges they

7



represent, divided by the number of vertices in that hyperedge; i.e.,

w′(v′) = w(v), ∀v ∈ V ⊂ V ′, and

w′(h′) =
w(h)

|h|
, ∀h ∈ E ⊂ V ′. (1)

The edges e′ ∈ E′ of the star expansion G are left unweighted (we can assume they all have
weight 1). We refer to the vector of weights in the graph G as w′ ∈ R|V ′| and that in the
hypergraph H as w ∈ R|V |+|E|, to distinguish the two cases. Note that since V ′ = V ∪E, these
vectors are of the same size.

2. Compute algebraic coordinates of the vertices in star expansion graph G by using Jacobi over-
relaxation (JOR, a stationary iterative relaxation), beginning with random initialization. The
iterative process is repeated for several random initial vectors.

For each random vector, all coordinates are initialized with random values from the uniform
distribution on (−0.5, 0.5). We denote the algebraic coordinates as a 2-dimensional array X,
where x[r][v′] is the algebraic coordinate for the vertex v′ ∈ V ′ = V ∪ E and the rth random
initial vector. Then, for a certain number of iterations (denoted in pseudocode as num iter),
JOR is performed on all v′ ∈ G as follows. The vertices are visited in random order. After each
iteration, the algebraic coordinates are rescaled such that the smallest algebraic coordinate is
equal to −0.5 and the largest to 0.5. The iteration scheme can be written as follows

x∗[r][v′] =

∑
∀u′∈V ′:(u′,v′)∈E′

w′(u′) · xi−1[r][u′]∑
∀u′∈V ′:(u′,v′)∈E′

w′(u′)

x∗∗[r][v′] = ω · x∗[r][v′] + (1− ω)xi−1[r][u′],

(2)

where ω is a relaxation factor. It is used in the same way as in Successive overrelaxation [8],
to make the convergence more stable. Weighting, rescaling and the denominator in eq. (2) are
introduced in part to prevent algebraic coordinates from converging to machine precision, i.e.,
becoming so close that they are no longer distinguishable. In our experiments, nondistinguishable
coordinates tend to occur on hypergraphs whose hyperedges have high cardinality, since vertices
contained in these hyperedges very quickly “pull” each other together.

Denote the smallest (“leftmost” on the real line) algebraic coordinate before rescaling as l and
the largest (“rightmost”) as r. Then, the rescaling is done as follows:

xi[r][v′] =
x∗∗[r][v′]− l

r − l
− 0.5.

3. Define the algebraic weight of a hyperedge h ∈ E as one over the algebraic distance between two
farthest apart vertices in h, maximized over all random vectors:

alg weight(h) =
1

max
∀r

max
u,v∈h

|x[r][v]− x[r][u]|
.

8



Compute the final weights w̃ to be passed to Zoltan from the original hyperedge weights w as
follows

w̃(h) = w(h) · alg weight(h)∑
h∗∈E

alg weight(h∗)/|E|
.

Hyperedge weights are multiplied by the ratio between the computed algebraic distance for this
hyperedge and the average algebraic weight for all hyperedges. Note that here w(h) is the weight
of the original hyperedge, before the star expansion.

4. Pass these new weights w̃ to Zoltan’s [18] agglomerative inner product matching. After the
matching, all weights are reset back to the ones before the star expansion (i.e., back to w) and
the multilevel process continues.

The pseudocode for computing the algebraic weights (steps 1–3) is presented in algorithm 1.

ALGORITHM 1: Computing algebraic weights

Input : Relaxation factor ω, number of random vectors R , number of iterations num iter
Output: algebraic weights alg weight
for r = 1 : R do

Randomly initialize x[r];
for k = 1 : num iter do

// Perform iteration sweep over all vertices

for v′ ∈ V ′ do

x∗[r][v′] =

∑
∀u′∈V ′:(u′,v′)∈E′

w′(u′)·xi−1[r][u′]∑
∀u′∈V ′:(u′,v′)∈E′

w′(u′)
;

x∗∗[r][v′] = ω · x∗[r][v′] + (1− ω)xi−1[r][u′];

end
for v ∈ V ′ do

// Rescale

l = min
u∈V ′

x[r][u];

r = max
u∈V ′

x[r][u];

xi[r][v′] = x∗∗[r][v′]−l
r−l − 0.5;

end

end

end
for h in E do

// Compute algebraic weights for hyperedges

alg weight(h) = 1 / max
∀r

max
u,v∈h

|x[r][v]− x[r][u]|;

end

4.2 Convergence analysis

algorithm 1 is an iterative process that computes x[r][v′] for all vertices v′ ∈ V ′ and random initial
vector numbers r. To analyze the convergence of this process and understand the properties of the

9



computed algebraic weights, we need additional notation. Let x(i) ∈ R|V ′| denote the ith iterate
of the vector x[r] for the rth random initial vector. Since the same iterative process is performed
for all vectors of random initial coordinates, we will perform the analysis on only one (arbitrary)
vector and hence omit the dependence on r.

Let A ∈ R|E|×|V | be the incidence matrix of the hypergraph; that is, Aij = 1 if vertex j belongs
to the hyperedge i and 0 otherwise. Let Sv ∈ R|V |×|V | and Sh ∈ R|E|×|E| be diagonal matrices such
that

Svjj = w(vj) and Shii =
w(hi)

|hi|
,

where |hi| denotes the cardinality of the ith hyperedge (same as in eq. (1)). Define the following
matrix

W =

[
0 ATSh

ASv 0

]
and let D be the diagonal matrix with elements Djj =

∑
iWij . For convenience of analysis, we

decompose D as

D =

[
Dv 0
0 Dh

]
with Dv ∈ R|V |×|V | and Dh ∈ R|E|×|E|, such that the block sizes of D are compatible with those of
W . Note that W is asymmetric.

It is not hard to see that algorithm 1 computes the following update:

x(i) =
1

r − l

[
ωD−1Wx(i−1) + (1− ω)x(i−1)︸ ︷︷ ︸

x∗(i−1)

]
− r + l

2(r − l)
1

where 1 is the vector of all ones, and r and l are the maximum and the minimum of the elements
in x∗(i−1), respectively (see algorithm 1). Then, we simplify the update formula as

x(i) = α(i−1)Hx(i−1) + β(i−1)1, (3)

where

H = ωD−1W + (1− ω)I, α(i−1) =
1

r − l
, and β(i−1) = − r + l

2(r − l)
.

The convergence of the iteration depends on the properties of the iteration matrix H. We first
note that the matrix D−1W is diagonalizable with real eigenvalues.

Theorem 1. Let (Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2 admit the following singular value decomposi-
tion:

(Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2 =
r∑
i=1

σiuiz
T
i .

Then, D−1W has a zero eigenvalue of multiplicity |V | + |E| − 2r = |V ′| − 2r. Moreover, for the
nonzero eigenvalues,

D−1W

[
(Sv)−1/2(Dv)−1/2zi
(Sh)−1/2(Dh)−1/2ui

]
= σi

[
(Sv)−1/2(Dv)−1/2zi
(Sh)−1/2(Dh)−1/2ui

]
(4)

and

D−1W

[
−(Sv)−1/2(Dv)−1/2zi
(Sh)−1/2(Dh)−1/2ui

]
= −σi

[
−(Sv)−1/2(Dv)−1/2zi
(Sh)−1/2(Dh)−1/2ui

]
, i = 1, . . . r. (5)

10



Proof. The identities eq. (4) and eq. (5) are straightforward to verify based on the singular value
decomposition. On the other hand, if λ is an eigenvalue of D−1W with corresponding eigenvector
[ cd ], then,

(Dv)−1ATShd = λc and (Dh)−1ASvc = λd,

which implies that

[(Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2]T [(Dh)1/2(Sh)1/2d] = λ[(Dv)1/2(Sv)1/2c],

and
[(Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2][(Dv)1/2(Sv)1/2c] = λ[(Dh)1/2(Sh)1/2d].

In form, these two equalities define all nonzero singular values |λ|
of (Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2. Thus, if λ is not equal to any of the ±σi’s, then λ must
be zero.

Second, note that the diagonal of the matrix D−1W is zero and each row is nonnegative,
summing to one. Hence, by Gershgorin’s circle theorem, the eigenvalues of D−1W must lie between
−1 and 1. Indeed, the two ends of this interval are attainable.

Theorem 2. The spectral radius of D−1W is 1. In particular, there exists a pair of eigenvalues
±1, and 1 is an eigenvector associated with an eigenvalue +1.

Proof. By the definition of W and D, we have D−1W1 = 1. Therefore, D−1W has an eigenvalue
+1 with eigenvector 1. From theorem 1 we know that D−1W must also have an eigenvalue −1.
Then, because all the eigenvalues of D−1W lie between −1 and +1 by the Gershgorin’s circle
theorem, its spectral radius is 1.

Third, recall that the star expansion graph is a bipartite graph, with one part containing the
vertices of the original hypergraph and the other part the hyperedges. Rather than defining vertex
weights as in eq. (1) and leaving the edges unweighted, alternatively, one may view W as the
weighted adjacency matrix of a graph with exactly the same vertex-edge structure, but the edges
are weighted according to W and the vertices are left unweighted. Then, the block and the sparsity
structure of W indicates that the directed edges of this bipartite graph (in the alternative view)
always come in pairs with opposite directions. Hence, we may ignore the directions and treat the
graph undirected, if at all convenient for analyzing graph connectivity. Then, the directed version
of the graph is strongly connected if and only if the undirected version is connected, although
the edge weights are asymmetric in the directed version. Consequently, the number of strongly
connected components of the directed version is equal to the number of connected components of
the undirected version. Such a view allows the application of the Perron–Frobenius theorem for
exploring the extreme eigenvalues of D−1W .

Theorem 3. The eigenvalues of D−1W equal to +1 are all simple. The number of such eigenvalues
is equal to the number of strongly connected components of the directed version of the bipartite graph
(or equivalently, the number of connected components of the undirected version of the graph).

Proof. If the directed graph is strongly connected, then D−1W is irreducible. Hence, by the Perron–
Frobenius theorem, there exists an eigenvalue equal to the spectral radius 1. This eigenvalue is
simple and is unique. If the graph has C strongly connected components, then D−1W may be

11



symmetrically permuted into a C ×C block-diagonal matrix, where each block corresponds to one
strongly connected component. In such a case, D−1W has C eigenvalues equal to 1, all of which
are simple.

The above three theorems reveal the beautiful symmetry of the eigenvalues of D−1W . They
are real, come in pairs, and straddle around zero (except those being exactly zero). The number
of nonzero pairs is equal to the rank of the incidence matrix A. The eigenvalues all lie inside
[−1, 1]. Moreover, there exists (at least) one pair attaining exactly ±1, and the number of such
pairs is equal to the number of connected components of the star expansion graph when viewed as
undirected.

With this knowledge, we see that there is a one-to-one correspondence between the eigenpairs
of the iteration matrix H and those of D−1W . Specifically, denote by (µi, φi) an eigenpair of H.
Then,

Hφi = µiφi ⇔ D−1Wφi =
µi − 1 + ω

ω
φi, 0 < ω < 1.

Because the eigenvalues of D−1W are symmetric around 0 with range [−1, 1], the eigenvalues µi of
H are symmetric around 1− ω with range [1− 2ω, 1]. Because ω is strictly less than 1, the largest
eigenvalue of H is 1, which is equal to the largest eigenvalue in magnitude. The multiplicity of
this eigenvalue is equal to the number of connected components of the undirected version of the
star expansion graph. For simplicity of analysis, we will assume from now on that the graph is
connected. Then, we have an ordering of the eigenvalues according to their magnitude:

1 = µ1 > |µ2| ≥ |µ3| ≥ · · · ≥ |µ|V ′||,

with φ1 = 1 being an (unnormalized) eigenvector associated with µ1. Note the use of the strictly-
greater-than sign > and the greater-than-or-equal-to sign ≥. In particular, the second eigenvalue,
in magnitude, must be strictly less than 1. In what follows, we will present a result that relates
the difference between the elements of x(k) to that between the corresponding elements of some
vector in the eigensubspace spanned by one or a few eigenvectors, including φ2. This eigensubspace
depends on how many eigenvalues are equal to |µ2| in magnitude. If only one, that is, |µ2| > |µ3|,
then the eigensubspace is spanned by only φ2. However, if more than one, then let us assume that
|µ2| = |µ3| = · · · = |µt| > |µt+1|. Such a case includes two subcases:

case 1: µ2 = µ3 = · · · = µt; and

case 2: µ2, µ3, . . . , µt are not all equal.

In each subcase, the vector is some linear combination of φ2, . . . , φt.

Theorem 4. Assume that the undirected version of the star expansion graph is connected. Let the
initial iterate x(0) be expanded in the eigen-basis of H as

x(0) = a1φ1 + a2φ2 + · · ·+ a|V ′|φ|V ′|.

(i) If µ2 = µ3 = · · · = µt and |µt| > |µt+1| for some t ≥ 2, and if a2, . . . , at are not all zero,
then for any pair i, j,

lim
k→∞

(x(k))i − (x(k))j

α(0)α(1) · · ·α(k−1)µk2
= ξi − ξj ,

where
ξ = a2φ2 + · · ·+ atφt.

12



(ii) If |µ2| = |µ3| = · · · = |µt| > |µt+1| for some t ≥ 3 where µ2, µ3, . . . , µt are not all equal, and
if a2, . . . , at are not all zero, then for any pair i, j,

lim
k→∞

(x(2k+p))i − (x(2k+p))j

α(0)α(1) · · ·α(2k+p−1)µ2k+p2

= (ηp)i − (ηp)j ,

where
ηp = a2φ2 + a3(µ3/µ2)

pφ3 + · · ·+ at(µt/µ2)
pφt, p = 0, 1.

Proof. For notational convenience, let n = |V ′|. Write the diagonalization of H as H = ΦΛΦ−1,
where Φ = [φ1, . . . , φn] and Λ = diag(µ1, . . . , µn). Also write x(0) = Φa, where a = [a1, . . . , an]T .
Then, expanding (3) k times, we have

x(k) = α(0) . . . α(k−1)Hkx(0)+

+ (β(0)α(1) . . . α(k−1)Hk−1 + β(1)α(2) . . . α(k−1)Hk−2 + · · ·+ β(k−1)H0)1.
(6)

Because 1 is an eigenvector of H corresponding to eigenvalue 1, the term in the second line is
equal to γ(k)1 with γ(k) = β(0)α(1) . . . α(k−1) + β(1)α(2) . . . α(k−1) + · · ·+ β(k−1). For the first term
on the right of the first line,

Hkx(0) = ΦΛka = a1φ1 + a2µ
k
2φ2 + · · ·+ anµ

k
nφn,

with φ1 = 1. Therefore,

x(k) = α(0) . . . α(k−1)(a11 + a2µ
k
2φ2 + · · ·+ anµ

k
nφn) + γ(k)1,

and hence

(x(k))i − (x(k))j

α(0) . . . α(k−1)µk2
= (ei − ej)T [a2φ2 + a3(µ3/µ2)

kφ3 + · · ·+ an(µn/µ2)
kφn].

(i) When k is large, the term inside the square bracket is dominated by

a2φ2 + · · ·+ atφt,

because all other µi’s are smaller than µ2 in magnitude. Thus, when k →∞, only this term
remains, hence the result.

(ii) Similar to the above case,

(x(2k+p))i − (x(2k+p))j

α(0) . . . α(2k+p−1)µ2k+p2

= (ei − ej)T [a2φ2 + a3(µ3/µ2)
2k+pφ3 + · · ·

· · ·+ an(µn/µ2)
2k+pφn].

When k →∞, in the square bracket only the term

a2φ2 + a3(µ3/µ2)
2k+pφ3 + · · ·+ at(µt/µ2)

2k+pφt

remains and the rest vanishes. Because the eigenvalues µ2, . . . , µt are all real, the ratios
µ3/µ2, . . .µt/µ2 can only be ±1. Hence, taking square, the ratios all become 1. We thus
obtain the result in the theorem.

13



Informally speaking, the above theorem states that in the limit, the difference between two
elements of the iterate vector x(k) is proportional to that between the corresponding elements
of some vector ξ. When |µ2| is strictly greater than |µ3|, this vector ξ may be taken to be the
eigenvector φ2. When there exist more than one eigenvalue equal to µ2, say, µ2 = · · · = µt for
some t > 2, then ξ is a linear combination of φ2, . . . , φt, where the coefficients of the combination
are the expansion coefficients of the initial iterate x(0) along the eigen-basis of the iteration matrix
H. However, when there exist more than one eigenvalue whose magnitude is equal to |µ2| but
these eigenvalues are not all the same, then the situation is slightly complicated. Every other
iterate x(k) form a subsequence and the limiting behaviors of these two interleaving subsequences
correspond to two different vectors, which are η0 and η1 defined in the theorem. Both of them are
a linear combination of the eigenvectors φ2, . . . , φt. For η0, the coefficients of the combination are
the expansion coefficients of x(0) along the eigen-basis of H; for η1, some of these coefficients flip
signs.

The existence of these various cases is owing to the different choices of ω. Recall that the
eigenvalues of D−1W are symmetrically distributed around zero. Then, the eigenvalues of H =
ωD−1W +(1−ω)I are symmetrically distributed around 1−ω, with the smallest one being 1−2ω.
We will use σ2 > 0 to denote the second largest eigenvalue of D−1W , which is consistent with the
notation in Theorem 1. By the connected-graph assumption, σ2 < σ1 = 1. We also have that the
multiplicity of 1− 2ω is one, by the same assumption. Furthermore, the second largest eigenvalue
of H is ωσ2 + 1− ω.

(a) If ω > 2
3−σ2 , then 1 − 2ω is negative and it has a larger magnitude than does ωσ2 + 1 − ω .

In such a case, µ2 = 1− 2ω and |µ2| is strictly greater than |µ3|. This scenario corresponds to
the case (i) of Theorem 4 with t = 2.

(b) If ω ≤ 1
2 , then 1− 2ω is nonnegative, and hence all eigenvalues of H are nonnegative. In such

a case, µ2 = ωσ2 + 1−ω. This scenario also corresponds to the case (i) of Theorem 4, because
if there are more than one eigenvalue whose magnitude is equal to µ2, then the nonnegativity
implies that these eigenvalues must be the same as µ2. The multiplicity of µ2 is equal to the
multiplicity of σ2. It could happen that either the multiplicity of σ2 is one, in which case t = 2;
or the multiplicity of σ2 is greater than one, in which case t > 2.

(c) If ω = 2
3−σ2 , then 1 − 2ω is negative, ωσ2 + 1 − ω is positive, and the two have the same

magnitude. This scenario corresponds to the case (ii) of theorem 4. Whether t = 3 or t > 3
depends on the multiplicity of ωσ2 + 1− ω (equivalently that of σ2), because the multiplicity
of 1 − 2ω is one. If the multiplicity of σ2 is one, then only two eigenvalues have magnitude
equal to |µ2|, and hence t = 3; otherwise, t > 3.

(d) If 1
2 < ω < 2

3−σ2 , then 1 − 2ω is negative and ωσ2 + 1 − ω is greater than the magnitude of
1−2ω. This scenario is similar to that of the above item (b), except that not all the eigenvalues
of H are nonnegative. All other properties are otherwise the same.

4.3 Mutually influenced model

In the standard graph case, the edge weights provide a first-order measurement of vertex
similarity/distance. This measure is applicable to only adjacent vertices. Hence, for a pair of

14



vertices that are not adjacent, global information of the graph must be incorporated for extending
the measurement. The algebraic distance on graphs [15] defines algebraic coordinates for every
vertex through an iterative process similar to that in the present work. In the limit, the coordinate
difference, which serves the notion of “distance,” is proportional to the difference of the correspond-
ing elements of some vector y. Specifically, if we let wij be the weights of a pair of vertices ij in
the graph, then the elements of the vector y satisfy an equilibrium state

yi = γyi +
∑
j

wij
di
yj , (7)

where di =
∑

j wij is used for normalization and 0 < γ < 1 is a constant factor for all i. The
algebraic coordinates do not need to coincide with the yi’s; it suffices for their differences to be
proportional. When one treats the vertices to be entities of a mutually influenced environment,
then the value yi of each entity is composed of two components according to (7): a portion of
itself (γyi) and a normalized weighted contributions of its neighbors (

∑
j
wij

di
yj). If yi denotes

the amount of information stored at vertex i, eq. (7) essentially signifies a global equilibrium of
the flow of information. Such a view is used to interpret the global similarity of vertices through
neighborhoods. In short, two vertices are similar if their neighborhoods are similar, because the
common factor γ is constant and similarity relies on the neighboring weights wij .

The present work extends this notion to hypergraphs. In such a setting, the hyperedges cover
not just a pair ij of vertices, but rather, a subset of any size (excluding of course empty sets and
singletons). Hence, a proxy of the pairwise environment is the star expansion graph G, whose
vertex set V ′ includes not only the original vertices V of the hypergraph, but also the hyperedges
E. Naturally, the edges of G come from the containment relation between V and E; that is, v ∈ V
and h ∈ E are connected if and only if v ∈ h. Therefore, the edge weights of G come from the
weights in the original hypergraph, properly scaled. It is important to note that the scaling is
not symmetric, because potentially one hyperedge may contain a large number of vertices. Thus,
whereas the weights for the directed edge from v to h are w(v) without scaling, those for the edges
from h to v are w(h) scaled by |h|.

Then, the algebraic distance on hypergraphs enjoys the same equilibrium
model eq. (7). From theorem 4 and the subsequent discussions, we know that γ = (1 − µ2)/ω,
where µ2 is the second largest eigenvalue in magnitude of the iteration matrix H, and y is a vec-
tor in the subspace spanned by the eigenvectors associated with eigenvalues whose magnitude are
equal to |µ2|. In practice, ω is often set to be 1/2, then µ2 is positive1 and all other eigenvalues
having the same magnitude must be equal to µ2. If furthermore the multiplicity of µ2 is 1, then the
subspace is spanned by the eigenvector φ2 only and hence y can be taken to be φ2. Note that the
multiplicity of eigenvalue µ2 is the same as the multiplicity of the singular value σ2 of the matrix
(Dh)−1/2(Sh)1/2A(Dv)−1/2(Sv)1/2 in theorem 1.

Finally, when extending the notion of the algebraic distance to hypergraphs, we have to take
into account the non-pairwise nature of the relations between the vertices. While in pairwise graph
setting it is natural to use the simple difference between two vertices’ algebraic coordinates as the
measure of similarity between them, in non-pairwise hypergraph setting this approach has to be
extended. In the hypergraph case we instead assume that the hyperedge is only as important as
two most dissimilar vertices in it. In hypergraph partitioning terms, this means that we want to

1We assume the nondegenerate case where µ2 is nonzero. Otherwise, all eigenvalues except for the largest one is
zero.

15



avoid cutting the hyperedges that contain only similar vertices. Therefore we define the algebraic
weight of the hyperedge as:

alg weight(h) =
1

max{|x[v]− x[u]| | u, v ∈ h}

This way, we penalize cutting the hyperedges that contain only similar vertices, with the notion of
similarity defined according to the mutually influenced model.

5 Experimental Results

In this section, we first illustrate the empirical convergence of algorithm 1 and then compare
the quality of the partitioning produced by our algorithm with those by other state-of-the-art
hypergraph partitioners. Our major goal is to study the effectiveness of the algebraic distance on
hypergraph partitioning by introducing it into a coarsening scheme. We note that these results can
clearly be further improved by using more advanced refinement techniques which are beyond the
scope of this work.

5.1 Convergence

The speed of the convergence of algebraic weights depends on the gap between the second largest
eigenvalue in magnitude, |µ2|, of the iteration matrix H and the next eigenvalue with a different
magnitude, denoted as |µt+1| in the preceding section. Estimating this gap is no less expensive
than computing the corresponding eigenvectors. Hence, in practice, we use the squared sine of the
angle between two iterates x(k) and x(k+1):

1−

〈
x(k)

||x(k)||
,
x(k+1)

||x(k+1)||

〉2

,

to measure how parallel the two iterates are, as a proxy of convergence test.
The two consecutive iterates generally become parallel very quickly. In fig. 3 we pick five

hypergraphs and plot the squared sine for the first 50 iterations. These hypergraphs represent
different sizes (from 2426 − by − 3602 to 103631 − by − 395979) and different origins (from social
networks to circuit simulation) of hypergraphs in the benchmark. One sees that the value is
indistinguishable from zero after 10 to 20 iterations. Such a phenomenon is typical to our experience
and we generally set num iter comparable to these numbers.

It is worth noting that the parallelism of two consecutive iterates does not necessarily mean
true convergence. As noted by Chen and Safro [15], the eigenvalue gap may be so small that it
might take a huge number of iterations for the difference

(x(k))i − (x(k))j

(after scaling) to get close enough to ξi − ξj . The parallelism before convergence corresponds to a
transient state wherein the change of the iterates is small. It turns out that in practice, a transient
state is sufficient for the algebraic distance to be useful for coarsening.

16



Figure 3: Squared sine of the angle between x(k) and x(k+1) as a function of the iteration number
k.

5.2 Cut improvements

We implement our algorithm with algebraic distances by using the Zoltan [18] package of the Trili-
nos Project [27]. Zoltan is an open-source toolkit of parallel combinatorial scientific computing
algorithms [18] designed to optimize load balancing. It includes a hypergraph partitioning algo-
rithm called PHG (Parallel HyperGraph partitioner). We augment Zoltan’s PHG partitioner with
algebraic distances as described in the preceding section. Our algorithm is called Zoltan-AlgD. All
comparisons with Zoltan are indeed comparisons with Zoltan’s PHG partitioner. In this study we
use Zoltan in the serial mode. In addition to comparing Zoltan-AlgD to Zoltan, we compare it with
two other state-of-the-art partitioners, namely hMetis2 [33] and PaToH v3.2 [11].

PaToH is used as a plug-in for Zoltan, as described in Zoltan’s User Guide [19]. We run PaToH
with two different parameters: default (here denoted as PaToH-D) and quality (PaToH-Q). hMetis2
is used to directly optimize k-way partitioning. All parameters are set as default: greedy first-choice
scheme for coarsening, random k-way refinement, and min-cut objective function.

Each algorithm is run 10 times and the smallest cuts over all runs are compared. In the
experiments, standard deviation of the cuts is usually small (< 5%). Interestingly, in a small
number of hypergraphs, we observe that the distribution of cuts is bimodal (i.e., the partitioner
produces cuts close to either one of two modes). In this case, the standard deviation is high;
however, within each mode, the deviation is low. Such behavior demonstrates that in certain
settings the solvers cannot escape false local attraction basins obtained at the coarse levels. This
hints that the current state of hypergraph partitioning solvers is still far from being optimal and
there is a lot of space for improvement.

Because the implementation of our algorithm has not been optimized, the run time of Zoltan-
AlgD is on average two to four times longer than that of Zoltan (see fig. 8). However, since the
iteration scheme is easily parallelizable (for example, among different random vectors, the iteration
is pleasingly parallel as well as parallelization of Jacobi-based relaxations has been studied and
used in many works), the overhead of computing the algebraic distances may be minimized and
thus the run time may be made similar to that of Zoltan. Moreover, the algebraic distance is, in

17



fact, several iterations of Jacobi over-relaxation whose parallelization has been studied a lot.
We also have to point out the lack of progress in coarsening techniques in the recent years, with

all major hypergraph partitioning packages using the same approach, making our contribution more
valuable. While the way we select vertices to be merged together during coarsening is indeed more
expensive than traditional approaches, it introduces very low overhead (constant number of passes
over vertices) and shows great improvement in the area where state-of-the-art has not changed for
a long time.

The different algorithms are compared on three groups of hypergraphs: big-bench, SNAP-bench,
and social-networks-bench.

The first two groups (big-bench and SNAP-bench) are generated from matrices obtained from
the University of Florida Sparse Matrix Collection [16] by using a row-net model: a vertex i
belongs to hyperedge j if there is a non-zero element on the intersection of ith column and jth row.
Big-bench contains 443 matrices; many of them are derived from optimization problems. SNAP-
bench consists of 42 matrices from the SNAP (Stanford Network Analysis Platform) Network Data
Sets [37].

The third group of the benchmark, social-networks-bench (12 hypergraphs), has two parts. The
first part contains two networks with known communities (youtube and flickr) from the IMC 2007
Data Set [40]. The hypergraphs are constructed in the following way: each vertex represents a user
and each hyperedge represents a community. After generating the hypergraph, isolated vertices
are removed. The second part contains “similar hypergraphs.” They are generated by using the
following pipeline: a graph of pairwise links is obtained for the same dataset and then a similar
graph is generated by using the BarabasiAlbertGenerator [3, 4] of NetworKit [50]. Afterwards, the
adjacency matrix of the new graph is interpreted by using the row-net model.

In figs. 4 to 7 the results are presented graphically. Each curve plots the ratio

cut obtained using another algorithm

cut obtained using Zoltan-AlgD
,

where for the brown curve, the “other algorithm” is Zoltan; aquamarine curve, PaToH-Q; blue
curve, PaToH-D; and orange curve, hMetis2. Each plot corresponds to a certain number of parts
and a certain imbalance factor. The hypergraphs are ordered in the the increasing ratio.

For readability, the results for big-bench are split in two parts: those with ratios

cut obtained using another algorithm

cut obtained using Zoltan-AlgD
< 1.5

and those with ratios greater than 1.5 (i.e., with more than 50% improvement in cut). The re-
sults for the social-networks-bench and SNAP-bench are plotted on the same figure, since the
social-networks-bench is considerably smaller than the other two. The results show substan-
tial improvement over Zoltan without algebraic distance, as well as over hMetis2 and PaToH
on most of the hypergraphs. For the full set of results, please refer to http://shaydul.in/

hypergraph-partitioning-archive/.

6 Conclusions

In this paper we have introduced a new similarity measure for hypergraph vertices—algebraic dis-
tances. This similarity measure is used for more accurate vertex aggregation during the coarsening

18

http://shaydul.in/hypergraph-partitioning-archive/
http://shaydul.in/hypergraph-partitioning-archive/


0.0

0.3

0.6

1.2

1.5

1.0

Fraction improved: 0.39 0.61 0.67 0.79

Num parts: 2 Imbalance: 1.03

Fraction improved: 0.41 0.63 0.71 0.79

Num parts: 2 Imbalance: 1.05

Fraction improved: 0.45 0.63 0.77 0.77

Num parts: 2 Imbalance: 1.1

0.0

0.3

0.6

1.2

1.5

1.0

Fraction improved: 0.66 0.60 0.61 0.71

Num parts: 4 Imbalance: 1.03

Fraction improved: 0.68 0.59 0.66 0.76

Num parts: 4 Imbalance: 1.05

Fraction improved: 0.70 0.59 0.73 0.73

Num parts: 4 Imbalance: 1.1

0.10
0.38
0.66

1.22
1.50

1.00

Fraction improved: 0.84 0.69 0.77 0.73

Num parts: 8 Imbalance: 1.03

Fraction improved: 0.85 0.69 0.79 0.73

Num parts: 8 Imbalance: 1.05

Fraction improved: 0.85 0.69 0.81 0.74

Num parts: 8 Imbalance: 1.1

0.10

0.38

0.66

1.22

1.50

1.00

Fraction improved: 0.89 0.74 0.81 0.75

Num parts: 16 Imbalance: 1.03

Fraction improved: 0.90 0.74 0.85 0.71

Num parts: 16 Imbalance: 1.05

Fraction improved: 0.91 0.73 0.88 0.70

Num parts: 16 Imbalance: 1.1

0.20
0.46
0.72

1.24
1.50

1.00

Fraction improved: 0.94 0.75 0.85 0.75

Num parts: 32 Imbalance: 1.03

Fraction improved: 0.94 0.74 0.86 0.76

Num parts: 32 Imbalance: 1.05

Fraction improved: 0.95 0.75 0.90 0.74

Num parts: 32 Imbalance: 1.1

0.40
0.62
0.84

1.28
1.50

1.00

Fraction improved: 0.93 0.73 0.89 0.75

Num parts: 64 Imbalance: 1.03

Fraction improved: 0.95 0.73 0.90 0.70

Num parts: 64 Imbalance: 1.05

Fraction improved: 0.95 0.73 0.90 0.72

Num parts: 64 Imbalance: 1.1

0.40

0.62

0.84

1.28

1.50

1.00

Fraction improved: 0.93 0.72 0.84 0.70

Num parts: 128 Imbalance: 1.03

Fraction improved: 0.93 0.72 0.85 0.69

Num parts: 128 Imbalance: 1.05

Fraction improved: 0.94 0.73 0.88 0.68

Num parts: 128 Imbalance: 1.1

PaToH-Q PaToH-D hMetis2 Zoltan

Figure 4: First half ( cut obtained using another algorithm
cut obtained using Zoltan-AlgD < 1.5) of big-bench (443 hypergraphs), with

brown curve corresponding to Zoltan, aquamarine to PaToH-Q, blue to PaToH-D, and orange to
hMetis2. The improvements are with respect to the whole big-bench, including those with

improvement greater than 1.5.

19



5.2
8.9

12.6
16.3
20.0

1.0

Num parts: 2 Imbalance: 1.03 Num parts: 2 Imbalance: 1.05 Num parts: 2 Imbalance: 1.1

3.4
5.3
7.2
9.1

11.0

1.0

Num parts: 4 Imbalance: 1.03 Num parts: 4 Imbalance: 1.05 Num parts: 4 Imbalance: 1.1

3.86
6.22
8.58

10.94
13.30

1.00

Num parts: 8 Imbalance: 1.03 Num parts: 8 Imbalance: 1.05 Num parts: 8 Imbalance: 1.1

3.46
5.42
7.38
9.34

11.30

1.00

Num parts: 16 Imbalance: 1.03 Num parts: 16 Imbalance: 1.05 Num parts: 16 Imbalance: 1.1

2.82
4.14
5.46
6.78
8.10

1.00

Num parts: 32 Imbalance: 1.03 Num parts: 32 Imbalance: 1.05 Num parts: 32 Imbalance: 1.1

2.98
4.46
5.94
7.42
8.90

1.00

Num parts: 64 Imbalance: 1.03 Num parts: 64 Imbalance: 1.05 Num parts: 64 Imbalance: 1.1

4.1
6.7
9.3

11.9
14.5

1.0

Num parts: 128 Imbalance: 1.03 Num parts: 128 Imbalance: 1.05 Num parts: 128 Imbalance: 1.1

PaToH-Q PaToH-D hMetis2 Zoltan

Figure 5: Second half ( cut obtained using another algorithm
cut obtained using Zoltan-AlgD ≥ 1.5) of big-bench (443 hypergraphs), with

brown curve corresponding to Zoltan, aquamarine to PaToH-Q, blue to PaToH-D, and orange to
hMetis2 (greater is better).

20



0.40

0.62

0.84

1.28

1.50

1.00

Fraction improved: 0.22 0.73 0.60 0.63

Num parts: 2 Imbalance: 1.03

Fraction improved: 0.22 0.84 0.70 0.72

Num parts: 2 Imbalance: 1.05

Fraction improved: 0.19 0.89 0.79 0.81

Num parts: 2 Imbalance: 1.1

0.90

1.14
1.26
1.38
1.50

1.00
Fraction improved: 0.92 1.00 0.84 0.70

Num parts: 4 Imbalance: 1.03

Fraction improved: 0.96 1.00 0.86 0.61

Num parts: 4 Imbalance: 1.05

Fraction improved: 0.94 1.00 0.90 0.70

Num parts: 4 Imbalance: 1.1

0.90

1.14
1.26
1.38
1.50

1.00
Fraction improved: 0.94 1.00 0.79 0.81

Num parts: 8 Imbalance: 1.03

Fraction improved: 0.96 1.00 0.82 0.77

Num parts: 8 Imbalance: 1.05

Fraction improved: 0.98 1.00 0.88 0.85

Num parts: 8 Imbalance: 1.1

0.90

1.14
1.26
1.38
1.50

1.00
Fraction improved: 0.94 1.00 0.89 0.91

Num parts: 16 Imbalance: 1.03

Fraction improved: 0.98 1.00 0.88 0.83

Num parts: 16 Imbalance: 1.05

Fraction improved: 0.98 1.00 0.87 0.92

Num parts: 16 Imbalance: 1.1

0.9

1.1
1.2
1.3
1.4
1.5

1.0
Fraction improved: 0.96 1.00 0.87 0.92

Num parts: 32 Imbalance: 1.03

Fraction improved: 0.98 1.00 0.87 0.87

Num parts: 32 Imbalance: 1.05

Fraction improved: 0.96 1.00 0.85 0.94

Num parts: 32 Imbalance: 1.1

0.9

1.1
1.2
1.3
1.4
1.5

1.0
Fraction improved: 0.94 0.98 0.87 0.89

Num parts: 64 Imbalance: 1.03

Fraction improved: 0.96 0.98 0.87 0.89

Num parts: 64 Imbalance: 1.05

Fraction improved: 0.96 0.98 0.85 0.91

Num parts: 64 Imbalance: 1.1

0.9

1.1
1.2
1.3
1.4
1.5

1.0
Fraction improved: 0.94 1.00 0.86 0.94

Num parts: 128 Imbalance: 1.03

Fraction improved: 0.94 1.00 0.88 0.94

Num parts: 128 Imbalance: 1.05

Fraction improved: 0.96 1.00 0.86 0.89

Num parts: 128 Imbalance: 1.1

PaToH-Q PaToH-D hMetis2 Zoltan

Figure 6: First half ( cut obtained using another algorithm
cut obtained using Zoltan-AlgD < 1.5) of SNAP-bench and

social-networks-bench (54 hypergraphs), with brown curve corresponding to Zoltan, aquamarine
to PaToH-Q, blue to PaToH-D, and orange to hMetis2. The improvements are with respect to the

whole big-bench, including those with improvement greater than 1.5

21



9.84
18.18
26.52
34.86
43.20

1.00

Num parts: 2 Imbalance: 1.03 Num parts: 2 Imbalance: 1.05 Num parts: 2 Imbalance: 1.1

2.94
4.38
5.82
7.26
8.70

1.00

Num parts: 4 Imbalance: 1.03 Num parts: 4 Imbalance: 1.05 Num parts: 4 Imbalance: 1.1

1.50
1.68
1.86
2.04
2.22
2.40

1.00

Num parts: 8 Imbalance: 1.03 Num parts: 8 Imbalance: 1.05 Num parts: 8 Imbalance: 1.1

1.50
2.26
3.02
3.78
4.54
5.30

1.00

Num parts: 16 Imbalance: 1.03 Num parts: 16 Imbalance: 1.05 Num parts: 16 Imbalance: 1.1

3.64
5.78
7.92

10.06
12.20

1.00

Num parts: 32 Imbalance: 1.03 Num parts: 32 Imbalance: 1.05 Num parts: 32 Imbalance: 1.1

4.14
6.78
9.42

12.06
14.70

1.00

Num parts: 64 Imbalance: 1.03 Num parts: 64 Imbalance: 1.05 Num parts: 64 Imbalance: 1.1

1.70
2.86
4.02
5.18
6.34
7.50

1.00

Num parts: 128 Imbalance: 1.03 Num parts: 128 Imbalance: 1.05 Num parts: 128 Imbalance: 1.1

PaToH-Q PaToH-D hMetis2 Zoltan

Figure 7: Second half ( cut obtained using another algorithm
cut obtained using Zoltan-AlgD ≥ 1.5) of SNAP-bench and

social-networks-bench (54 hypergraphs), with brown curve corresponding to Zoltan, aquamarine
to PaToH-Q, blue to PaToH-D, and orange to hMetis2 (greater is better).

22



0

1

2

3

4

5

6

7

8

9

Average: 3.47

Num parts: 128

Average: 2.47

Num parts: 256

0 39840 79680 119520 159360 199200
0

1

2

3

4

5

Average: 1.93

Num parts: 512

0 39840 79680 119520 159360 199200

Average: 1.52

Num parts: 1024

number of nonzeros (pins)

Figure 8: Ratio Zoltan-AlgD runtime
Zoltan runtime for the big-bench benchmark. Time is CPU time as reported by

zdrive.

23



stage of a multilevel algorithm. A serial iterative procedure for computing algebraic distances is
introduced and implemented within the multilevel hypergraph partitioning framework Zoltan. The
procedure results in a significant improvement (average of 34.3%) over the same framework without
algebraic distances, while decreasing the cut by more than two times for some hypergraphs. The
algorithm is shown to outperform other state-of-the-art partitioners as well.

The experimental results indicate that one may gain substantial performance improvements
through exploiting the global structure of highly irregular hypergraphs (e.g. social networks and
other hypergraphs with power-law degree distribution). Exploiting the spectral properties of the
hypergraph and its star expansion through some iterative procedure, like the one proposed in the
work, is one way to achieve the gain. There remains ample room for improvement for current
state-of-the-art hypergraph partitioners, particularly for the coarsening stage.

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant
no. 1522751. The authors would like to thank Clemson University for generous allotment of
computation time on Palmetto cluster and Palmetto support staff for technical assistance.

References

[1] Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag, Engineering a direct k-way hy-
pergraph partitioning algorithm, in 2017 Proceedings of the Ninteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), SIAM, 2017, pp. 28–42.

[2] C. J. Alpert and A. B. Kahng, Recent directions in netlist partitioning: a survey, Inte-
gration, the VLSI journal, 19 (1995), pp. 1–81.

[3] S. T. Barnard and H. D. Simon, Fast multilevel implementation of recursive spectral bi-
section for partitioning unstructured problems, Concurrency and computation: Practice and
Experience, 6 (1994), pp. 101–117.

[4] V. Batagelj and U. Brandes, Efficient generation of large random networks, Physical
Review E, 71 (2005), p. 036113.

[5] C.-E. Bichot and P. Siarry, Graph partitioning, John Wiley & Sons, 2013.

[6] M. Bolla, Spectra, euclidean representations and clusterings of hypergraphs, Discrete Math-
ematics, 117 (1993), pp. 19–39.

[7] A. Brandt and D. Ron, Chapter 1 : Multigrid solvers and multilevel optimization strategies,
in Multilevel Optimization and VLSICAD, J. Cong and J. R. Shinnerl, eds., Kluwer, 2003.

[8] W. L. Briggs, V. E. Henson, and S. F. McCormick, A multigrid tutorial, SIAM, 2000.

[9] A. Buluc and E. G. Boman, Towards scalable parallel hypergraph partitioning, in CSRI
Summer Proceedings 2008, Sandia National Labs, 2008, pp. 109–119.

24



[10] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, Recent advances in
graph partitioning, in Algorithm Engineering, Springer, 2016, pp. 117–158.

[11] Ü. Çatalyürek and C. Aykanat, Patoh (partitioning tool for hypergraphs), in Encyclopedia
of Parallel Computing, Springer, 2011, pp. 1479–1487.

[12] U. V. Catalyurek and C. Aykanat, Hypergraph-partitioning-based decomposition for paral-
lel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib. Syst., 10 (1999), pp. 673–
693.

[13] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdağ, R. T. Heaphy, and L. A.
Riesen, A repartitioning hypergraph model for dynamic load balancing, J. Parallel Distrib.
Comput., 69 (2009), pp. 711–724.

[14] T. Chan, A. Louis, Z. G. Tang, and C. Zhang, Spectral properties of hypergraph laplacian
and approximation algorithms, arXiv preprint arXiv:1605.01483, (2016).

[15] J. Chen and I. Safro, Algebraic distance on graphs, SIAM J. Sci. Comput., 33 (2011),
pp. 3468–3490.

[16] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Trans.
Math. Software, 38 (2011), p. 1.

[17] D. Delling, A. V. Goldberg, I. Razenshteyn, and R. F. Werneck, Graph partition-
ing with natural cuts, in Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE
International, IEEE, 2011, pp. 1135–1146.

[18] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek,
Parallel hypergraph partitioning for scientific computing, in Parallel and Distributed Processing
Symposium, 2006. IPDPS 2006. 20th International, IEEE, 2006, pp. 10–pp.

[19] K. D. Devine, V. Leung, E. G. Boman, S. Rajamanickam, L. A. Riesen, and
U. Catalyurek, Zoltan user’s guide, version 3.8.(2014), 2014.

[20] I. S. Dhillon, Y. Guan, and B. Kulis, Weighted graph cuts without eigenvectors: A
multilevel approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, 29
(2007), pp. 1944–1957.

[21] C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristic for improving network par-
titions, in Papers on Twenty-five years of electronic design automation, ACM, 1988, pp. 241–
247.

[22] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak mathematical journal, 23 (1973),
pp. 298–305.

[23] M. R. Gary and D. S. Johnson, Computers and intractability: A guide to the theory of
np-completeness, 1979.

[24] L. Hagen and A. B. Kahng, New spectral methods for ratio cut partitioning and clustering,
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 11 (1992), pp. 1074–1085.

25



[25] W. W. Hager, J. T. Hungerford, and I. Safro, A multilevel bilinear programming
algorithm for the vertex separator problem, Computational Optimization and Applications,
(2017).

[26] B. Hendrickson and R. W. Leland, A multi-level algorithm for partitioning graphs., SC,
95 (1995).

[27] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G.
Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, et al., An
overview of the trilinos project, ACM Trans. Math. Software, 31 (2005), pp. 397–423.

[28] S. Hu and L. Qi, Algebraic connectivity of an even uniform hypergraph, J. Comb. Optim., 24
(2012), pp. 564–579.

[29] Y. F. Hu and J. A. Scott, A multilevel algorithm for wavefront reduction, SIAM J. Sci.
Comput., 23 (2001), pp. 1352–1375.

[30] E. Ihler, D. Wagner, and F. Wagner, Modeling hypergraphs by graphs with the same
mincut properties, Inf. Process. Lett., 45 (1993), pp. 171–175.

[31] E. John and I. Safro, Single-and multi-level network sparsification by algebraic distance,
Journal of Complex Networks, 5 (2016), pp. 352–388.

[32] G. Karypis, R. Aggarwal, V. Kumar, S. Member, S. Shekhar, and S. Member,
Multilevel hypergraph partitioning: Application in vlsi domain, in In Proceedings ACM/IEEE
Design Automation Conference, 1997, pp. 526–529.

[33] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, Multilevel hypergraph partition-
ing: applications in vlsi domain, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 7 (1999),
pp. 69–79.

[34] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irreg-
ular graphs, SIAM J. Sci. Comput., 20 (1998), pp. 359–392.

[35] B. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell
Syst. Tech. J., 49 (1970), pp. 291–307.

[36] S. Lafon and A. B. Lee, Diffusion maps and coarse-graining: A unified framework for
dimensionality reduction, graph partitioning, and data set parameterization, IEEE Trans. Pat-
tern Anal. Mach. Intell., 28 (2006), pp. 1393–1403.

[37] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[38] S. Leyffer and I. Safro, Fast response to infection spread and cyber attacks on large-scale
networks, Journal of Complex Networks, 1 (2013), pp. 183–199.

[39] F. Lotfifar and M. Johnson, A multi–level hypergraph partitioning algorithm using rough
set clustering, in European Conference on Parallel Processing, Springer, 2015, pp. 159–170.

26

http://snap.stanford.edu/data


[40] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee,
Measurement and Analysis of Online Social Networks, in Proceedings of the 5th ACM/Usenix
Internet Measurement Conference (IMC’07), San Diego, CA, October 2007.

[41] U. Naumann and O. Schenk, Combinatorial Scientific Computing, Chapman & Hall/CRC,
1st ed., 2012.

[42] A. Y. Ng, M. I. Jordan, Y. Weiss, et al., On spectral clustering: Analysis and an
algorithm, in NIPS, vol. 14, 2001, pp. 849–856.

[43] D. A. Papa and I. L. Markov, Hypergraph partitioning and clustering., 2007.

[44] D. Ron, I. Safro, and A. Brandt, Relaxation-based coarsening and multiscale graph orga-
nization, Multiscale Modeling & Simulation, 9 (2011), pp. 407–423.

[45] I. Safro, D. Ron, and A. Brandt, Graph minimum linear arrangement by multilevel
weighted edge contractions, J. Algorithms, 60 (2006), pp. 24–41.

[46] I. Safro, P. Sanders, and C. Schulz, Advanced coarsening schemes for graph partitioning,
ACM Journal of Experimental Algorithmics (JEA), 19 (2015), pp. 2–2.

[47] I. Safro and B. Temkin, Multiscale approach for the network compression-friendly ordering,
J. Discrete Algorithms, 9 (2011), pp. 190–202.

[48] P. Sanders and C. Schulz, Engineering multilevel graph partitioning algorithms, in ESA,
C. Demetrescu and M. M. Halldórsson, eds., vol. 6942 of Lecture Notes in Computer Science,
Springer, 2011, pp. 469–480.

[49] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz, k-way
hypergraph partitioning via n-level recursive bisection, in 2016 Proceedings of the Eighteenth
Workshop on Algorithm Engineering and Experiments (ALENEX), SIAM, 2016, pp. 53–67.

[50] C. Staudt, A. Sazonovs, and H. Meyerhenke, Networkit: An interactive tool suite for
high-performance network analysis, CoRR, abs/1403.3005, (2014).

[51] A. Strehl and J. Ghosh, Cluster ensembles—a knowledge reuse framework for combining
multiple partitions, J. Mach. Learn. Res, 3 (2002), pp. 583–617.

[52] L. Sun, S. Ji, and J. Ye, Hypergraph spectral learning for multi-label classification, in Pro-
ceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining, ACM, 2008, pp. 668–676.

[53] A. Trifunovic, Parallel algorithms for hypergraph partitioning, University of London, 2006.

[54] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication, SIAM review, 47 (2005), pp. 67–95.

[55] D. Zhou, J. Huang, and B. Schölkopf, Learning with hypergraphs: Clustering, classifica-
tion, and embedding, in NIPS, vol. 19, 2006, pp. 1633–1640.

27


	Introduction
	Multilevel partitioning
	Our contribution

	Preliminaries
	Hypergraph partitioning
	Multilevel method

	Related work
	Spectral methods
	Multilevel methods

	Algebraic Distance on Hypergraphs
	Algorithm
	Convergence analysis
	Mutually influenced model

	Experimental Results
	Convergence
	Cut improvements

	Conclusions

