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Abstract 

Substituting constituents within concrete with lower impact materials is of utmost 

importance for the sustainable transition of the concrete industry. Systematic analyses of 

knowledge within the published literature can facilitate industrial practice and focus research 

inquiry. To address the prohibitive workload of manual review and the multifaceted linguistic 

complexity of communication within the domain, this study develops an automatic literature 

mining framework combining lightweight large language models (LLMs) (pythia-2.8B) with 

multiple-choice instructions. The current landscape, temporal trends, and future directions of 

concrete material substitution studies were analyzed using the extracted information. Although 

supplementary cementitious materials (SCMs) have remained a research hotspot, results revealed 

a systematic shift in recent studies from commercial SCMs to other materials. Geopolymer and 

fine aggregate studies have surged in the recent period, while clinker feedstock and filler studies 

have declined. Lime-pozzolan cement has been an underexplored application but emerges as a 

potentially promising future research direction.  

Keywords: concrete, beneficial uses, alternative materials, literature mining, large language 

models, knowledge graph 

1. Introduction 

To reduce greenhouse emissions and limit raw material extraction, the concrete industry 

has committed to increasing use of natural or byproduct materials to substitute for concrete 

constituents. This is because of the industry’s substantial carbon emissions from production 

(constituting 8 ~ 9% of global annual emissions) (Ellis et al., 2020) and the need for large-scale 

raw material mining that can lead to top-soil loss, deforestation, and resource depletion (Habert et 

al., 2020; Mehta, 2001). Both within industry and across the research community, work has 

involved substituting the constituents of concrete such as Portland cement, fine aggregate, and 

coarse aggregate, with processed natural mineral materials (e.g., metakaolin), recycled demolition 

and construction waste, industrial residues (e.g., silica fume, coal ashes, metallurgical slags), and 

agricultural and municipal solid waste incineration (MSWI) residues (Juenger et al., 2019; Kurniati 
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et al., 2023; Snellings et al., 2023). To effectively navigate the diverse realm of raw materials and 

potential beneficial uses and identify research gaps, the community analyzes published literature 

to identify valuable research directions. Doing so in an automated fashion has become an attractive 

approach in recent years. 

Natural language processing (NLP) methods have been used in a few previous works to 

automate literature mining on the topics related to resource use, recycling, and waste management, 

adopting deep neural networks for named entity recognition (NER) (Zhu et al., 2021; Zhu and Ren, 

2023) that relies on the specification of noun phrases (NP). The previous efforts performed 

statistical summaries and trend analyses of paper topics related to waste-based materials, industrial 

management, human behaviors, climate and energy, etc. These efforts did not categorize 

relationships across entities so the interrelations in the extracted topics terms are lost (e.g. “coal”, 

“energy”, “water”, “land use” are all extracted from a same paper, but it’s difficult to automatically 

determine how they relate to each other or form a specific research direction). Kumar and 

coauthors (Kumar et al., 2023) focused on waste plastics recycling and adopted BERT 

architectures for question answering to extract knowledge such as reactants, products, and 

catalysts, achieving F1 metrics around 80%. A shared limitation of the methods adopted in these 

works is that the extracted information is limited to text strings that can be directly located within 

a span in the original literature text, as NP spanning text strings for NER are recognized as a 

foundation for literature mining tasks in most scientific topics (Li et al., 2023; Nasar et al., 2022). 

Due to the complex linguistic structure of papers describing waste valorization, current 

approaches provide limited ability to perform logical inference from such complex source strings 

or formulate structured relational databases. Papers in these fields use non-standardized 

terminology for both feedstocks and their applications, and possess indirect non-NP source strings, 

non-local and non-sequential syntactic dependency, and the non-injective mapping relations (e.g. 

one paper mapped to multiple materials, one material to multiple applications). NLP researchers 

have made efforts to address these issues in other domains through methods to represent language 

or reframe tasks. Named entity normalization (NEN) was proposed for NER with non-standard 

terminology and has been adopted in scientific literature mining, using either a rule-based system 

or a trained synonym classifier for post-NER normalization (Leaman et al., 2015; Weston et al., 

2019) or a semi-Markov model for joint NER-NEN (Leaman and Lu, 2016). Meanwhile, graph 

and hierarchical language representations were developed to model syntactic structures that can 

address certain non-local or non-sequential dependencies in information extraction (IE) like 

coreference or identical-mentions (Qian et al., 2019; Wilcox et al., 2019). However, all of these 

NEN and non-local IE methods still rely on the basic assumption of direct text sources for word- 

or phrase-level tagging (e.g. NP as named entity), and thus face obstacles for application in waste 

valorization. In certain scenarios, the tasks requiring indirect answers through contextualized 

inference were completed with text classification techniques using vectorized text embeddings for 

classifier inputs (Jindal et al., 2015; Krallinger et al., 2017). Despite its success, such methods lack 

the flexibility of producing an arbitrarily sized set of multiple classes (e.g. multiple materials) and 

struggle to handle the conditional problems (e.g. classify application conditioned on the material). 

Despite these methodological innovations that address certain aspects of linguistic 

complexity individually, these approaches have not been integrated to tackle literature mining 

tasks that include several of these issues. Previous studies by the cement and concrete community 

have also made attempts to automate literature-mining, but in light of the aforementioned 

challenges these were confined to a limited scope with a suitable specialized solution. One notable 
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work focused on extracting reactivity data from tables in literature (Uvegi et al., 2021), but the 

structured tabular sources are not applicable in more general research questions related to concrete 

constituents. Another effort classified cement manufacturing operation failure types based on text 

reports (Wang et al., 2023), but it features a single-task with injective mapping like other text 

classification problems. To infer indirect information from source text containing non-standard 

terminology and non-local dependencies, and simultaneously account for the non-injective 

mapping relations, we propose an integrated methodology leveraging large language models 

(LLMs). The advancement of generative LLMs introduces greater flexibility in both inputs and 

outputs to accommodate such complexity in constituent substitution literature mining. LLMs can 

ingest detailed instructions provided alongside the paper context as inputs, and they can output 

classes of materials and applications with the flexibility to determine the number of classes 

autonomously. The chemistry and materials science communities have explored LLMs for 

literature mining (Dagdelen et al., 2024; Walker et al., 2023; Xie et al., 2023), but the methods still 

centered on NER with NP text sources as a first step and used large, computationally expensive 

models like GPT-3.5 (175B). 

This study developed multiple-choice instructions to leverage computationally cheaper 

LLMs (2.8B parameters) for contextualized answer extraction. Multiple-choice problem solving 

is a commonly studied task for LLMs (Hendrycks et al., 2021; Pezeshkpour and Hruschka, 2023; 

Savelka et al., 2023; Talmor et al., 2019; Zheng et al., 2024). This approach was used to formulate 

question answering in a multitask LLM benchmarking work (Rae et al., 2022) on a variety of 

commonsense and test-style general math and science knowledge questions, but the potential of 

transferring such problem formulation to literature understanding was underexplored. To the best 

of our knowledge, this study is the first to explore the use of multiple-choice problems as 

instructions in literature mining tasks. We applied this literature mining method on a collection of 

research papers on concrete constituent substitution, and the literature-mined knowledge summary 

was used for descriptive analysis on current research landscape and topic trends, as well as 

predictive analysis on underexplored material-application links. This framework can assist 

industrial efforts to identify well-studied substitution strategies for deployment and academic 

efforts to pinpoint promising directions for future experimentation. 

2. Methodology 

The overall literature mining approach is shown in Figure 1, synergizing NLP methods, 

general data analysis techniques, and domain expertise. We retrieved papers related to the defined 

problem scope from a literature database and designed templated instruction-completion schemes 

for the specific information extraction tasks. We formulated these as multiple-choice problems to 

accommodate the complex one-to-many relations and enable entity inference from complex 

linguistic settings (detailed in section 2.1). We selected and annotated 102 representative papers 

based on designed schemes to form the training and testing sets comprising 441 unique data points. 

We fine-tuned lightweight, open-source LLMs by using instruction and completion pairs in a 

supervised manner with the training set and the LLM performance was evaluated on the testing 

set, compared with the baseline GPT-3.5 in-context few-shot learning. We used the best-

performing fine-tuned model to extract information from the entire corpus of ~7,000 relevant 

papers. We constructed knowledge graphs based on extracted data and used these graphs for 

subsequent data analysis including graph statistics, temporal trends, and link prediction. 
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Figure 1. Overall methodological framework and workflow for literature mining and analysis 

2.1 Instruction-based Entity Inference Schemes for Complex Linguistic Settings 

The linguistic complexity that poses challenges to literature mining on concrete constituent 

substitution studies and other waste valorization topics includes non-standardized terminology, 

indirect source information, non-local and non-sequential dependency, and the non-injective 

mapping relations. Widely-adopted methods for automated scientific literature mining related to 

materials and chemicals fall short of addressing such issues as they relied on NER from direct NP 

sources, and the requirement for clear compound identification is considered fundamental in such 

endeavors (Gupta et al., 2022; Krallinger et al., 2017). Firstly, as the alternative materials explored 

for beneficial uses are mostly secondary materials or natural composites with variable chemical 

compositions, the reference to both the materials and the types of applications in constituent 

substitution are not standardized, rendering direct NER ill-suited. In fact, essential information 

necessary for determining the specific materials (Figure 2 (b)) and applications (Figure 2 (a)) is 

commonly delineated through descriptive sentences instead of direct NPs. Meanwhile, the non-

local and non-sequential dependencies of syntactic components across sentences are necessary for 

information extraction due to conditional and referential relations (Figure 2 (b)). The complexity 

of such relational dependency is further exacerbated by non-injective mapping, as it is common 
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for a paper to contain a material that serves multiple applications (Figure 2 (a)) or multiple 

materials each serving a different application (Figure 2 (b)). 

 

Figure 2. (a) Examples of complex linguistic settings that require indirect information inference 

from relevant papers; (b) Two instruction-completion schemes with a common multiple-choice 

formulation but different notation systems 

We formulated the information inference tasks as multiple-choice problems to 

accommodate the need for logical inference from complex linguistic settings by providing options 

in the instructions to guide model inference. We developed distinct instructions for extracting the 

three entities, namely material (e.g. “coal fly ash”, “silica fume”, “waste glass”), application (e.g. 
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“supplementary cementitious material”, “geopolymer”, “fine aggregate”), and product (e.g. 

“cement mortar”, “structural concrete”, “concrete pavement”), where the extraction of applications 

relies on the extraction of materials. We established a set of predefined options containing 76 

materials, 13 applications, and 16 products, as shown in Supplementary Table 1. An "unknown" 

option for negative examples (papers where no answer can be found) was included in each category 

to address potential model hallucination, a common issue where LLMs generate formally sensible 

but contextually irrelevant responses (Ji et al., 2023; Zhang et al., 2023). The research community 

of sustainable concrete primarily focuses on secondary materials and natural composites as 

alternative raw materials, instead of synthesized compounds, and therefore the introduction of new 

materials not covered by any previous works is rare. This work thus focuses on statistically 

summarizing potential types of applications for different alternative raw materials with automated 

information extraction from existing literature, and the subsequent link prediction aims to reveal 

potential under-explored applications of such materials, rather than discovering new materials. 

Due to the token-based processing, LLMs break down strings of long words or multiple 

words into multiple tokens during tokenization, meaning the subsequent model behavior depends 

on the choice of notation. Therefore, a multiple-choice problem formulation was developed by two 

distinct instruction-completion schemes as shown in Figure 2 (c) using different notations. The 

two schemes are: 

● Item Options: the options in the multiple-choice problem were presented as a list 

of string items, resulting in each option being tokenized into multiple tokens. 

● Symbolized Options: the options were annotated with double-digit notations, 

allowing each option to be represented by a single token corresponding to its notation. 

We permuted the order of choices for all examples to address LLM sensitivity to option 

ordering (Pezeshkpour and Hruschka, 2023), enhancing the permutation invariance of the model 

and expanding its learning dataset. We allocated permuted examples from each paper exclusively 

to either the training or testing set, avoiding data leakage by ensuring that instances with similar 

contexts to not overlap between training and testing. 

2.2 LLM Adaptation and Evaluation 

We applied both supervised fine-tuning and in-context few-shot learning on pre-trained 

LLMs for adaptation to perform the information extraction task based on instruction-completion 

schemes (Figure 2 (c)). We performed fully supervised fine-tuning on two open-source LLMs, 

pythia-2.8B (Luo et al., 2023) and dolly-3B (Conver et al., 2023) as they make an ideal contrastive 

pair, sharing identical tokenizers, overall model architectures, and sizes (by its naming convention, 

dolly rounds up model sizes to integers), with the primary distinction being that dolly models 

underwent additional pre-training with common-sense instruction-following data. Meanwhile, in-

context, few-shot learning was applied to GPT-3.5 (175B) in this study as a baseline to compare 

the fine-tuned 2.8B models against. In contrast to fine-tuning, in-context, few-shot learning 

provides instructions along with demonstration examples to LLMs without modifying the model 

parameters.  Its applicability in smaller models faces serious challenges, but has emerged as the 

standard practice for the most advanced models with considerably larger sizes and potentially 

restricted accessibility (Brown et al., 2020; Chowdhery et al., 2022; Dong et al., 2024; OpenAI, 

2023). The information extraction performance was evaluated using entity-level precision, recall, 

and F1 score. 
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2.3 Knowledge Graph Construction and Temporal Trend Analysis 

We used extracted information to build a knowledge graph, linking materials with their 

applications and products, as well as paper DOIs, where node and edge attributes capture 

frequencies of entities (materials, applications, products) and their relations for quantitative 

analysis. We statistically analyzed material-application relations by normalizing pair-level 

frequencies by material and application respectively. We analyzed temporal trends to compare the 

research intensity of a certain topic between early (before 2010) and recent (since 2010) periods, 

applying the concept of trending factor (Eq.(2)) (Zhu et al., 2021), in line with previous works 

(Zhu and Ren, 2023). 

𝐹𝑒𝑎𝑟𝑙𝑦 = 1000 ×
𝑓𝑦𝑟≤2010

𝑁𝑦𝑟≤2010
;  𝐹𝑟𝑒𝑐𝑒𝑛𝑡 = 1000 ×

𝑓𝑦𝑟>2010

𝑁𝑦𝑟>2010
 (1) 

𝑇𝐹 = 𝑙𝑜𝑔 (
𝐹𝑟𝑒𝑐𝑒𝑛𝑡

𝐹𝑒𝑎𝑟𝑙𝑦
)      (2) 

𝐹𝑒𝑎𝑟𝑙𝑦 and 𝐹𝑟𝑒𝑐𝑒𝑛𝑡 denote the frequencies for both periods normalized per 1000 papers for 

better communication of results, 𝑓𝑝𝑒𝑟𝑖𝑜𝑑 and 𝑁𝑝𝑒𝑟𝑖𝑜𝑑 are the raw count of papers related a certain 

topic during the period and the total amount of collected papers within that period, respectively. 

𝑇𝐹 is the trending factor for the topic. 

In addition to the binary-time trending factors, continuous-time topic rank evolution has 

been used in previous study on topic association network of materials science literature to track 

annual changes of main topics (Choi and Lee, 2024), which is also performed for this study on 

material and application topics to reveal the evolution of research landscape. 

2.4 Link Prediction and Uncertainty Quantification 

To perform link prediction to identify potential new material-application pairs, we 

developed an interpretable algorithm (Eq.(4)), leveraging weighted Jaccard node similarity 

(Eq.(3)) (modified from (Li and Li, 2021)) based on the original local graph structure. 

𝐽(𝑚𝑖, 𝑚𝑗) =  
∑ min (𝑤̂(𝑚𝑖,𝑎) ,𝑤̂(𝑚𝑗,𝑎))𝑎∈𝑁𝐴𝑃𝑃(𝑚𝑖)∩𝑁𝐴𝑃𝑃(𝑚𝑗)

∑ max (𝑤̂(𝑚𝑖,𝑎) ,𝑤̂(𝑚𝑗,𝑎))𝑎∈𝑁𝐴𝑃𝑃(𝑚𝑖)∪𝑁𝐴𝑃𝑃(𝑚𝑗)
 (3) 

𝑆(𝑚𝑖, 𝑎𝑘)|𝑤̃(𝑚𝑖,𝑎𝑘)=0 =  ∑ 𝐽(𝑚𝑖, 𝑚𝑗) ∙ 𝑤̃(𝑚𝑗 , 𝑎𝑘)
|𝑀𝐴𝑇|
𝑗=1  (4) 

𝐽(𝑚𝑖, 𝑚𝑗)  is the weighted Jaccard coefficient between two material nodes 𝑚𝑖 , 𝑚𝑗 , 

𝑁𝐴𝑃𝑃(𝑚𝑖) denotes the set of all application node neighbors of material node 𝑚𝑖, with ∩ and ∪ 

denoting set intersection and union respectively. 𝑤̂(𝑚𝑖, 𝑎) denotes the edge weight between a 

material-application node pair (𝑚𝑖, 𝑎) normalized by material (so that ∑ 𝑤̂(𝑚𝑖, 𝑎)𝑎∈𝑁𝐴𝑃𝑃(𝑚𝑖) =

1)). 𝑆(𝑚𝑖, 𝑎𝑘)|𝑤̃(𝑚𝑖,𝑎𝑘)=0  denotes the predicted link Score between the material node 𝑚𝑖  and 

application node 𝑎𝑘 , under the condition that the two nodes are not connected in the original 

knowledge graph. 𝑀𝐴𝑇 denotes the set of all material nodes, and 𝑤̃(𝑚𝑗 , 𝑎𝑘) denotes the edge 

weight between node pair (𝑚𝑗 , 𝑎𝑘) normalized by application (so that ∑ 𝑤̃(𝑚𝑗, 𝑎𝑘)
|𝑀𝐴𝑇|
𝑗=1 = 1). 

Intuitively, the method attributes higher potential to the new material-application links where 

materials similar to the material of interest are commonly studied for the application, providing 

insights on potentially promising new research directions. 
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As noises in the literature-mined knowledge graph may render uncertainty cascaded to link 

prediction results, we considered combining the ideas of Monte Carlo sampling and graph 

perturbation for robustness improvement and uncertainty quantification. A perturbation-based link 

prediction framework was proposed in a previous work (Wang et al., 2016), but its latent space 

perturbation method fails to accommodate the bipartite nature of our knowledge graph or our link 

prediction method based on graph-contextualized material node similarity. Inspired by the idea of 

graph perturbation with random noises, we designed the following algorithm (Eq. (5)-(8)). 

𝐺𝑟(𝑀𝐴𝑇, 𝐴𝑃𝑃, 𝐸𝑟) = 𝑓(𝐺(𝑀𝐴𝑇, 𝐴𝑃𝑃, 𝐸), 𝑟, 𝑝), ∀𝑟 = 1,2, …(5) 

𝑓: for edge 𝐸𝑟(𝑚, 𝑎), set its weight 𝑤(𝐺𝑟)(𝑚, 𝑎) = {
𝑤(𝑚, 𝑎), with prob. 𝑝  

𝑤(𝑚, 𝑎) + 𝑣, with prob. (1 − 𝑝)
       (6) 

𝐽(𝐺𝑟)(𝑚𝑖, 𝑚𝑗) =  
∑ min (𝑤̂(𝐺𝑟)(𝑚𝑖,𝑎) ,𝑤̂(𝐺𝑟)(𝑚𝑗,𝑎))

𝑎∈𝑁
𝐴𝑃𝑃
(𝐺𝑟)

(𝑚𝑖)∩𝑁
𝐴𝑃𝑃
(𝐺𝑟)

(𝑚𝑗)

∑ max (𝑤̂(𝐺𝑟)(𝑚𝑖,𝑎) 𝑤̂(𝐺𝑟)(𝑚𝑗,𝑎))
𝑎∈𝑁

𝐴𝑃𝑃
(𝐺𝑟)

(𝑚𝑖)∪𝑁
𝐴𝑃𝑃
(𝐺𝑟)

(𝑚𝑗)

 (7) 

𝑆(𝐺𝑟)(𝑚𝑖, 𝑎𝑘)|𝑤̃(𝐺𝑟)(𝑚𝑖,𝑎𝑘)=0 =  ∑ 𝐽(𝐺𝑟)(𝑚𝑖, 𝑚𝑗) ∙ 𝑤̃(𝐺𝑟)(𝑚𝑗 , 𝑎𝑘)
|𝑀𝐴𝑇|
𝑗=1  (8) 

𝐺𝑟(𝑀𝐴𝑇, 𝐴𝑃𝑃, 𝐸𝑟)  (or simply 𝐺𝑟 ) denotes a perturbed realization of the original 

knowledge graph 𝐺(𝑀𝐴𝑇, 𝐴𝑃𝑃, 𝐸) (Eq. (5)). Perturbation happens on any edge with probability 

1 − 𝑝, and each edge-wise perturbation is the addition of a noise 𝑣 onto the original edge weight 

(Eq. (6)). The weighted Jaccard coefficients and link prediction scores are subsequently calculated 

for each perturbed graph 𝐺𝑟 (Eq. (7)-(8)). In practice, we perturb the original knowledge graph by 

adding unit edge weight increments (𝑣 = 1) to randomly sampled material-application node pairs, 

including both current existing links (edge weight +1) and non-existing links (set edge with weight 

1). This approach can be translated into having equivalent effects of hypothetically adding into our 

knowledge base an example containing the corresponding material-application pair, which models 

the uncertainty stemming from potentially missed papers in literature collection and missed 

extractions from collected papers. The random sampling-perturbation workflow was repeated 100 

times and resulted in 100 different realizations of perturbed knowledge graphs to calculate 

modified weighted Jaccard coefficients and subsequent link predictions scores, with each material-

application node pair having 20% probability (i.e. 𝑝 = 0.8) of being perturbed in every random 

realization. The mean Jaccard coefficients and link prediction scores are computed across the 100 

perturbed graph realizations for robust link prediction, with uncertainty quantified through 

standard deviations across realizations. 

3. Results and Analysis 

We evaluate and compare the LLM performance for entity inference across different 

models’ adaptation with different instruction schemes. We analyze the most well-studied materials 

and applications within the current research landscape and investigate the temporal trends 

reflecting the evolution of topic popularity. Finally, we use link prediction on the knowledge graph 

built from literature-mined information. 
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3.1 Entity-Inference Performance 

 

Figure 3. (a) Model F1 scores under different instruction schemes; (b)(c) Text embeddings for 

paper paragraphs on supplementary cementitious materials (SCM, orange) and geopolymer 

(green), with pretrained and fine-tuned pythia-2.8B, respectively 

We evaluated LLM performance on the entity-level, comparing the LLM-generated 

completions (lists of materials, applications, products, in the form of strings or symbolized 

notations) with ground truth annotations. The results revealed that, by combining multiple-choice 

instruction schemes with instruction-following fine-tuning of small LLMs of just 2.8B parameters, 

the proposed method yields a F1-score of 79.0%, precision of 81.2% and recall of 77.0%. As 

shown in Figure 3 (a), the best F1 scores for both pythia and dolly following supervised fine-tuning 

outperform the in-context learning baseline using the advanced large models (GPT-3.5 of 175B 

parameters), saving memory use and training time by over 95% compared to previous scientific 

literature mining works that relied on fine-tuning large models over 70B to achieve F1 scores 

above 80% (Dagdelen et al., 2024; Walker et al., 2023). For pythia-2.8B, the comparison of 

different instruction schemes reveals that symbolized notations prove to further boost accuracy by 
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over 2% than plain natural language in the multiple-choice instruction design. The fact that pythia 

outperforms dolly post-fine-tuning in this study suggests the importance of task-specific model 

selection, as the common-sense instruction-tuning of dolly does not necessarily enhance its 

performance in scientific tasks. 

To further understand the performance improvement after fine-tuning through language 

representations, using the examples of SCMs versus geopolymer, Figure 3 (b)-(c) visualizes the 

final vectorized representations of each textual example from the best-performing LLM (pythia-

2.8B) and projects them to 2-D space with tSNE dimensionality reduction (van der Maaten and 

Hinton, 2008). Compared to the pre-trained model (Figure 3 (b)), the model fine-tuned under 

multiple-choice instructions with symbolized options (Figure 3 (c)) can partition the papers 

focusing on the two alternative binder mechanisms. 

3.2 Quantitative Summary of Constituent Substitution Research Landscape 
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Figure 4. (a) Knowledge graph containing applications (green) and materials (blue) nodes (node 

sizes and edge weights shown in log scale); (b) Frequencies of top materials for selected 

applications (normalized by application) 

This analysis provides quantitative indication of the overall research landscape. Figure 4 

(a) visualizes a subgraph of the overall knowledge graph presenting the high-frequency 

applications mentioned in the corpus and their most frequently investigated raw materials. SCMs 

are the most widely studied application with a dominating frequency of 3,342, followed by 

geopolymer with 896 mentions, indicating ubiquity of alternative binder study within the literature. 

Given that the chemical processes used in cement production are a main driver of emissions in the 

concrete industry, constituting at least 70% of its GHG emissions (Habert et al., 2020), alongside 

high temperature heating processes (Miller et al., 2021), material substitution is desirable. 

Alternative clinker feedstocks, which reduce emissions from cement manufacturing life cycle 

instead of directly replacing ordinary cement, appears 231 times within the corpus. Other 

commonly studied applications of alternative raw materials include fine aggregate (505), coarse 

aggregate (327), reinforced fibre (159) and filler (120), trailing behind cement-related applications 

because they offer less potential for CO2 emission reduction (Plaza et al., 2021; Sabău et al., 2021) 

and generally have lower economic benefits (Kirthika et al., 2020). 

The most prominent materials for each application are further illustrated in Figure 4 (b) 

(the normalized frequencies for all material-application pairs are shown in Supplementary Figure 

1). Coal fly ash (coal FA), blast furnace slag (BFS), and silica fume (SF), the three conventional 

residues accepted for use as SCMs in current industrial practice, account for a total of 41.2% of 

studies (coal FA 17.6%, BFS 13.5%, SF 10.1%). In addition, natural minerals and other secondary 

materials including limestone powder, waste glass, metakaolin, and rice husk ash each account for 

4.0-6.7% of studies on SCMs. For applications in geopolymers, coal fly ash and metakaolin stand 

out as the most extensively studied raw materials, accounting for 23.5% and 16.9% of related 

papers respectively, followed by BFS (8.6%) and waste glass (4.2%). Geopolymers have garnered 

significant research interest due to their potential benefits of reducing carbon footprint and 

improving durability. However, geopolymers have not been widely adopted in the concrete 

industry because of the technical challenges related to the complex alkaline activation processes 

with harsh corrosive chemicals, which complicates large-scale onsite handling for consistency and 

setting time, along with economic barriers stemming from the costs of with chemical activators 

and operations (Upadhyay et al., 2022; Van Deventer et al., 2012; Wu et al., 2019; Y. Zhang et al., 

2024). Furthermore, the studies on waste glass for fine aggregate stands out with a normalized 

frequency of 16.4%, which matches domain knowledge as the advantages of incorporating waste 

glass as fine aggregate have been studied due to its pozzolanic reaction on surface that enhances 

the mechanical properties, while it is not suitable for use as coarse aggregate because of its smooth 

surface (Harrison et al., 2020). 

In light of the expected decline of industrial residue supply for already-commercialized 

SCMs (Juenger et al., 2019; Snellings et al., 2023), these findings pinpoint other constituent 

substitution strategies as alternative long-term sustainable solutions in the concrete industry, 

including the use of limestone powder and rice husk ash for SCMs, metakaolin for SCMs and 

geopolymer, and waste glass for SCMs and fine aggregate. 
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3.3 Temporal Trends of Research Topics 

  

Figure 5. (a) Trending factors of each material and application topic comparing previous (1971-

2010) and recent (2011-2023) periods, with frequencies per 1000 papers; (b) Rank evolution of 

application topics over time; (c) Trending factors for notable material-application pairs associated 

with SCMs, geopolymer and fine aggregate. (The links with fewer than 10 mentions in both pre-

2010 and post-2010 studies are greyed out) 



13 
 

We present temporal shifts across research topics in Figure 5 (a) through trending factors 

as defined in Eq.(1)-(2), with a greater positive (negative) value indicating a greater increase 

(decrease) of research interests in recent years compared to the earlier period. For applications, the 

general interest for geopolymer (with a trending factor of +0.578) and fine aggregate (+0.391) 

increased dramatically, accompanied by a moderate increase of reinforced fibre (+0.195), whereas 

the studies on clinker feedstock (-0.675) and filler (-0.653) declined significantly in recent years. 

SCM mentions declined slightly after 2010 with a trending factor of -0.058, although it remains 

the most popular in academic research. Pertaining to raw materials, widely applied residues 

including SF (-0.354), BFS (-0.164), class C FA (-0.794) and class F FA (-0.309) are less studied 

in the recent period, while an increased interest is observed in rice husk ash (+0.585), palm oil fuel 

ash (+1.091), limestone powder (+0.363), waste glass (+0.217), metakaolin (+0.419), nano-silica 

(+1.508), electric arc furnace slag (+0.662), construction and demolition waste (+2.104), etc. The 

findings indicate a systematic shift toward exploring a broader range of alternative raw materials 

for sustainable applications, reflecting efforts to address the anticipated decline of supply in coal 

FA and BFS. (Juenger et al., 2019; Snellings et al., 2023).  

Whereas the trending factors quantify the relative importance change of research topics 

over time in a binary time period definition, topic rank evolution (Figure 5(b)) depicts the changes 

of main topics over a continuous timeline. The ranking of fine aggregate continuously rises over 

time, from the 7th-ranked to the 3rd-ranked application topic, whereas geopolymer and reinforced 

fibre have risen from the 3rd place to the 2nd place, and from the 6th place to the 4th place, 

respectively. Meanwhile, the ranking of filler significantly dropped through the years from the 4th 

most widely investigated topic to the 8th, and clinker feedstock dropped from the 3rd place in 

2005-2010 to the 5th place after 2020. Aside from the changes that reaffirm the trending factor 

results, rank evolution analysis further reveals that the research popularity of coarse aggregate has 

significantly dropped from the 2nd place before 2005 to 6th-8th places in following years.  

Despite the continued popularity of SCMs studies, Figure 5(c) reveals a shift to a broader 

range of raw materials (complete trending factor results of material-application pairs are shown in 

Supplementary Figure 2). Links between SCM and class C FA (-1.193), class F FA (-0.904), SF 

(-0.417), and BFS (-0.375) have been trending down, as they have been extensively studied (Figure 

4 (b)) and may face limited supply. Meanwhile, SCM studies of red mud (+1.462), nano-silica 

(+1.252), construction and demolition waste (+1.002), electric arc furnace slag (+0.881) and 

limestone powder (+0.619) have increased. Among all materials on geopolymer research, 42 of 75 

trend up and only 6 trend down, with rice husk ash (+6.305), red mud (+6.134), limestone powder 

(+1.200), zeolite (+1.148) and waste glass (+0.880) leading the increases. Despite not typically 

participating in pozzolanic or geopolymerization reactions, limestone powder improves cement 

hydration through nucleation effects as SCM (Ji et al., 2024; Wang et al., 2019) and enhances 

properties including strength and workability when blended to geopolymer mixtures (Rashad, 

2022; Rashad et al., 2023), and it also leads the recent surge in fine aggregate studies (+6.406), 

rendering it a promising material in industrial practice across different types of applications.   
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3.4 Link Prediction for Under-studied Material-Application Pairs 

 

Figure 6. Predicted link results for material-application pairs underreported in retrieved corpus:  

(a) Mean link prediction scores across 100 randomly perturbed knowledge graph realizations; (b) 

Standard deviations of link prediction scores; (c) Relative uncertainty of link prediction scores 

(link-wise standard deviation divided by link-wise mean score) 

The local subgraph structures within the knowledge graph containing literature-mined 

material-application links were used to quantify material node similarity (see Section 2.3 and 
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Supplementary Figure 4), which subsequently yielded predicted link scores for missing material-

application pairs. The application of lime-pozzolan cement is shown to be associated with most 

high-score predicted links in Figure 6(a) (about 95% of the material-application pairs with a 

predicted score above 0.6), indicating that lime-pozzolan cement is currently under-explored but 

promising to investigate. The lime-pozzolan cement refers to the lime reacting with water and 

pozzolanic materials to form calcium silicate/aluminate hydrates (C-S-H or C-A-H) to provide 

binding properties (Malathy et al., 2023; Zhang et al., 2020). Although lime-pozzolan cement 

presents a lower carbon footprint than OPC, the slow strength gains and lower early-stage strength 

have limited its application in the concrete industry, suggesting the research direction of mixing 

lime-pozzolan with OPC for engineering practice (Baghabra Al-Amoudi et al., 2022; Grist et al., 

2016; Malathy et al., 2023).  

The prominent predicted materials for future lime-pozzolan cement studies include 

calcined clay (with a score of 0.730±0.030), coal FA (0.677±0.022), zeolite (0.659±0.022), Class 

C fly ash (0.651±0.030), blast furnace slag (0.633±0.017), mine tailings (0.632±0.021), red mud 

(0.632±0.020), sewage sludge ash (0.630±0.021), and bagasse ash (0.618±0.033), all of which 

were previously mentioned as pozzolanic materials in the publications (Chusilp et al., 2009; 

Çokça, 2001; Liu et al., 2020; Lynn et al., 2015; Najimi et al., 2012; Nedunuri et al., 2020; Tironi 

et al., 2013; Yang et al., 2019). Only municipal solid waste incinerator (MSWI) fly ash is greyed 

out in Figure 6(a), as it has been previously studied for blending with lime-pozzolan cement to 

stabilize/solidify heavy metals in ash with low-cost (Ubbriaco, 1996), while the high content of 

hydrated lime in ash and active pozzolan components suggests its potential uses (Chen et al., 2023; 

Marieta et al., 2021; Tang et al., 2016). 

Model uncertainty was further quantified through standard deviation of link prediction 

scores (Figure 6(b)) and the relative uncertainty (ratios of link-wise standard deviations to mean 

scores) (Figure 6(c)) across the 100 realizations. It is observed that the standard deviations for all 

prediction scores are under 0.120, with over 80% of the standard deviations under 0.040. 

Meanwhile, all of the top 20 predicted links for lime-pozzolan cement have a relative uncertainty 

below 10% (Figure 6(c)), highlighting the robustness of the prediction results. 

4. Limitation and Discussion 

Despite the promising results, there are certain challenges and limitations that warrant 

discussion to contextualize our findings and clarify our contributions, with future work expected 

to address relevant open questions.  

Challenges in Extracting More Detailed Information The current work summarizes 

existing knowledge and conducts link prediction to assess materials for constituent substitution, 

accommodating named entity inference from complex contexts. Extracting comprehensive 

material characteristics and mixture factors could enhance the predictions accuracy and optimize 

the product performance. Material substitution often involves detailed factors beyond material-

application pairing, such as chemical composition, physical properties, mixture proportions, 

performance and material substitution tradeoffs, reaction kinetics, and thermodynamic constraints, 

which can be valuable in decision-making. Nevertheless, in many cases covering fine and coarse 

aggregates substitutions, reinforced fibers, additives, etc., chemical composition is usually not reported 

in the article context (Khan and Ali, 2016; Wang et al., 2020; Zeng et al., 2020). Furthermore, some 

detailed materials data such as chemical composition, mixture proportions and product performance 

are provided in tables and figures instead of text (Baeza et al., 2014; Copetti et al., 2020; Mohebi et 
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al., 2015; Praneeth et al., 2020; Tanyildizi and Coskun, 2008; Thongsanitgarn et al., 2014; Van Den 

Heede et al., 2010; Wang et al., 2008). Additionally, time-dependent kinetic and thermodynamic phase 

equilibrium are typically reported in figures (Cheung et al., 2011; Kamali et al., 2003; Lothenbach, 

2010; Saillio et al., 2021; Thomas et al., 2011), and are generally not relevant to non-SCM application 

categories covered in this work. Automated table understanding (Sarkar and Lausen, 2023; Sui et al., 

2024) and chart understanding (Han et al., 2023; Masry et al., 2024) using LLMs are advanced active 

research questions for foundational NLP works, and require dedicated efforts in developing specialized 

methodologies such as table parsing pretraining, visual instruction tuning, and multimodal chain-of-

thought (Herzig et al., 2020; Liu et al., 2023; Z. Zhang et al., 2024). Adaptation of these methods for 

scientific domain questions may be incorporated in future studies to extract more comprehensive 

information from multimodal sources. Despite not incorporating aforementioned detailed material 

characteristics and behavior information, the analysis and findings of this work are expected to be 

valuable for practical applied scenarios. The quantitative summary of material-application pairs can be 

coupled with experimental trials to diversify industrial sustainable strategies, as manufacturers can’t 

optimize the characteristics of secondary materials they receive, and data points from experimental 

research can’t cover the vast compositional space of real-world composites. Meanwhile, 

experimentalists can draw inspiration from our results and determine the underexplored material-

application pairs to prioritize for future research development. 

Challenges in Distinguishing Reaction Mechanisms The research scope of this work 

covers material substitution not only limited to SCMs, but also other construction applications 

including coarse or fine aggregate, geopolymer binder, filler, reinforced fiber, etc. Currently, the 

terminology for concrete constituent substitution was standardized based on mix formulation, so 

materials substituting cement were classified as SCMs, despite the specific reaction mechanisms 

may differ, which were not further addressed due to the research scope of this study and the 

ambiguity of classification in certain cases. From a domain knowledge perspective, the SCMs are 

classified to inert, pozzolanic, and hydraulic materials in cementitious systems according to 

isothermal calorimetry heat release and Ca(OH)2 consumption, where the most commonly used 

measurement methods are summarized in the recent technote from U.S. Department of 

Transportation with quantitative assessment (Skibsted and Snellings, 2019; Suraneni and Weiss, 

2017; US Department of Transportation Federal Highway Administration, 2025). For instance, 

limestone powder (Section 3.3) typically does not chemically react when it is for SCM use, but 

primarily promotes cement hydration through nucleation effects, where the fine limestone particles 

improve workability, increase packing density, and reduce voids (Moon et al., 2017; Wang et al., 

2018). However, the nucleation effects on hydration and pozzolanic reactions can be overlapped 

in the calorimetry curves, posing challenges to establish distinctive boundaries in the terminology.  

Limitation of Literature Collection Due to the limited access to the initial literature 

database and the constraints of keyword-based retrieval, some important papers may not be fully 

covered in our collection. For example, materials including calcined clay and BFS were studied 

for lime-pozzolan cement in a previous paper not included in the database (Walker and Pavía, 

2011). The maintenance of an up-to-date literature database with access to papers from all major 

publishers is expected to remain a fundamental challenge, but future works may explore more 

comprehensive topic-specific paper collection approaches within existing literature databases, by 

employing crawler-based or embedding-based strategies to complement the traditional keyword-

based ones.  

Need for Future Knowledge Base Enrichment and Experimental Validation Despite 

materials outside the pre-defined multichoice options can be rare (see Section 2.1), future research may 
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introduce new materials in marginal cases. By incorporating the “unknown” option, the literature 

mining framework can identify marginal cases without hallucinating materials from the known list. 

When treating research papers, “unknown” materials reported by the model will require a case-by-case 

analysis by domain experts, and further annotation may be performed to enrich the knowledge base. 

Additionally, this work builds upon the previous automated literature mining works in materials 

domains that focused on knowledge base construction with evaluation through computational metrics 

(Dagdelen et al., 2024; Kim et al., 2017; Kumar et al., 2023; Venugopal and Olivetti, 2024; Walker et 

al., 2023). To extend the efforts of this work, experimental research is needed to validate the 

predicted functionality of materials. 

5. Conclusion 

We developed an LLM-empowered literature-mining method to complete entity inference 

from domain-specific complex linguistic settings, using symbolized multiple-choice instructions 

and supervised fine-tuning of computationally efficient small LLMs. This strategy is time- and 

memory-efficient in model tuning and addresses a wide range of problems including non- 

standardized terminology, indirect text mentions, non-local and non-sequential dependency, and 

the non-injective mapping relations. As such complexity is prevalent in papers related to resources 

management and beneficial uses of alternative materials, the developed methodology could 

support future literature mining works in related fields as a generalizable framework. 

In this study, the method was applied to acquire a systematic knowledge summary of 

studies on concrete constituent substitution. The literature-mined information was analyzed 

through statistical and graph-based quantitative methods to identify the hotspots within the 

research landscape, assisting the industry to prioritize areas for further deployment. SCMs are the 

most widely studied application, followed by geopolymers. Most prominent materials for SCMs 

include 3 industrial residues, namely coal FA, BFS and SF, as well as natural minerals and other 

secondary materials including limestone powder, waste glass, metakaolin, and rice husk ash. Coal 

FA and metakaolin are the most extensively studied materials as geopolymers, while studies on 

waste glass for fine aggregate purposes are also highlighted.  

Temporal trends of different research topics were further analyzed, revealing a systematic 

shift of research interest in the recent period. Among all applications, geopolymer and fine 

aggregate studies have become significantly more popular in recent years across different raw 

materials, while clinker feedstock and filler studies have been in decline over time. SCMs 

remained popular over time, but the materials studied have been significantly diversified, with 

nano-silica, red mud and rice husk ash trending up and the well-studied industrial residues facing 

a declining supply (coal FA, BFS, SF) trending down. Limestone powder was also found to be a 

promising raw material for alternative binders with its SCM, geopolymer and fine aggregate 

studies all surging after 2010. 

Meanwhile, some of the currently underexplored material-application links have been 

predicted to be potentially promising directions for future research. Lime-pozzolan cement stands 

out to be a notably potential use for several different materials including calcined clay, coal FA, 

zeolite, Class C FA, BFS, mine tailings, red mud, sewage sludge ash, and bagasse ash. The 

potential of such materials in lime-pozzolan cement mostly come from the pozzolanic reactivity 

that contributes to the formation of strength-providing calcium silicate/aluminate hydrate. 
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