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A Decentralized Primal-Dual Framework for
Non-convex Smooth Consensus Optimization

Gabriel Mancino-Ball, Yangyang Xu, and Jie Chen

Abstract—In this work, we introduce ADAPD, A DecentrAlized
Primal-Dual algorithmic framework for solving non-convex and
smooth consensus optimization problems over a network of
distributed agents. The proposed framework relies on a novel
problem formulation that elicits ADMM-type updates, where
each agent first inexactly solves a local strongly convex subprob-
lem with any method of its choice and then performs a neighbor
communication to update a set of dual variables. We present
two variants that allow for a single gradient step for the primal
updates or multiple communications for the dual updates, to
exploit the tradeoff between the per-iteration cost and the number
of iterations. When multiple communications are performed,
ADAPD can achieve theoretically optimal communication com-
plexity results for non-convex and smooth consensus problems.
Numerical experiments on several applications, including a deep-
learning one, demonstrate the superiority of ADAPD over several
popularly used decentralized methods.

Index Terms—non-convex consensus optimization, decentral-
ized optimization, primal-dual method, decentralized learning.

I. INTRODUCTION

G IVEN a set of N agents connected by an
undirected network (graph) G = (V,E), where

V = {1, . . . ,N} denotes the set of agents and
E = {(i, j) : agent i is connected to agent j} denotes the set
of feasible local communications among agents, consensus
optimization methods solve the following problem using only
local computation and local communication,

min
x∈Rp

f (x) , 1
N

∑N
i=1 fi(x) (1)

where each fi : Rp → R is a differentiable, potentially non-
convex, cost function known only to agent i.

Problem (1) arises naturally in various scientific and engi-
neering applications such as distributed machine learning/fed-
erated learning [1]–[3], decentralized matrix factorization [4],
network sensing and localization [5]–[7], and multi-vehicle
coordination [8], to name a few. The decision variable x can
represent the weights of a neural network [1], the location of
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a particular object [8], or the state of a smart grid system [6],
for example. Essentially, any scenario in which data is either
too large or naturally distributed fits problem (1).

A. Problem Formulation
It is well known [6], [9] that if G is connected, the following

problem is equivalent to (1):

min
X

F(X) subject to WX = X (2)

where W is a mixing matrix [6], [10], [11] that satisfies the
conditions in Assumption 1 below, and

X ,
[
x1 . . . xN

]>
∈ RN×p, F(X) , 1

N

∑N
i=1 fi(xi), (3)

is the concatenation of local decision variables and the global
objective function, respectively, written in matrix notation.
Here, xi is agent i’s local copy of the global variable x,
and W ∈ RN×N represents the connectivity structure of the
network G.

Assumption 1: The mixing matrix, W ∈ RN×N , satisfies,
(i) (Decentralized property) wi j > 0 if (i, j) ∈ E, otherwise

wi j = 0,
(ii) (Symmetric property) W =W>,

(iii) (Null space property) null (I −W) = span{e}, where
e ∈ RN is the vector of all ones, and

(iv) (Spectral property) the eigenvalues of W lie in the range
(−1,1] and can be ordered as

−1 < λN (W) ≤ · · · ≤ λ2(W) < λ1(W) = 1.

Several common choices for mixing matrices are presented
in [6].

- Laplacian-based constant edge weight matrix,

W = I − L
τ (4)

where L is the Laplacian matrix of G and τ > 1
2λ1(L).

Here, λ1(L) is the largest positive eigenvalue of L. If the
eigenvalues of L are unknown, by the Gershgorin circle
theorem one can use τ = maxi∈V {|Ni |} + ε , for some
ε > 0, where Ni , { j : (i, j) ∈ E} is the set of agents that
can communicate with agent i.

- Metropolis constant edge weight matrix, for some ε > 0,

wi j =


1

max{ |Ni |, |Nj | }+ε
, (i, j) ∈ E,

0, (i, j) < E and i , j,
1 −

∑
k∈V wik, i = j .

(5)

- Symmetric fastest distributed linear averaging matrix,
(FDLA), which is a matrix that achieves the fastest infor-
mation diffusion through G and is obtained by solving a
semidefinite program [12].
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Note that the constraint formulation WX = X in (2) is not
the only choice for a consensus problem. Under Assumption 1,
an equivalent consensus constraint adopted by others [4], [13],
[14] is xi = xj for all (i, j) ∈ E . This constraint is an
edge-based constraint, whereas we consider a vertex-based
constraint. When a primal-dual approach is designed, if G
is dense, then a vertex-based constraint introduces fewer dual
variables than an edge-based constraint. Further, an optimal
W can be designed, given G [12].

A vital quantity for our analysis comes from the spectral
properties of G. We define

ρ ,
W − 1

N ee>


2
= max {|λ2 (W)| , |λN (W)|} ∈ [0,1). (6)

The metric in (6) is one way to measure the connectivity of
G, where ρ ≈ 0 implies good connectivity.

Under Assumption 1, particularly null
(√

I −W
)
= null

(
I −

W
)
= span{e}, a further equivalent reformulation to (1) is

min
X

F(X) subject to
√

I −WX = 0, (7)

where 0 ∈ RN×p is the matrix of all zeros. A benefit of this
formulation is that the constraint

√
I −WX = 0 can now be

incorporated into a penalty term, 1
2η

√I −WX
2

F
, where η >

0 is a penalty parameter. The gradient associated with this term
is 1

η (I −W)X, which can be computed by a single neighbor
communication.

One way to solve (7) is to form the augmented Lagrangian
with dual variables Y ,

[
y1 . . . yN

]> and perform a
primal-dual type update as in IDEAL [15]. The issue with this
approach is that the communication and computation phases
are inherently coupled, illustrated as follows. The classic
primal-dual updates at iteration k used to solve (7) are

Xk+1 = argmin
X

F(X) +
〈√

I −WYk,X
〉
+ 1

2η

√I −WX
2

F
,

√
I −WYk+1 =

√
I −WYk + 1

η (I −W)Xk+1. (8)

If a first-order method is used to solve the X subproblem,
then part of the gradient will contain WX at each gradient
computation, thus for every gradient computed, one neighbor
communication must be performed.

Another way to solve (7), as suggested by the Prox-PDA
method [4], is to introduce an additional proximal term of the
form 1

2η
X − Xk

2
B>B, where B>B = − (I −W)+D with some

diagonal matrix D. This negates the neighbor communication
required in the X subproblem of (8), but introduces a new pa-
rameter D that impacts this method’s numerical performance.

Interestingly, Prox-PDA with a special choice of B>B
recovers the distributed ADMM algorithm [16] for consensus
optimization with edge-based constraint; see the Supplemen-
tal Material for details. Hence, part of this work serves
to compare ADMM-type methods derived from using edge-
based constraints versus vertex-based constraints for solving
problem (1) in a decentralized manner. Our numerical findings
in Section IV indicate that our below derived inexact ADMM
gives better performance than distributed ADMM [16].

To remove the addition of D from Prox-PDA, yet still decou-
ple the communication and computation phases of traditional
primal-dual methods, we propose adding an extra variable (and

constraint), leading to the following formulation:

min
X,X0

F(X) subject to X = X0,
√

I −WX0 = 0. (9)

Governed now by two blocks of primal variables, a natural
approach to solve (9) would be to use an ADMM-type
update [17], [18], but as argued in Section II, the classic
ADMM cannot be implemented in a decentralized manner
to solve (9). Hence, we are motivated to design a method
that: (i) solves (9) using only decentralized communication
and local gradient computations and (ii) achieves the optimal
communication complexity results established in [19].

We state the technical assumptions on F below.
Assumption 2: The objective function F in (9) satisfies:

(i) F is L-smooth, i.e. there is 0 < L < ∞ such that

‖∇F(X) − ∇F(Y)‖F ≤ L ‖X − Y‖F , ∀ X,Y ∈ RN×p . (10)

(ii) F is lower bounded, i.e. there is f such that

−∞ < f ≤ F(X), ∀ X ∈ RN×p . (11)

The gradient of F, written in matrix notation, is

∇F(X) , 1
N

[
∇ f1(x1) . . . ∇ fN (xN )

]>
∈ RN×p . (12)

Note that the assumptions (10) and (11) are standard in non-
convex optimization. If each fi is Li-smooth then L ≥ maxi Li

and the lower boundedness assumption is equivalent to the
existence of a minimizer of F.

Before demonstrating a brief literature review, we state a
standard definition [4], [11], [19] for stationary points of (1).

Definition 1 (ε-stationary point): A matrix X ∈ RN×p is
called an ε-stationary point of (1) if 1

N

∑N
i=1 ∇ fi(x̄)

2

2
+

X − X̄
2
F ≤ ε (13)

where x̄ , 1
N e>X is the average vector across the N rows of

X and X̄ , 1
N ee>X is a matrix version of this same average.

B. Related Works

Distributed computing dates back decades ago to the sem-
inal work [20]. Centralized computing paradigms, where
W = 1

N ee> in (2) have been heavily studied; when each fi
is convex, methods such as ADMM [17] and FedAVG [21]
have theoretical convergence guarantees. The focus of this
paper is on decentralized computing paradigms. Methods
such as DGD [10] and the distributed subgradient method
in [22] have been shown to have sublinear convergence in the
convex differentiable and convex non-differentiable settings,
respectively. When strong convexity is assumed, the NEAR-
DGD [23] method improved the convergence result of DGD
by allowing for multiple communications during each itera-
tion. If fi has Lipschitz continuous gradient and is strongly
convex, ADMM [6] and Acc-DNGD-SC [24] exhibit linear
convergence. The EXTRA [6] method also exhibits linear
convergence if the global function f is restricted strongly
convex1. SSDA [9] and the recent distributed FGM [25]

1A convex, differentiable function h : Rp → R is restricted strongly convex
about a point x̃ with parameter µ > 0 if 〈∇h(x) − ∇h(x̃), x − x̃〉 ≥ µ ‖x − x̃‖22
for all x ∈ Rp .
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were designed for convex problems where the gradients of
the Fenchel conjugates2 of the objective functions fi are
computable, with the later providing complexity results when
only approximate gradients are computable. IDEAL [15] and
FlexPD [26] are recent primal-dual methods that perform
many, or just a few, local neighbor communications per local
primal update, respectively.

Of particular interest to us are algorithms dealing explicitly
with non-convex local cost functions, e.g. neural networks.
When each fi has Lipschitz continuous gradient, the celebrated
DGD [27] has been shown to converge using diminishing step-
sizes with a rate O

(
(1 − ρ)−2K−1) , where ρ is defined in (6)

and K is the iteration number. As indicated in the introduction,
Prox-PDA [4] is a primal-dual method that is closely related to
non-convex ADMM [28] which converges at a rate O

(
K−1) ,

but has superior numerical performance when compared to
DGD. SONATA/NEXT [7], [29] is a primal method that
exhibits the same convergence rate as Prox-PDA and incor-
porated a potentially non-smooth but convex regularizer into
the objective. While SONATA is applicable to a larger class of
problems, it needs to take step-sizes proportional to N−1 for
convergence; as N → ∞, SONATA’s performance can suffer
because of this requirement. If the Chebyshev communication
protocol [30] is used, SONATA additionally can achieve the
O

(
(1 − ρ)−0.5K−1) rate, but SONATA must communicate two

variables for every algorithm update. Both Prox-PDA and
SONATA require agents to solve a local strongly convex
subproblem. Our proposed framework can achieve a con-
vergence rate of O

(
(1 − ρ)−0.5K−1) when multiple neighbor

communications are performed; note this is optimal for the
class of smooth nonconvex problems [19].

Methods that use stochastic gradients have also been heav-
ily studied. Adapting DGD to stochastic updates yields D-
PSGD [2] which is shown to have a convergence rate of
O

(
K−0.5) . Recent works such as D2 [31], DSGT [32], and D-

GET [11] make use of stochastic gradient updates mixed with
a gradient tracking scheme and draw inspiration from their
non-stochastic and centralized counterparts [6], [33]. D2 im-
proves the convergence of D-PSGD, but requires more restric-
tive assumptions on the eigenvalues of W. The convergence
rate of DSGT was shown to be O

(
K−0.5 + (1 − ρ)−3K−1)

in [32] and later improved to Õ
(
K−0.5 + (1 − ρ2)−1K−1)

in [34]. D-GET is able to achieve a rate O
(
K−1) but re-

quires a full gradient computation every few iterations; GT-
SARAH [35] achieves the same rate but removes the full
gradient computation. The authors in [36] develop a primal-
dual method with convergence rate O

(
K−0.5) , where each

agent computes one local stochastic gradient per update. The
recent SPPDM [37] can also achieve a stochastic ε-stationary
point in O

(
ε−1) iterations using stochastic gradients and incor-

porates a potentially non-smooth but convex regularizer into
the objective; SPPDM requires a mini-batch of size Ω

(
ε−1) to

achieve this rate. We remark that our framework can exhibit
the optimal convergence rate when deterministic gradients are
used, yet we include relevant decentralized stochastic methods

2The Fenchel conjugate of a convex function h : Rp → R is h∗(y) ,
supx 〈x, y〉 − h(x).

here for sake of completeness.
Additional algorithms to consider are asynchronous algo-

rithms that do not require a synchronous communication step
and algorithms that use time-varying mixing matrices and/or
mixing matrices that do not satisfy Assumption 1. Some
prominent asynchronous algorithms include AD-PSGD [38],
the Asynchronous Primal-Dual method in [39], APPG [40],
and the asynchronous ADMM [13], [41]. Algorithms that
handle different network structures from those considered here
have also been considered: Push-Pull [42] handles directed
graphs and DIGing [43] is a gradient tracking algorithm
that works for network structures where W changes at every
iteration. While these scenarios are certainly interesting, we
focus on synchronous updates and undirected graphs.

C. Summary of Contributions

Our main contributions are listed below:
- We motivate the novel problem formulation of (9) for

solving the non-convex and smooth decentralized con-
sensus optimization problem. We propose ADAPD, A
DecentrAlized Primal-Dual algorithmic framework for
solving such problem. Our framework is based on per-
forming inexact ADMM-type updates by the augmented
Lagrangian function of problem (9). Two variants to our
framework: ADAPD-OG (ADAPD-One Gradient) and
ADAPD-MC (ADAPD-Multiple Communications) are
presented. ADAPD-OG performs a single gradient step
instead of inexactly solving a local strongly convex sub-
problem. ADAPD-MC allows each agent to communicate
multiple times with their neighbors for each update. These
variants allow for agents to optimize the balance between
performing local computation and local communication.

- We prove that ADAPD and ADAPD-OG converge to
an ε-stationary point, see (13), in O

(
L(1 − ρ)−2ε−1)

neighbor communications. When the MC variant is used,
this complexity is reduced to O

(
L(1 − ρ)−0.5ε−1) , which

is optimal for smooth, non-convex consensus optimization
problems [19]. For both ADAPD and ADAPD-OG, a key
ingredient of our analysis is defining a Lyapunov function
that decreases with every iteration.

- We compare ADAPD on several non-convex problems
to state-of-the-art methods such as DGD [27], Prox-
PDA [4], D-PSGD [2], DSGT [32], D-GET [11], and
SPPDM [37]. Four experiments are conducted in total:
two using deterministic gradients and two using stochastic
gradients. In all cases, ADAPD demonstrates numerical
superiority over these popularly used methods.

D. Notation

We use bold face letters such as X and x to denote a matrix
and a vector, respectively. Let xi j denote the element in the ith

row and j th column of the matrix X. The Frobenius norm of a
matrix is denoted ‖·‖F , while the Euclidean norm of a vector
is denoted ‖·‖2 . Define the standard matrix inner product of
A,B ∈ RN×p to be 〈A,B〉 ,

∑N
i=1

∑p
j=1 ai jbi j . For a given

symmetric matrix U ∈ RN×N , we denote ‖A‖2U , 〈A,UA〉 . If
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U is positive definite, then ‖A‖2U defines a norm. For square
matrices A,B ∈ RN×N , define the matrix inequality A 4 B to
hold if and only if B − A is positive semi-definite.

II. ADAPD FRAMEWORK

To solve (9), we employ the augmented Lagrangian function
with penalty parameter 0 < η < 1

L , which is

Lη(X,X0; Y,Z) = F(X) + 〈Y,X − X0〉 +
1

2η ‖X − X0‖
2
F

+
〈
Z,
√

I −WX0
〉
+ 1

2η

√I −WX0

2

F

(14)

with dual variables

Y ,
[
y1 . . . yN

]>
, Z ,

[
z1 . . . zN

]>
∈ RN×p . (15)

The classic ADMM [17] approach for solving (9) performs
the following updates using (14):

Xk+1 = argmin
X
Lη(X,Xk

0 ; Yk,Zk ) (16)

Xk+1
0 = argmin

X0

Lη(Xk+1,X0; Yk,Zk ) (17)

Yk+1 = Yk + β1
(
Xk+1 − Xk+1

0

)
(18)

Zk+1 = Zk + β2
√

I −WXk+1
0 (19)

where β1, β2 > 0 are the step-sizes for the dual variables.
Notice that in practice, the exact minimizer of (16) is

difficult to find; thus a natural alternative to (16) would be
to perform an inexact update to the local decision variable as
in [44], [45]. This would lead to a computationally efficient
way to solve the local subproblem (16) that fully utilizes local
computing power without overburdening the agents.

Further, notice that the optimal solution to (17) involves
solving

1
η

(
2I −W

)
X0 =

1
ηXk+1 + Yk −

√
I −WZk . (20)

It should be stated that
(
2I − W

)−1 exists (by Assump-
tion 1(iv)). However, it is not easy to solve in a decentralized
setting: since W is not diagonal, solving (17) would involve
another iterative method (e.g. Jacobi method), which may
require many communications to find the exact minimizer. To
remedy this, we note that (20) is a linear equation and apply
a simple split for the unknown X0:

1
η 2Xk+1

0 − 1
ηWXk

0 =
1
ηXk+1 + Yk −

√
I −WZk . (21)

Remarkably, such a rough estimate for solving the X0 subprob-
lem based on the past iterate Xk

0 still guarantees convergence,
based on the following intuition. Let X̂k+1

0 be the solution
of (20). Then the one gradient step in (21) replaces the
unknown term WX̂k+1

0 by WXk
0 . Our analysis will show that

Xk+1
0 − Xk

0 → 0. Hence, the one-step gradient descent update
will become a close approximation to the exact update, and
thus it can still guarantee convergence.

Additionally, the Z update in (19) cannot be implemented in
a decentralized manner, as

√
I −W in general will not preserve

the underlying network topology. However, notice that if Z0 ∈
range(

√
I −W), then Zk ∈ range(

√
I −W), for all k ≥ 0 from

(19). Hence, we can multiply
√

I −W to the left of all terms
in (19) and obtain the equivalent update

√
I −WZk+1 =

√
I −WZk + 1

η (I −W)Xk+1
0 . (22)

Doing so allows us to use Z̃k =
√

I −WZk to simplify all
relevant terms in (21) and (22).

To summarize, defining β1 = β2 =
1
η , we propose the

following modifications to (16)-(19):

Xk+1 ≈ argmin
X
Lη(X,Xk

0 ; Yk,Zk ) (23)

Xk+1
0 = 1

2

(
WXk

0 + Xk+1 + η
(
Yk − Z̃k

) )
(24)

Yk+1 = Yk + 1
η

(
Xk+1 − Xk+1

0

)
(25)

Z̃k+1 = Z̃k + 1
η (I −W)Xk+1

0 . (26)

On the surface, there are two multiplications with W in (23)-
(26). However, they involve the same variable X0 differing in
only two consecutive iterations. This implies that except for
the first iteration, our framework requires only one multipli-
cation by W per iteration and hence only one communication
among agents (for networks where multiple communications
are permitted, see Section II-A).

We make two remarks on the solution of the local subprob-
lem (23).

Remark 1: For η < 1
L , the X update performed in (23)

is accomplished by inexactly solving the following strongly
convex local subproblem for all agents i = 1, . . . ,N ,

minxi fi(xi) +
〈
yki ,xi − xk0,i

〉
+ 1

2η

xi − xk0,i
2

2
, (27)

where the inexactness is quantified by the following error
quantities. We require rk+1

i

2
2 ≤

εk+1
N , with

rk+1
i , ∇ fi(xk+1

i ) + yki +
1
η (x

k+1
i
− xk0,i), ∀k ≥ 0,

(28)

to hold for the local error at iteration k and for the cumulative
error we require, ∑∞

k=1 εk+1 = O (1 − ρ) . (29)

Remark 2: Similar to the results in [46], we can require,

E
[rk+1

i

2
2

]
≤
εk+1
N , ∀k ≥ 0, and (29) (30)

and the theoretical results are not significantly affected. This
allows for stochastic solvers to be used by each local agent.
From an agent’s point of view, (23)-(26) can be summarized
in Alg. 1 below.

Recall that we obtain a unique sequence {Zk}K
k=1 in

range
(√

I −W
)

from the generated Z̃-sequence. Therefore,
without causing confusion, we can use the corresponding
Z-sequence in our analysis. Notice that our framework is
sufficiently flexible to allow each agent to use different local
subroutines to solve (27). In networks where the comput-
ing power of the agents differs vastly (see, e.g. [1]), this
flexible framework allows for agents with higher compute
capabilities to fully utilize their compute power whereas agents
with lower compute capabilities are not expected to utilize
heavy optimization tools to solve their local subproblems.
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Algorithm 1: ADAPD (agent view)

Input: X0, X0
0, Y0, Z̃0 =

√
I −WZ0 with

Z0 ∈ range
(√

I −W
)
, K , η > 0, a non-increasing

sequence {εk }Kk=1.

1 for k = 0, . . . ,K − 1 do
2 for i = 1, . . . ,N in parallel do
3 Update xi until

rk+1
i

2
2 ≤

εk+1
N with rk+1

i in (28)
4 if k = 0 then
5 xk+1

0,i ←
1
2

(∑
j∈Ni∪{i } wi jxk0, j + xk+1

i + η(yki − z̃ki )
)

6 else
7 xk+1

0,i ←
1
2

(
xk+1
i + xk0,i + η(y

k
i − 2z̃ki + z̃k−1

i )

)
8 yk+1

i ← yki +
1
η

(
xk+1
i − xk+1

0,i

)
9 z̃k+1

i ← z̃ki +
1
η (1 − wii)xk+1

0,i −
1
η

∑
j∈Ni

wi jxk+1
0, j

We now describe two variants/modifications to Alg. 1 that
can be employed if the computational constraints and/or the
communication constraints are relaxed.

A. Framework Variants

1) Computation Variant: In scenarios where agents may
face a lack of computational resources to solve (27), it may
be inefficient to compute ∇ fi(·) many times. To remedy this,
we propose ADAPD-OG (One Gradient), which requires each
agent to only compute a single gradient during every iteration.
More precisely, we do the update:

Xk+1 = Xk
0 − η

(
∇F(Xk ) + Yk

)
. (31)

Notice that if x̂k+1
i is the exact solution of (27), then X̂k+1 =

Xk
0 − η

(
∇F(X̂k+1) + Yk

)
, which is a backward step because

∇F(X̂k+1) is unknown. The update in (31) is a forward step.
Since we can show ‖Xk+1 − Xk ‖F → 0, the forward step
will eventually be a close approximation of the backward
step, and thus we can expect convergence. Alg. 2 displays
the pseudocode of ADAPD-OG.

Algorithm 2: ADAPD-OG (agent view)

Input: X0, X0
0, Y0, Z̃0 =

√
I −WZ0 with

Z0 ∈ range
(√

I −W
)
, K , η > 0.

1 for k = 0, . . . ,K − 1 do
2 for i = 1, . . . ,N in parallel do
3 xk+1

i ← xk0,i − η
(
∇ fi(xki ) + yki

)
4 Perform lines 4 - 9 in Alg. 1 to update xk+1

0,i ,y
k+1
i ,

and zk+1
i

2) Communication Variant: For convergence, it may be
practical to allow agents more than one communication dur-
ing each ADAPD update. We denote the following multiple
communication modification (either to Alg. 1 or Alg. 2)
with appending an “-MC” (Multiple Communications) to the
algorithm name.

As stated in the introduction, our analysis depends on the
value of ρ which measures how quickly an average value
can be computed in a decentralized manner. In a centralized
computing paradigm, where each agent is allowed to com-
municate with all other agents either directly or via a central
server, the mixing matrix W can be replaced by the averaging
matrix 1

N ee>. In this instance ρ = 0, which can lead to
the fastest convergence for our algorithm in both theory and
practice. However, by Assumption 1(i), the communication
pattern of the agents is limited to performing only neighbor
communications.

One straightforward modification to improve our method’s
dependence on ρ is to replace W by WR (R denotes a
power, not an iteration number here) for the Z̃ update in
(26) and the computation of X1

0, where R ≥ 1 is an inte-
ger. Notice that WR satisfies Assumption 1(ii)-(iv). Thus all
our theoretical results hold for this MC modification. Since
ρ(WR) = ‖WR − 1

N ee>‖2 = ρ(W)R, this MC modification
can lead to a smaller ρ if R > 1. However, if ρ(W) is
very close to one, R needs to be very large in order to push
ρ(WR) to zero. For this case, more efficient methods have
been proposed in the literature for distributed averaging [30],
[47], [48]. We employ the Chebyshev accelerated method
considered in [30]. The pseudocode is shown in Alg. 3. While
the Chebyshev acceleration is called at iteration k of ADAPD-
MC or ADAPD-OG-MC, the input A0 will be Xk+1

0 .

Algorithm 3: Chebyshev acceleration
Input: W,A0,A1 =WA0, R.

1 Compute the step-sizes µ0 = 1, µ1 =
1
ρ

2 for r = 1, . . . ,R do
3 µr+1 ←

2
ρ µr − µr−1

4 Ar+1 ← 2µr
ρµr+1

WAr −
µr−1
µr+1

Ar−1

Output: AR

The following lemma shows that the properties in Assump-
tion 1(ii)-(iv) still hold for the operator used in the Chebyshev
acceleration and provides an explicit convergence rate for
Alg. 3. For a proof, see the proof of Theorem 4 in [9] and
Corollary 6.1 in [30].

Lemma 1: The output of Alg. 3 can be represented as
AR = P (W,R)A0, where P (W,R) is a degree-R polynomial
of W and satisfies Assumptions 1(ii)-(iv). Additionally, we
have that ĀR = Ā0 , Ā for any R andAR − Ā


F
≤ 2

(
1 −

√
1 − ρ

)R A0 − Ā

F
. (32)

We note that employing Alg. 3 is only feasible if either: (i)
the communication pattern is so sparse that consensus error is
the main bottleneck for convergence, or (ii) communication
cost is low relative to the computation cost, meaning that
agents can communicate faster than they can compute. In prac-
tice, it is suggested that agents find a balance that distributes
work evenly between communication and computation.

III. THEORETICAL GUARANTEES

Our theoretical analysis draws from decentralized analytical
methods such as [4], [27] and classical non-convex ADMM
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analyses, as in [18]. We first show the change in the augmented
Lagrangian function value after one ADAPD iteration, i.e.
(23)-(26). Then we define a Lyapunov function and use it to
show convergence. A crucial quantity for our analysis is

Vk
0 ,

(
Xk+1

0 − Xk
0

)
−

(
Xk

0 − Xk−1
0

)
. (33)

We define X−1
0 , X0

0, to ensure that Vk
0 is defined for all k ≥ 0.

In the convergence analysis of Alg. 1, we will make consistent
use of the following two facts.

Fact 1 (Peter-Paul and Young’s Inequality): For any A,B ∈
RN×p , for any δ > 0 and i = 1, . . . ,m, we have,

〈A,B〉 ≤ δ
2 ‖A‖

2
F +

1
2δ ‖B‖

2
F , (34)∑m

i=1 Ai

2
F
≤ m

∑m
i=1 ‖Ai ‖

2
F . (35)

A. Convergence Results of ADAPD

The first step in the analysis creates an equivalence expres-
sion among the dual and primal variables. The proofs of all
lemmas are located in the Supplementary Material.

Lemma 2: For all k ≥ 0, the dual variables in (25) and (26)
can be expressed as

√
I −WZk = Yk − 1

ηW(Xk
0 − Xk−1

0 ) (36)

Yk = Rk − ∇F(Xk ) − 1
η (X

k
0 − Xk−1

0 ) (37)

where Rk ,
[
rk1 . . . rkN

]> for rki defined in (28) for all
i = 1, . . . ,N .

Next, we characterize the change of the augmented La-
grangian function value after one ADAPD iteration.

Lemma 3: Let {(Xk,Xk
0 ; Yk,Zk)} be obtained from Alg. 1

or equivalently by updates (23)-(26) such that (28) holds. If
η < 1

2L , then it holds for all k ≥ 0 that

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk+1) − Lη(Xk,Xk

0 ; Yk,Zk )

≤
2Lη−1

2η
Xk+1 − Xk

2
F +

εk+1
2L −

1
2η

Xk+1
0 − Xk

0

2

F

+ η
Yk+1 − Yk

2
F + η

Zk+1 − Zk
2
F .

(38)

Notice that the inequality in (38) does not imply the non-
increasing monotonicity of the augmented Lagrangian function
at the generated iterates. Below, we bound the dual variable
change by the primal variable change and the Vk

0 term. Then
we establish another inequality and add it to (38) to build a
non-increasing Lyapunov function.

Lemma 4: Under the assumptions of Lemma 3, it holds
that for all k ≥ 0,

η
Yk+1 − Yk

2

F
≤ 4L2η

Xk+1 − Xk
2

F
+ 4
η

Vk
0

2

F
+ 8ηεk, (39)

η(1 − ρ)
Zk+1 − Zk

2

F
≤ 8L2η

Xk+1 − Xk
2

F
+ 10

η

Vk
0

2

F
+ 16ηεk,

(40)

where Vk
0 is defined in (33).

Lemma 5: For all k ≥ 0, the following relation holds

1
2η

(√I −WXk+1
0

2

F
+

√I −W(Xk+1
0 − Xk

0 )
2

F

)
− 1

2η

√I −WXk
0

2

F

+ 1
2η

(Vk
0

2

W
+

Xk+1
0 − Xk

0

2

W
−

Xk
0 − Xk−1

0

2

W

)
≤ (L − 1

2η )
Xk+1

0 − Xk
0

2

F
+ L

2
Xk+1 − Xk

2
F

+ 1
2η

Xk
0 − Xk−1

0

2

F
− 1

2η

Vk
0

2

F
+ 2

L εk

(41)

where Vk
0 is defined in (33).

Using Lemmas 4 and 5, we are ready to build a non-
increasing Lyapunov function as follows.

Lemma 6: Let {(Xk,Xk
0 ; Yk,Zk)} be obtained from Alg. 1

or equivalently by updates (23)-(26) such that (28) holds. If
η < 1

2L , then

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk+1) + C

2η

√I −WXk+1
0

2

F

+ C
2η

Xk+1
0 − Xk

0

2

F

≤ Lη(Xk,Xk
0 ; Yk,Zk ) + C

2η

√I −WXk
0

2

F
+ C
η

Xk
0 − Xk−1

0

2

F

+
(
(8L2(1−ρ)+16L2)η2+(C+2)L(1−ρ)η−(1−ρ)

2(1−ρ)η

) Xk+1 − Xk
2

F

+
(

2CLη−C−1
2η

) Xk+1
0 − Xk

0

2

F

+
(1−ρ)+(32L+16L(1−ρ))η+4C(1−ρ)

2L(1−ρ) εk .

(42)

for all k ≥ 0, where C ≥ 20+8(1−ρ)
(1−ρ)2 is a fixed constant.

For the rest of the analysis, we fix C , 28
(1−ρ)2 as used in

Lemma 6, define the Lyapunov function:

Φ
k , Lη(Xk,Xk

0 ; Yk,Zk ) + C
2η

√I −WXk
0

2

F
+ C
η

Xk
0 − Xk−1

0

2

F
.

(43)
We show the lower boundedness of this Lyapunov function in
the following proposition and use this to obtain the conver-
gence of Alg. 1.

Proposition 1: Under Assumptions 1 and 2, let
{(Xk,Xk

0 ; Yk,Zk)} be obtained from Alg. 1 or equivalently by
updates (23)-(26) such that (28) and (29) hold. Choose C and
η such that

C = 28
(1−ρ)2 and η < 1

2CL . (44)

Then the Lyapunov function (43) is uniformly lower bounded.
More specifically, for all k ≥ 0,

Φ
k ≥ φ := f − (1−ρ)+(32L+16L(1−ρ))η+4C(1−ρ)

2L(1−ρ)
∑∞

k=0 εk − 1 > −∞,
(45)

where we take ε0 = ε1 and f is defined in Assumption 2.

We are now in position to prove the convergence rate results
of ADAPD.

Theorem 1: Under the same conditions assumed in Propo-
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sition 1, it holds that

C1
K

∑K−1
k=0

(Xk+1 − Xk
2
F +

Xk+1
0 − Xk

0

2

F

)
≤
∆Φ
K +

(32L+16L(1−ρ))η+(4C+1)(1−ρ)
2L(1−ρ)K

∑K−1
k=0 εk,

(46)

where ∆Φ , Φ0 − φ and

C1 ,
1−2CLη

2η . (47)

Theorem 2 (Convergence of ADAPD): Under the same
conditions assumed in Proposition 1, it holds

1
K

∑K−1
k=0

(∇ f (x̄k+1)
2

2 +
Xk+1 − X̄k+12

F

)
≤
((2L2+1)C2+C4)∆Φ

KC1
+
(192L2+96)η2

KC1(1−ρ)2
∑K−1

k=0 εk

+
((2L2+1)C2C3+C3C4+4C1)

KC1

∑K−1
k=0 εk (48)

where C1 is defined in (47), C2 , 208
(1−ρ)2 , C3 ,

(32L+16L(1−ρ))η+(4C+1)(1−ρ)
2L(1−ρ) , C4 ,

16
η2 , x̄k , 1

N

N∑
i=1

xki , and

X̄k , 1
N ee>Xk .

Remark 3: Let k0 = argmin
1≤k≤K

(∇ f (x̄k)
2

2 +
Xk′ − X̄k

2
F

)
.

Then
∇ f (x̄k0 )

2
2 +

Xk0 − X̄k0
2
F
= O

(
1
K

)
. Hence, in order to

produce an ε-stationary point as defined in Definition 1, we
need K = O

(
1
ε

)
iterations. Furthermore, notice that all the

problems in (27) are smooth and strongly convex. The steepest
gradient method has linear convergence to solve such prob-
lems. Hence, to produce xk+1

i as a εk+1
N -accurate solution of the

problem in (27), it needs O
(
log N

εk+1

)
gradient evaluations for

each i = 1, . . . ,N . Choose εk+1 =
ε0

(k+1)γ for all k ≥ 0 and for
some γ > 1 where ε0 = O (1 − ρ). Then {εk+1} is summable,
and the total gradient evaluations to produce an ε-stationary
point of (1) would be

∑K−1
k=0 O (log N(k + 1)γ) = O

(
1
ε log N

εγ

)
.

B. Convergence Results of ADAPD-OG

The convergence rate results of the ADAPD-OG follow the
same logic as the results for ADAPD, hence all supporting
Lemmas and proofs are located in the Supplementary Material.
Notice that (37) is no longer a valid relation when Alg. 2 is
used. Instead, we have the following from (25) and (31):

Yk = −∇F(Xk−1) − 1
η

(
Xk

0 − Xk−1
0

)
,∀ k ≥ 0. (49)

As in the analysis for ADAPD, we define X−1
0 , X0

0 and
further define X−1 , X0. We have the following result.

Theorem 3 (Convergence of ADAPD-OG): Under Assump-
tions 1 and 2, let {(Xk,Xk

0 ; Yk,Zk)} be obtained from Alg. 2
or equivalently by (31) and (24)-(26). Choose Ĉ and η such
that

Ĉ , 16
(1−ρ)2 and η < 1

2ĈL
. (50)

Then, it holds

1
K

∑K−1
k=0

(∇ f (x̄k+1)
2

2 +
Xk+1 − X̄k+12

F

)
≤

(
(2L2+1)Ĉ2+Ĉ3

)
∆
Φ̂

Ĉ1K

where Ĉ1 ,
L

(1−ρ)2 ≤
(1−ρ)−(Ĉ+1)L(1−ρ)η−((1−ρ)+1)4L2η2

2(1−ρ)η , Ĉ2 ,

112
(1−ρ)2 , Ĉ3 ,

8
η2 , ∆Φ̂ , Φ̂

0 − f + 1, x̄k , 1
N

N∑
i=1

xki , and X̄k ,

1
N ee>Xk .

Remark 4: Theorems 2 and 3 give the convergence results
in terms of the constants C1,C2,C3, and C4 for Alg. 1 (or
Ĉ1, Ĉ2, Ĉ3, and Ĉ4 for Alg. 2) which depend on C (Ĉ) and
η, and in turn depend on L and ρ. To make this dependency
clearer, we use the O (·) notation to give dependency only
in terms of L, ρ, and the algorithm iteration number K . For
Alg. 1, using (29), and for Alg. 2, we have

1
K

∑K−1
k=0

(∇ f (x̄k+1)
2

2 +
Xk+1 − X̄k+1

2
F

)
= O

(
L

(1−ρ)2K

)
.

(51)

C. Complexity Analysis

We now give a complexity analysis for Alg.’s 1 and 2
regarding the number of primal gradient computations and
neighbor communications each method must perform to find
an ε-stationary point (see Definition 1); we refer to these
quantities as the computation and communication complexi-
ties, respectively. This leads to the following corollaries, whose
proofs are in the Supplementary Materials.

Corollary 1 (Complexity results of ADAPD): Under the
same conditions assumed in Theorem 2, if steepest gradient
descent is used to solve the subproblem (27), such that
conditions (28) and (29) hold, then Alg. 1 can produce an
ε-stationary point in respectively

Õ

(
L

(1−ρ)2ε

)
and O

(
L

(1−ρ)2ε

)
(52)

gradient computations3 and neighbor communications.

Corollary 2 (Complexity results of ADAPD-OG): Under the
same conditions assumed in Theorem 3, Alg. 2 can produce
an ε-stationary point in

O

(
L

(1−ρ)2ε

)
(53)

gradient computations and neighbor communications.

Corollaries 1 and 2 show that both ADAPD and ADAPD-
OG depend upon the quantity (1 − ρ)−2 in terms of the
number of communications required to achieve ε-stationarity.
To improve this to the optimal communication complexity in
terms of the dependence on ρ (see, e.g. [9]), we have the
following theorem.

Theorem 4 (Complexity results of ADAPD-MC): Under
the same conditions assumed in Theorem 2, let R = d 2√

1−ρ
e

iterations of the Chebyshev acceleration Alg. 3 be performed
during the line 9 update of Alg. 1. Then Alg. 1 can produce

an ε-stationary point in Õ
(
L
ε

)
and O

(
L√

1−ρε

)
gradient com-

putations and neighbor communications, respectively.

3The Õ(·) hides a log dependency on ε here.
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Theorem 5 (Complexity results of ADAPD-OG-MC): Under
the same conditions assumed in Theorem 3, let R = d 2√

1−ρ
e

iterations of the Chebyshev acceleration Alg. 3 be performed
during the line 9 update of Alg. 2. Then Alg. 2 can produce

an ε-stationary point in O
(
L
ε

)
and O

(
L√

1−ρε

)
gradient com-

putations and neighbor communications, respectively.

IV. NUMERICAL EXPERIMENTS

We test our proposed methods on several non-convex
problems: (i) a binary classification problem using logistic
regression with a non-convex regularizer, (ii) a multi-target
cooperative localization problem, and (iii) two image classi-
fication problems using convolutional neural networks. The
experiments serve to verify both the flexibility of our methods,
as well as their numerical superiority over other decentralized
optimization methods. Implementations of our methods are
made available at https://github.com/RPI-OPT/ADAPD.

For experiments (i) and (ii), we compare our methods to
DGD with a diminishing step-size [27] and the single gradient
version of Prox-PDA, called Prox-GPDA [4]. We also ran
experiments with Prox-PDA but found no advantage over
using Prox-PDA versus Prox-GPDA; since Prox-GPDA only
requires one gradient computation per update, we use this as
a baseline. For Alg. 1, we use εk =

ε̂
(k+1)d in (28) where ε̂

and d are tuned from a fixed set of values and solve each
agent’s local problem (27) by the FISTA [49] method. For
experiment (iii), we compare to D-PSGD [2], DSGT [32], D-
GET [11], a single stochastic gradient implementation of Prox-
PDA [4], and SPPDM [37]. For all experiments, we fix a set
of penalty parameters/step-sizes and optimize each algorithm
over this set, choosing whichever penalty/step-size performs
the best. For all methods besides Prox-(G)PDA and SPPDM,
we use the same mixing matrix, which will be described in
each subsection below. For Prox-(G)PDA, we take W to be
the formulation as given in [4] (see equation (23) in [4] and
the discussion that follows) and for SPPDM, we use the graph
Laplacian as stated in their problem formulation.

A. Non-convex Regularized Logistic Regression

We consider the non-convex decentralized binary classifica-
tion problem [4], [46]. Utilizing a logistic regression formu-
lation, the local agent cost functions are given by,

fi(xi) = 1
mi

∑mi

j=1 log
(
1 + exp(−bj

〈
xi,aj

〉
)
)
+

∑D
d=1

α(xi [d])2
1+(xi [d])2

(54)

where xi[d] denotes the dth component of the vector xi . Given
a set of data {(aj, bj)}

mi

j=1 for all i = 1, . . . ,N , where bj ∈

{−1,+1} denotes a particular class label, (54) can be used to
perform binary classification and the non-convex regularizer,∑D

d=1
α(xi [d])2
1+(xi [d])2

helps to promote sparsity on the solutions. We
use the a9a dataset [50], [51] which consists of 32,561 training
data points and 16,281 testing data points. Each data point
aj ∈ R

123 contains numerical features about adults from the
1994 Census database and bj indicates whether or not the
adults earn more or less than $50,000 per year. We fix N = 50

for this experiment and simulate agent connectivity in two
ways: (i) using a ring-structured graph and (ii) using a random
Erdös Rényi graph, with connection probability equal to 0.3
(i.e. each agent is connected to roughly 15 other agents).

For the ring-structured graph, we choose W to be

wi j =


1
2 , i = j,
1
4 , (i, j) ∈ E and i , j,
0, otherwise,

and for the random Erdös Rényi graph, we use the Laplacian-
based constant edge weight matrix from (4). We vary α ∈
{0.01,1.0} to study the effect that the non-convex term has
on each agent’s local subproblem. For all runs, we fix the
communication budget to 500 neighbor communications. Ad-
ditionally, we compare ADAPD-MC and ADAPD-OG-MC to
the other methods. We perform 5 iterations of the Chebyshev
acceleration in Alg. 3 during every outer iteration of Alg. 1
for ADAPD-MC and 2 iterations for ADAPD-OG-MC. This
means we only compute 250 gradients for ADAPD-OG-MC,
to keep with the 500 communication budget. We report the ε-
stationarity violation (13) for the following four scenarios: (i)
the random Erdös Rényi graph with α = 1.0, (ii) the random
Erdös Rényi graph with α = 0.01, (iii) the ring graph with
α = 1.0, and (iv) the ring graph with α = 0.01.

From Figure 1, it is evident that when the communication
pattern is sparse (i.e. the two rightmost plots), performing
multiple communications and multiple local updates can re-
duce the stationarity violation faster over performing just one
neighbor communication or just one local update. When the
communication pattern is not too sparse (i.e. the two leftmost
plots), ADAPD-OG performs significantly better and requires
fewer gradients than the other methods compared here. In all
cases, ADAPD and it’s variants outperform DGD and Prox-
GPDA.

B. Multi-Target Cooperative Localization

Multi-target cooperative localization is a target locating
problem [5]: given only a noisy distance metric, can N agents
locate NT common targets? Let {ωi}

N
i=1 be a set of locations

of the agents, i.e. ωi ∈ R
2 for all i = 1, . . . ,N . Then the local

objective function for each agent is given by

fi(xi) = 1
4
∑NT

t=1

(
ξi,t − ‖xi[t] − ωi ‖

2
2

)2
(55)

where ξi,t is a random variable that represents a noisy distance
metric, and xi =

[
xi[1]> . . . xi[NT ]

>
]>
∈ R2NT is a

stacking of the vectors {xi[t]}NT

t=1. Note that (55) is indeed
non-convex, but it is not globally L-smooth for any L ≥ 0.
However, we still find this problem is valuable to test our
methods. Denote the true targets as x∗[t] for all t = 1, . . . ,NT ;
these are used to generate ξi,t for all i and t by computing
ξi,t = ‖x∗[t] − ωi ‖

2
2 + εi,t where εi,t is drawn from a normal

distribution with mean 0 and variance σ2 > 0. For all of our
experiments we set σ2 = 0.01. We simulate agent connectivity
by randomly generating N = 50 agents in [−1,1]×[−1,1] grid
and creating an edge between agents if the Euclidean distance
between them is less than or equal to 0.3. Each coordinate in

https://github.com/RPI-OPT/ADAPD
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Fig. 1. Stationarity violation for the non-convex logistic regression problem (in order from left to right): random Erdös Rényi graph with α = 1.0, random
Erdös Rényi graph with α = 0.01, ring-structured graph with α = 1.0, and ring-structured graph with α = 0.01.

the targets {x∗[t]}NT

t=1 is drawn independently from a normal
distribution with mean 0 and variance 0.1. Figure 2 shows the
connectivity of the agents, as well as an example of target
locations.

For this example, W is chosen to be the Laplacian-based
constant edge weight matrix from (4). We randomly generate
NT = 5 targets and limit the communications to be 1,500 for
all algorithm runs, with all methods starting from the same
initial point. Since the targets are randomly generated for each
experiment, we perform 10 independent trials and plot the
mean results, with an associated 95% confidence interval.

Figure 2 shows that in terms of stationarity violation,
ADAPD is superior to DGD and Prox-GPDA. Using only 20%
more gradient computations on each agent, ADAPD is able to
both solve the localization problem and find the true targets
with fewer communications than the other methods. Addi-
tionally, ADAPD-OG utilizes the same number of gradient
computations and neighbor communications as Prox-GPDA
and DGD, but still performs better.

C. Convolutional Neural Networks

For these experiments, we fix N = 8 agents and use
a ring-structured graph where self-weighting and neighbor
weighting is set to be 1

3 . We train the models on a cluster
of 8 NVIDIA Tesla V100 GPUs, where each GPU represents
an agent. PyTorch is used in the training of the models and
OpenMPI is used to perform the neighbor communication of
the neural network weights. All experiments are performed
with 10 different initial starting points. We report the average
results, as well as a 95% confidence interval taken over the
10 trials.

1) MNIST: The first Convolutional Neural Network (CNN)
experiment we perform is training LeNet [52] on the MNIST
dataset. We make the activation function for each layer the
hyperbolic tangent function to ensure smoothness of the local
objective functions. Since methods like DSGT [32] and D-
GET [11] require multiple neighbor communications during
each update, we instead fix the number of epochs for this
experiment to 50 and fix the mini-batch size to 64 for all
methods. We randomly generate 10 sets of initial points for the
agents and report the average of all relevant metrics, as well as
a 95% confidence interval. For ADAPD and ADAPD-OG, we
simply replace the full gradient computation by a stochastic
gradient during each local agent update. It is worth noting that
neither ADAPD, nor Prox-PDA, have theoretical convergence
guarantees in this experimental setting. Nonetheless, we see

impressive results for this problem and thus include it. To see
the effect of stochasticity here, we run the ADAPD in Alg. 1
by computing both one and two stochastic gradients during
line 3. For Prox-PDA, we compute one stochastic gradient
step. Similar to [2], we report the stationarity violation for all
methods, as well as the training loss and testing accuracy using
the average of the local agent’s weights4. In practice, this is not
feasible due to the decentralized communication pattern, how-
ever, an average model can be obtained after all local training
has been done by performing many neighbor communication
rounds [12]. Note that the training loss reported here is not
scaled by 1

N to facilitate a fair comparison with standard CNN
training methods (i.e. centralized training).

Additionally, we report the wall-clock time taken to reach
and stay above 97% testing accuracy for the MNIST image
classification problem in Table I. This value comes from se-
lecting the highest whole number of testing accuracy that most
methods exceed. D-GET does not achieve this accuracy in the
alloted amount of epochs. The “Samples” column indicates
the amount of data visited by each agent to achieve the 97%
testing accuracy and the “Communications” column indicates
the corresponding number of communications performed by
each agent (for D-GET, these values are simply the total
numbers used during training). We also include each method’s
highest testing accuracy in the last column.

While D-GET is able to achieve the lowest stationarity
violation, the training loss and testing accuracy indicate it
does not converge to a solution that solves the classification
problem well. Figure 3 and Table I show that both ADAPD
and ADAPD-OG outperform competitors in terms of testing
accuracy, suggesting that ADAPD is able to find a solution that
generalizes better than other methods. Additionally, Table I
shows that ADAPD (with 2 SGD steps) and ADAPD-OG
require far fewer communications to achieve a high testing
accuracy. In a network setting where communication time
dominates the computation time, ADAPD and its variants can
outperform the competitors.

2) CIFAR-10: The second CNN experiment we perform
is training the ALL-CNN model [53] on the CIFAR-10
dataset [54]. We add batch normalization after every ReLU
activation function and perform no data augmentation prior to
training. For these experiments, we fix the mini-batch size to
128 for all methods and limit the number of updates so that

4Similar results for both the MNIST and CIFAR-10 image classification
problems are observed if the local weights are used to compute the training
loss and testing accuracy.
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Fig. 2. In order from left to right: agent locations and their connectivity (darker colors indicate more connections), example of target locations, stationarity
violation, and distance to true targets for the multi-target cooperative localization problem.

Fig. 3. In order from left to right: stationarity violation, training loss, testing accuracy, and a zoomed version of the testing accuracy over the last ten epochs
for the MNIST image classification problem.

Method To reach 97% testing accuracy Highest accuracy (%)
Time (s) Samples Communications

D-GET 7 376,524 4,096 72.17
D-PSGD 31.56 92,800 1,450 97.53
DSGT 26.78 73,600 2,300 97.64
Prox-PDA 80.99 227,200 3,550 97.25
SPPDM 116.73 326,400 5,100 97.09
ADAPD-OG 16.35 48,000 750 98.77
ADAPD (1 SGD) 74.2 121,600 1,900 98.12
ADAPD (2 SGD) 47.5 83,200 650 98.85

TABLE I
TIME TO REACH 97% TESTING ACCURACY ON THE MNIST IMAGE CLASSIFICATION PROBLEM. FINAL COLUMN REPRESENTS HIGHEST OVERALL

TESTING ACCURACY. BOLD ITEMS INDICATE THE BEST VALUE.

each method runs for 500 epochs. We only use the ADAPD
algorithm with 1 stochastic gradient step for these experiments,
but we tune the dual step-size in (25) and (26). In Figure 4,
we report the same metrics as in the MNIST experiment.

Similar to the MNIST image classification problem, we
report the wall-clock time taken to reach and stay above
88% testing accuracy in Table II. In terms of stationarity, all
methods besides D-GET struggle. However, ADAPD performs
better than the competitors in terms of testing accuracy (see
Figure 4 and Table II). Similar to the MNIST results, this
suggests that ADAPD is able to find a solution to the image
classification problem that generalizes better than the com-
petitors. Additionally, ADAPD greatly saves on the number
of data samples and communications necessary to achieve a
high testing accuracy.

V. CONCLUSION

In this work, we presented ADAPD: A DecentrAlized
Primal-Dual framework for solving non-convex and smooth
consensus optimization problems over a network of agents.
Two variants to ADAPD are presented, the ADAPD-OG (One

Gradient) and the ADAPD-MC (Multiple Communications).
We demonstrated that ADAPD and ADAPD-OG achieves
O

(
L(1 − ρ)−2ε−1) communication complexity to find an

ε-stationary point and showed this can be reduced to
O

(
L(1 − ρ)−0.5ε−1) when the MC variant is used; this is

optimal for the class of smooth, non-convex, decentralized
consensus problems considered in this work. Finally, we
presented four numerical experiments that validate our claim
that ADAPD outperforms other state-of-the-art decentralized
methods. Future research topics would be extending the the-
oretical guarantees of ADAPD-OG to the stochastic case and
demonstrating convergence in a time-varying/asynchronous
setting of ADAPD and its variants.

APPENDIX A
SUPPORTING LEMMAS AND PROOFS FOR ADAPD

Proof [of Proposition 1] First, it is obvious that
Lη(Xk,Xk

0 ; Yk,Zk) ≤ Φk for all k ≥ 0 by the definition of
Φk in (43). Second, notice

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk+1)
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Fig. 4. In order from left to right: stationarity violation, training loss, testing accuracy, and a zoomed version of the testing accuracy over the last hundred
epochs for the CIFAR-10 image classification problem.

Method To reach 88% testing accuracy Highest accuracy (%)
Time (s) Samples Communications

D-GET 7 3,125,006 35,530 84.16
D-PSGD 651.88 1,011,200 7,900 88.92
DSGT 1,900.23 2,348,800 36,700 88.37
Prox-PDA 1,025.57 1,523,200 11,900 88.88
SPPDM 1,395.84 1,708,800 13,350 88.91
ADAPD (1 SGD) 870.11 806,400 6,300 89.62

TABLE II
TIME TO REACH 88% TESTING ACCURACY ON THE CIFAR-10 IMAGE CLASSIFICATION PROBLEM. FINAL COLUMN REPRESENTS HIGHEST OVERALL

TESTING ACCURACY. BOLD ITEMS INDICATE THE BEST VALUE.
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〉
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〉
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+
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+
η
2

(Zk+12
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2
F −

Zk
2
F

)
Thus, by the definition of f in (11), we have that for any
integer number K ≥ 1,

K−1∑
k=0

(
Φ
k+1 − f

)
≥

K−1∑
k=0

(
Lη(Xk+1,Xk+1

0 ; Yk+1,Zk+1) − f
)

=
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(
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2
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2
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1
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0

2

F

)
+

K−1∑
k=0

(
η
2
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2
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1
2η

√I −WXk+1
0

2

F

)
+
η
2
YK

2
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η
2
Y02

F +
η
2
ZK

2
F −

η
2
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F

≥ −
η
2
Y02

F −
η
2
Z02

F , −M . (56)

Thirdly, by (42) and the definition of Φk in (43), we have

Φ
k+1 + (1−ρ)−(C+2)L(1−ρ)η−(8L2(1−ρ)+16L2)η2

2(1−ρ)η
Xk+1 − Xk

2
F

+
(

1
2η − CL

) Xk+1
0 − Xk

0

2

F
≤ Φk +

(1−ρ)+(32L+16L(1−ρ))η+4C(1−ρ)
2L(1−ρ) εk .

(57)

Hence, it holds from the choice of C and η that

Φ
k+1 ≤ Φk + (1−ρ)+(32L+16L(1−ρ))η+4C(1−ρ)

2L(1−ρ) εk . (58)

Now assume that there exists k0 ≥ 0 such that
Φk0 − f < −

(1−ρ)+(32L+16L(1−ρ))η+4C(1−ρ)
2L(1−ρ)

∑∞
k=0 εk − 1.

Then summing up (58) gives Φk − f ≤ Φk0 −

f + (1−ρ)+(32L+16L(1−ρ))η+4C(1−ρ)
2L(1−ρ)

∑∞
k=k0

εk < −1 for all

k ≥ k0. Hence,
∑∞

k=k0+1

(
Φk − f

)
= −∞, which con-

tradicts (56). Therefore, we conclude that Φk − f ≥

−
(1−ρ)+(32L+16L(1−ρ))η+4C(1−ρ)

2L(1−ρ)
∑∞

k=0 εk − 1, for all k ≥ 0 and
complete the proof. �

Proof [of Theorem 1] Summing up (57) from k = 0 to K − 1
and dividing by K results in(
(1−ρ)−(C+2)L(1−ρ)η−(8L2(1−ρ)+16L2)η2

2(1−ρ)η

)
1
K

∑K−1
k=0

Xk+1 − Xk
2
F

+
1−2CLη

2η
1
K
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0

2
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2L(1−ρ) · 1
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k=0 εk
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Φ0−φ

K +
(1−ρ)+(32L+16L(1−ρ))η+4C(1−ρ)

2L(1−ρ) · 1
K

∑K−1
k=0 εk . (59)

By the choice of C and η, it holds that 1−2CLη
2η ≤

(1−ρ)−(C+2)L(1−ρ)η−(8L2(1−ρ)+16L2)η2

2(1−ρ)η so C1 as defined in (47) is
positive, and thus the inequality in (59) implies the desired
result. �

Proof [of Theorem 2] First, we have for all k ≥ 0 thatXk+1 − X̄k+1
2

F

=

Xk+1 −WXk+1 +WXk+1 − X̄k+1
2

F

=

Xk+1 −WXk+1
2

F
+

(W − 1
N ee>

)
(Xk+1 − X̄k+1)

2

F
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where we have used the fact that ‖I −W‖2 ≤ 2 and the choice
of η in (50) to have max
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= 208
(1−ρ)2 , C2 and

defined C3 ,
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2L(1−ρ) . Furthermore, we use
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Now, by Assumption 1(iii), we have e>
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where we have used ‖I +W‖2 ≤ 2 in the fourth inequality
and defined C4 ,
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We complete the proof. �
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Supplementary Material

APPENDIX A
ON THE EQUIVALENCE BETWEEN PROX-PDA [1] AND

DISTRIBUTED ADMM [2]

Here, we show that the distributed ADMM algorithm [2],
which uses edge-based constraints to enforce consensus (see
(3) in [2]), can reduce to the Prox-PDA method in [1]. Under
the assumption of A>A = L− (the signed Laplacian of G),
Prox-PDA performs global updates:

X(k+1) = argmin
X

{
F(X) −

〈
µ(k),AX

〉
+
β

2
H(X,Xk ; A,B)

}
,

µ(k+1) =µ(k) + βAXk+1,
(A.1)

where H(X,Xk ; A,B) = ‖AX‖2F +
X − Xk

2
B>B. Choosing

B>B = L+ (the unsigned Laplacian of G), we have

H(X,Xk ; A,B)

=
β

2

N∑
i=1

©«2 |Ni | ‖xi ‖22 −

〈
xi,

∑
j∈Ni

xj

〉ª®¬ + β

2
〈
xk,B>BXk

〉
+
β

2

N∑
i=1

©«
〈
xi,

∑
j∈Ni

xj

〉
− 2 |Ni |

〈
xi,xki

〉
− 2

〈
xi,

∑
j∈Ni

xkj

〉ª®¬ .
(A.2)

Multiplying both sides of the µ update in (A.1) by A>,
letting αk , A>µk ∀ k, and dropping the β

2
〈
xk,B>BXk

〉
term

from (A.2) (as the argmin is about X in (A.1)) results in (10)
from [2]. Hence, the two algorithms are equivalent. As a result,
the distributed ADMM updates from [2] converge in the non-
convex case by the convergence of Prox-PDA [1].

APPENDIX B
SUPPORTING LEMMAS AND PROOFS FOR ADAPD (CON’T.)

The proofs of Lemma 2 and the following three Lemmas
can be found in the longer version of this work [3].

Lemma B.1: (Lemma 6 in [4]) If (28) is satisfied and η < 1
2L ,

then

Lη(Xk+1,Xk
0 ; Yk,Zk ) − Lη(Xk,Xk

0 ; Yk,Zk )

≤
2Lη−1

2η
Xk+1 − Xk

2
F +

εk+1
2L ,∀ k ≥ 0.

(B.1)

Lemma B.2: The partial gradient ∇X0Lη(X,X0; Y,Z) is 3
η -

Lipschitz continuous about X0 for any (X,Y,Z). Further, for
all k ≥ 0, we have

Lη(Xk+1,Xk+1
0 ; Yk,Zk ) − Lη(Xk+1,Xk

0 ; Yk,Zk )

≤ − 1
2η

Xk+1
0 − Xk

0

2

F
.

(B.2)

Lemma B.3: For all k ≥ 0, the followings hold:

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk) − Lη(Xk+1,Xk+1

0 ; Yk,Zk)

= η
Yk+1 − Yk

2
F
, (B.3)

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk+1) − Lη(Xk+1,Xk+1

0 ; Yk+1,Zk)

= η
Zk+1 − Zk

2
F
. (B.4)

Proof [Of Lemma 3] The inequality follows from rewriting
Lη(Xk+1,Xk+1

0 ; Yk+1,Zk+1) − Lη(Xk,Xk
0 ; Yk,Zk) as the sum-

mation of the left-hand sides of (B.1), (B.2), (B.3), and (B.4)
and using those four inequalities. �

Proof [Of Lemma 4] To prove (39),
by (37), we have η

Yk+1 − Yk
2
F

=

η
Rk+1 − Rk − ∇F(Xk+1) + ∇F(Xk) − 1

ηVk
0

2

F

(35)
≤

4η
(Rk+1

2
F
+

Rk
2
F
+

∇F(Xk+1) − ∇F(Xk)
2
F
+ 1
η2

Vk
0

2
F

) (28),(10)
≤

4L2η
Xk+1 − Xk

2
F
+ 4

η

Vk
0

2
F
+ 8ηεk where in the last

inequality we have further used εk+1 ≤ εk for all k ≥ 0.
To prove (40), notice that if Z0 ∈ range

(√
I −W

)
, then

by (19), Zk ∈ range
(√

I −W
)

for all k ≥ 0. Thus with
ρ2 , 1 − λ2(W), we have

ηρ2

Zk+1 − Zk
2

F
≤ η

√I −W
(
Zk+1 − Zk )2

F
, (B.5)

and since 1 − ρ ≤ ρ2, it further holds that,

η(1 − ρ)
Zk+1 − Zk

2

F
≤ ηρ2

Zk+1 − Zk
2

F
(B.6)

In addition,

η
√I −W

(
Zk+1 − Zk )2

F
(B.7)

(36)
= η

Yk+1 − Yk − 1
ηWVk

0

2

F

(34)
≤ 2η

Yk+1 − Yk
2

F
+ 2
η

WVk
0

2

F
(B.8)

(39)
≤ 8L2η

Xk+1 − Xk
2

F
+ 8
η

Vk
0

2

F
+ 16ηεk + 2

η

WVk
0

2

F

≤ 8L2η
Xk+1 − Xk

2

F
+ 10

η

Vk
0

2

F
+ 16ηεk (B.9)

where the last inequality uses Assumption 1(iv). Using (B.5)
with (B.6), we complete the proof. �

Proof [Of Lemma 5] By (37), we have〈
Yk+1 − Yk,Xk+1

0 − Xk
0

〉
=

〈
Rk+1 − Rk − ∇F(Xk+1) + ∇F(Xk ) − 1

ηVk
0,X

k+1
0 − Xk

0

〉
.

(B.10)

We handle the two sides of (B.10) separately. First, we have〈
Yk+1 − Yk,Xk+1

0 − Xk
0

〉
(36)
=

〈√
I −WZk+1 −

√
I −WZk + 1

ηWVk
0,X

k+1
0 − Xk

0

〉
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(26)
=

〈
1
η (I −W)Xk+1

0 + 1
ηWVk

0,X
k+1
0 − Xk

0

〉
= 1

2η

(√I −WXk+1
0

2

F
+

√I −W(Xk+1
0 − Xk

0 )
2

F

)
− 1

2η

√I −WXk
0

2

F

+ 1
2η

(Vk
0

2

W
+

Xk+1
0 − Xk

0

2

W
−

Xk
0 − Xk−1

0

2

W

)
where the last equality can be verified straightforwardly.
Second, we have〈

Rk+1 − Rk − ∇F(Xk+1) + ∇F(Xk ) − 1
ηVk

0,X
k+1
0 − Xk

0

〉
(34),(10)
≤ 1

2L
Rk+1 − Rk

2
F +

L
2

Xk+1
0 − Xk

0

2

F

+ L
2

(Xk+1 − Xk
2
F +

Xk+1
0 − Xk

0

2

F

)
− 1
η

〈
Vk

0,X
k+1
0 − Xk

0

〉
(35)
≤ 2

L εk +
L
2

Xk+1 − Xk
2
F + L

Xk+1
0 − Xk

0

2

F

− 1
2η

(Vk
0

2

F
+

Xk+1
0 − Xk

0

2

F
−

Xk
0 − Xk−1

0

2

F

)
where the last inequality comes from εk+1 ≤ εk for all k ≥ 1.
Combining like terms results in the right hand side of (41);
further using the equality established in (B.10) completes the
proof. �

Proof [Of Lemma 6] By Lemmas 3 and 4 and also using
εk+1 ≤ εk , we have

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk+1) − Lη(Xk,Xk

0 ; Yk,Zk )

≤
(8L2(1−ρ)+16L2)η2+2L(1−ρ)η−(1−ρ)

2(1−ρ)η
Xk+1 − Xk

2
F

− 1
2η

Xk+1
0 − Xk

0

2

F
+

10+4(1−ρ)
(1−ρ)η

Vk
0

2

F
+

32Lη+16L(1−ρ)η+(1−ρ)
2L(1−ρ) εk .

Now multiplying C > 0 to both sides of (41) and adding to
the above inequality, we have

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk+1) + C

2η

Xk+1
0 − Xk

0

2

W
+ C

2η

Vk
0

2

W

+ C
2η

√I −WXk+1
0

2

F
+ C

2η

√I −W(Xk+1
0 − Xk

0 )
2

F

≤ Lη(Xk,Xk
0 ; Yk,Zk ) + C

2η

√I −WXk
0

2

F

+ C
2η

Xk
0 − Xk−1

0

2

W
+ C

2η

Xk
0 − Xk−1

0

2

F

+
(
(8L2(1−ρ)+16L2)η2+(C+2)L(1−ρ)η−(1−ρ)

2(1−ρ)η

) Xk+1 − Xk
2

F

+
2CLη−C−1

2η

Xk+1
0 − Xk

0

2

F
+

20+8(1−ρ)−C(1−ρ)
2(1−ρ)η

Vk
0

2

F

+
(1−ρ)+(32L+16L(1−ρ))η+4C(1−ρ)

2L(1−ρ) εk .

(B.11)

Since the minimum eigenvalue of I+W is ρN , 1+λN (W) >
0, it holds 20+8(1−ρ)

(1−ρ) I 4 C (I +W) when C ≥ 20+8(1−ρ)
(1−ρ)ρN . Hence,

we have 0 ≤ C(1−ρ)−20−8(1−ρ)
2(1−ρ)η

Vk
0

2
F
+ C

2η
Vk

0

2
W by noticing

C(1−ρ)−20−8(1−ρ)
2(1−ρ)η

Vk
0

2

F
+ C

2η

Vk
0

2

W

=

Vk
0

2
C(1−ρ)−20−8(1−ρ)

2(1−ρ)η I + C
2ηW

≥ 0.
(B.12)

Noticing that 1
(1−ρ) ≥

1
ρN

, we have C ≥
20+8(1−ρ)
(1−ρ)2

also satisfies the above requirement. In addition, it

holds C
2η

√I −W(Xk+1
0 − Xk

0 )
2

F
+ C

2η
Xk+1

0 − Xk
0

2
W =

C
2η

Xk+1
0 − Xk

0

2
I−W +

C
2η

Xk+1
0 − Xk

0

2
W =

C
2η

Xk+1
0 − Xk

0

2
F
.

Furthermore, noting C
2η

Xk
0 − Xk−1

0

2
W ≤ C

2η
Xk

0 − Xk−1
0

2
F

,
we obtain the desired result from (B.11). �

APPENDIX C
SUPPORTING LEMMAS AND PROOFS FOR ADAPD-OG

The proof of the following Lemma can be found in the
longer version of this work [3] (see Lemma 10).

Lemma C.1: Provided that η < 1
L , we have

Lη(Xk+1,Xk
0 ; Yk,Zk ) − Lη(Xk,Xk

0 ; Yk,Zk )

≤
Lη−1

2η
Xk+1 − Xk

2
F

(C.1)

for all k ≥ 0.

Lemma C.2: Let {(Xk,Xk
0 ; Yk,Zk)} be obtained from Alg. 2

or equivalently by updates (31) and (24)-(26). If η < 1
L , then

it holds for all k ≥ 0,

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk+1) − Lη(Xk,Xk

0 ; Yk,Zk )

≤
Lη−1

2η
Xk+1 − Xk

2
F −

1
2η

Xk+1
0 − Xk

0

2

F

+ η
Yk+1 − Yk

2

F
+ η

Zk+1 − Zk
2

F
.

(C.2)

Proof The proof follows from using the same technique as
in Lemma 3 but with (C.1), (B.2), (B.3), and (B.4). �

Lemma C.3: Under the assumptions of Lemma C.2, it holds
that for all k ≥ 0,

η
Yk+1 − Yk

2

F
≤ 2L2η

Xk − Xk−1
2

F
+ 2
η

Vk
0

2

F
, (C.3)

η
Zk+1 − Zk

2

F
≤

4L2η
(1−ρ)

Xk − Xk−12
F +

6
(1−ρ)η

Vk
0

2

F
, (C.4)

where Vk
0 is defined in (33).

Proof To prove (C.3), we have from (49) that

η
Yk+1 − Yk

2
F
= η

−∇F(Xk) + ∇F(Xk−1) − 1
ηVk

0

2

F

(35),(10)
≤

2L2η
Xk − Xk−1

2
F
+ 2
η

Vk
0

2
F
. To prove (C.4), we start from

(B.8) to have

η
√I −W

(
Zk+1 − Zk )2

F

≤ 2η
Yk+1 − Yk

2

F
+ 2
η

WVk
0

2

F

(C.3)
≤ 4L2η

Xk − Xk−1
2

F
+ 4
η

Vk
0

2

F
+ 2
η

WVk
0

2

F

≤ 4L2η
Xk − Xk−1

2

F
+ 6
η

Vk
0

2

F
, (C.5)

where the last inequality uses Assumption 1(iv). Now we
notice that (36) still holds for ADAPD-OG. Hence by choosing
Z0 ∈ range

(√
I −W

)
, we have Zk ∈ range

(√
I −W

)
for all

k ≥ 0 from (19). Thus (B.5) still holds, and it together with
(C.5) implies (C.4). �
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Lemma C.4: For all k ≥ 0, the following relation holds

1
2η

(√I −WXk+1
0

2

F
+

√I −W(Xk+1
0 − Xk

0 )
2

F
−

√I −WXk
0

2

F

)
+ 1

2η

(Vk
0

2

W
+

Xk+1
0 − Xk

0

2

W
−

Xk
0 − Xk−1

0

2

W

)
≤

Lη−1
2η

Xk+1
0 − Xk

0

2

F
+ L

2
Xk − Xk−12

F +
1

2η

Xk
0 − Xk−1

0

2

F

− 1
2η

Vk
0

2

F
(C.6)

where Vk
0 is defined in (33).

Proof The proof of this Lemma uses the same techniques
used in the proof of Lemma 5 where (B.10) is replaced by〈

Yk+1 − Yk,Xk+1
0 − Xk

0

〉
=

〈
−∇F(Xk ) + ∇F(Xk−1) − 1

ηVk
0,X

k+1
0 − Xk

0

〉
.

(C.7)

For explicit algebraic manipulations, see Lemma 12 in [3].�

Lemma C.5: Let {(Xk,Xk
0 ; Yk,Zk)} be obtained from Alg. 2

or equivalently by updates (31), (24)-(26). If η < 1
L , then

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk+1) + Ĉ

2η

√I −WXk+1
0

2

F

+ Ĉ
2η

Xk+1
0 − Xk

0

2

F

≤ Lη(Xk,Xk
0 ; Yk,Zk ) + Ĉ

2η

√I −WXk
0

2

F
+ Ĉ
η

Xk
0 − Xk−1

0

2

F

+
(
Lη−1

2η

) Xk+1 − Xk
2

F
+

(
ĈLη−Ĉ−1

2η

) Xk+1
0 − Xk

0

2

F

+
4L2(1−ρ)η+8L2η+ĈL(1−ρ)

2(1−ρ)
Xk − Xk−12

F
(C.8)

for all k ≥ 0, where Ĉ satisfies Ĉ ≥ 12+4(1−ρ)
(1−ρ)2 .

Proof Using Lemma C.3 and (C.2) in conjunction with
multiplying Ĉ > 0 to both sides of (C.6) gives

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk+1) + Ĉ

2η

√I −WXk+1
0

2

F

+ Ĉ
2η

(√I −W(Xk+1
0 − Xk

0 )
2

F
−

√I −WXk
0

2

F

)
+ Ĉ

2η

(Vk
0

2

W
+

Xk+1
0 − Xk

0

2

W
−

Xk
0 − Xk−1

0

2

W

)
≤ Lη(Xk,Xk

0 ; Yk,Zk ) +
Lη−1

2η
Xk+1 − Xk

2
F −

1
2η

Xk+1
0 − Xk

0

2

F

+
4L2(1−ρ)η+8L2η+ĈL(1−ρ)

2(1−ρ)
Xk − Xk−12

F +
Ĉ
2η

Xk
0 − Xk−1

0

2

F

+
ĈLη−Ĉ

2η

Xk+1
0 − Xk

0

2

F
+

12+4(1−ρ)−Ĉ(1−ρ)
2(1−ρ)η

Vk
0

2

F
.

Since the minimum eigenvalue of I + W is ρN > 0 in
(6), it holds 12+4(1−ρ)

(1−ρ) I 4 Ĉ (I +W) when Ĉ ≥
12+4(1−ρ)
(1−ρ)ρN .

Furthermore, since 1
1−ρ ≥

1
ρN

for Ĉ ≥ 12+4(1−ρ)
(1−ρ)2 , we have

0 ≤ Ĉ(1−ρ)−12−4(1−ρ)
2(1−ρ)η

Vk
0

2
F
+ Ĉ

2η
Vk

0

2
W by similar logic as

that applied to (B.12). Thus,

Lη(Xk+1,Xk+1
0 ; Yk+1,Zk+1) + Ĉ

2η

√I −WXk+1
0

2

F

+ Ĉ
2η

√I −W(Xk+1
0 − Xk

0 )
2

F
+ Ĉ

2η

Xk+1
0 − Xk

0

2

W

≤ Lη(Xk,Xk
0 ; Yk,Zk ) + Ĉ

2η

√I −WXk
0

2

F
+

Lη−1
2η

Xk+1 − Xk
2
F

− 1
2η

Xk+1
0 − Xk

0

2

F
+ Ĉ

2η

Xk
0 − Xk−1

0

2

W

+
4L2(1−ρ)η+8L2η+ĈL(1−ρ)

2(1−ρ)
Xk − Xk−12

F

+
ĈLη−Ĉ

2η

Xk+1
0 − Xk

0

2

F
+ Ĉ

2η

Xk
0 − Xk−1

0

2

F
.

The rest of the proof follows from the proof of Lemma 6.�

We now define a new Lyapunov function based on the
results from Lemma C.5. Fix Ĉ , 16

(1−ρ)2 used in (C.8) and
define

Φ̂
k , Lη(Xk,Xk

0 ; Yk,Zk ) + Ĉ
2η

√I −WXk
0

2

F
+ Ĉ
η

Xk
0 − Xk−1

0

2

F

+
4L2(1−ρ)η+8L2η+ĈL(1−ρ)

2(1−ρ)
Xk − Xk−12

F .

(C.9)

Using Lemma C.5, for all k ≥ 0, we have

Φ̂
k+1 +

(
(1−ρ)−(Ĉ+1)L(1−ρ)η−((1−ρ)+2)4L2η2

2(1−ρ)η

) Xk+1 − Xk
2

F

+
(

1−ĈLη
2η

) Xk+1
0 − Xk

0

2

F
≤ Φ̂k

(C.10)

which comes directly from adding and subtracting
4L2(1−ρ)η+8L2η+ĈL(1−ρ)

2(1−ρ)
Xk+1 − Xk

2
F

to the left hand
side of (C.8), combining like terms, and using (C.9).

Proposition C.1: Under Assumptions 1 and 2, let
{(Xk,Xk

0 ; Yk,Zk)} be obtained from Alg. 2 or equivalently by
(31) and (24)-(26). Choose Ĉ and η such that

Ĉ , 16
(1−ρ)2 and η < 1

2ĈL
. (C.11)

Then the Lyapunov function (C.9) is uniformly lower bounded.
More specifically, for all k ≥ 0,

Φ̂
k ≥ f − 1 > −∞, (C.12)

where f is defined in Assumption 2.

Proof First, we have Lη(Xk,Xk
0 ; Yk,Zk) ≤ Φ̂k for all k, by

the definition of Φ̂k in (C.9). Second, by the definition of f
in (11), we have for any integer number K ≥ 1,

K−1∑
k=0

(
Φ̂
k+1 − f

)
≥

K−1∑
k=0

(
Lη(Xk+1,Xk+1

0 ; Yk+1,Zk+1) − f
)

(56)
≥ −

η
2
Y02

F −
η
2
Z02

F . (C.13)

Thirdly, by (C.10) and the choice of Ĉ and η, it holds that

Φ̂
k+1 ≤ Φ̂k . (C.14)

Now assume that there exists a k0 ≥ 0 such that Φ̂k0 − f < −1.
Then (C.14) gives Φ̂k− f ≤ Φ̂k0− f < −1 for all k ≥ k0. Hence,∑∞

k=k0+1

(
Φ̂k − f

)
= −∞ which contradicts (C.13). Therefore,

we conclude that Φ̂k − f ≥ −1 for all k ≥ 0 and complete the
proof. �

Theorem C.1: Under the same conditions assumed in
Proposition C.1, it holds that

Ĉ1
K

∑K−1
k=0

(Xk+1 − Xk
2
F +

Xk+1
0 − Xk

0

2

F

)
≤
∆
Φ̂

K (C.15)
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where ∆Φ̂ , Φ̂0 − f + 1 and Ĉ1 , L
(1−ρ)2 ≤

(1−ρ)−(Ĉ+1)L(1−ρ)η−((1−ρ)+2)4L2η2

2(1−ρ)η .

Proof Summing up (C.10) from k = 0 to K − 1 and dividing
by K and utilizing Ĉ1 > 0 yields the desired result. �

Proof [of Theorem 3] By (26), we have

1
η

(I −W
)
Xk+1

0

2

F

(C.4)
≤ 4L2η

Xk − Xk−1
2

F
+ 6
η

Vk
0

2

F
(C.16)

and by (25),Xk+1 − Xk+1
0

2

F

(C.3)
≤ 2L2η2

Xk − Xk−1
2

F
+ 2

Vk
0

2

F
. (C.17)

Thus, by (60) we have 1
K

∑K−1
k=0

Xk+1 − X̄k+1
2
F

≤
1

(1−ρ)2K
∑K−1

k=0
(I −W

)
Xk+1

2
F

, hence

1
(1−ρ)2K

∑K−1
k=0

(I −W
)
Xk+12

F

≤ 2
(1−ρ)2K

∑K−1
k=0

((I −W
)
(Xk+1 − Xk+1

0 )

2

F
+

(I −W
)
Xk+1

0

2

F

)
≤ 2
(1−ρ)2K

(
4
∑K−1

k=0

Xk+1 − Xk+1
0

2

F
+

∑K−1
k=0

(I −W
)
Xk+1

0

2

F

)
≤

24L2η2

(1−ρ)2K
∑K−1

k=0
Xk+1 − Xk

2
F +

28
(1−ρ)2K

∑K−1
k=0

Vk
0

2

F

(35)
≤

48L2η2

(1−ρ)2K
∑K−1

k=0
Xk+1 − Xk

2
F +

112
(1−ρ)2K

∑K−1
k=0

Xk+1
0 − Xk

0

2

F

(C.15)
≤

Ĉ2∆Φ̂
Ĉ1K

(C.18)

where we have used the fact that ‖I −W‖2 ≤ 2 and defined
Ĉ2 ,

112
(1−ρ)2 . Furthermore, we use (36) and (49) to have

∇F(Xk ) +
√

I −WZk+1 = − 1
η (I +W)[Xk+1

0 − Xk
0 ]. (C.19)

Now, using Assumption 1(ii), we have e>
√

I −W = 0. Hence,

1
K

∑K−1
k=0

∇ f (x̄k+1)
2
F

= 1
K

∑K−1
k=0

 1
N ee>

(
∇F(X̄k+1) +

√
I −WZk+2

)2

F

≤

 1
N ee>

2

2
1
K

∑K−1
k=0

F(X̄k+1) +
√

I −WZk+2
2

F

≤ 2
K

∑K−1
k=0

(F(Xk+1) +
√

I −WZk+2
2

F
+

∇F(X̄k+1) − ∇F(Xk+1)
2
F

)
(C.19),(10)
≤ 2

K

∑K−1
k=0

(− 1
η (I +W)[Xk+2

0 − Xk+1
0 ]

2

F
+ L2 Xk+1 − X̄k+12

F

)
(C.15),(C.18)

≤

(
2Ĉ2L

2+Ĉ3

)
∆
Φ̂

Ĉ1K
, (C.20)

where we have used ‖I +W‖2 ≤ 2 in last
inequality and defined Ĉ3 , 8

η2 . We complete
proof by using (C.18) and (C.20), to have
1
K

∑k−1
k=0

(∇ f (x̄k+1)
2

2 +
Xk+1 − X̄k+1

2
F

)
≤
((2L2+1)Ĉ2+Ĉ3)∆Φ̂

Ĉ1K
.

�

APPENDIX D
SUPPORTING PROOFS FOR THE COMPLEXITY ANALYSIS

Proof [of Corollary 1] By Remark 4, since one communica-
tion round is performed during each iteration of Alg. 1, the
communication complexity in (52) follows from setting (51)

less than or equal to ε and solving for K . Remark 3 demon-
strates the additional logarithmic dependence on the number
of gradient computations. �

Proof [of Corollary 2] The proof follows the same logic as the
proof for Corollary 1, but there is no logarithmic dependence
on the number of gradient computations. �

Proof [of Theorem 4] By Lemma 1, the dependence on
the spectrum of the graph after R iterations of Alg. 3 be-

comes 2
(
1 −

√
1 − ρ

)R
; define this quantity to be ρR ,

2
(
1 −

√
1 − ρ

)R
such that (51) becomes

1
K

∑K−1
k=0

(∇ f (x̄k+1)
2

2 +
Xk+1 − X̄k+1

2
F

)
= O

(
L

(1−ρR )2K

)
.

(D.1)
With R = d 2√

1−ρ
e, we find a u > 0 such that,

1(
1−2(1−

√
1−ρ)

d 2√
1−ρ
e
)2 ≤ u.

First, we rearranging to have(
1 −

√
1 − ρ

) d 2√
1−ρ
e

≤
√
u−1

2
√
u
.

Now, let x =
√

1 − ρ ∈ (0,1], then (1 − x) ∈ [0,1) and 2
x ≤

d 2
x e so that (1 − x) d

2
x e ≤ (1 − x)

2
x . Next, we maximize this

quantity with respect to x ∈ (0,1]. Define g(x) , (1 − x)
2
x and

compute d
dx g(x) to have

d
dx g(x) = − (1 − x)

2
x

(
2

x(1−x) +
2 ln(1−x)

x2

)
< 0,∀ x ∈ (0,1).

Hence, g(x) is decreasing on (0,1). Since g(0+) = 1
e2 , we have

g(x) < 1
e2 for x ∈ (0,1]. Now we compute,

1
e2 ≤

√
u−1

2
√
u
,

which holds for all u ≥ 2. Thus, it holds that (1 − ρR)−2 ≤ 2.
Hence we have the number of gradient computations is inde-
pendent of ρR and the number of neighbor communications

must be multiplied by R = O
(

1√
1−ρ

)
. �

Proof [of Theorem 5] The proof follows the same logic as the
proof of Theorem 4. �
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