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ABSTRACT

Concrete industry, as one of the significant sources of carbon emissions, drives
the urgency for its decarbonization that requires a shift to alternative materials.
However, the absence of systematic knowledge summary remains a challenge for
further development of sustainable building materials. This work offers a cost-
efficient strategy for information extraction tasks in complex terminology settings
using small (2.8B) large language models (LLMs) with well-designed instruction-
completion schemes and fine-tuning strategies, introducing a dataset cataloging
civil engineering applications of alternative materials. The Multiple Choice in-
struction scheme significantly improves model accuracies in entity inference from
non-Noun-Phrase sources, with supervised fine-tuning benefiting from straightfor-
ward tokenized representations of choices. We also demonstrate the utility of the
dataset by extracting valuable insights into promising applications of alternative
materials from knowledge graph representations.

1 INTRODUCTION

Concrete production is a major contributor to industrial greenhouse gas (GHG) emissions, consti-
tuting 8-9% of the global CO2 emissions (Ellis et al |2020). As construction projects drive eco-
nomic growth, the urgency to decarbonize building material consumption intensifies, necessitating
a sustainable shift to alternative or secondary materials crucial for combating climate change as the
majority of emissions are process- instead of energy-related. (Belaid,2022; Miller et al.,[2021;|Mon-
teiro et al., [2017). Previous studies have extensively investigated using processed natural mineral
materials (e.g., metakaolin), recycled demolition and construction waste, industrial residues (e.g.,
silica fume, coal ashes, metallurgical slags), and agricultural and municipal solid waste incineration
(MSWI) residues to substitute the constituents of concrete according to their characteristics, includ-
ing Portland cement, fine aggregate, and coarse aggregate (Juenger et al., 2019} [Snellings et al.,
2023 |Kurniati et al., [2023)).

The lack of a systematic summary impedes the advancement of commercially viable climate-friendly
concrete production and the broader utilization of sustainable construction materials. For a compre-
hensive exploration of alternative material possibilities in construction for the decarbonization goals,
an exhaustive literature review is indispensable to enrich the knowledge base of the applications and
offer optimal recommendations for substitution mixture. Achieving this task is time- and labour-
consuming both manually and through traditional Natural Language Processing (NLP) methods that
rely on massive labeling. Therefore, we propose to leverage large language models (LLM) for the
literature mining task to efficiently address this complexity.

NLP methods have been employed in chemistry and materials research for literature mining across
various domains, such as drug discovery (Oztiirk et al., [2021; [Liu et al.l 2021), solid-state synthe-
sis (He et al., 2020), material discovery (Dunn et al.l 2022} Xie et al.| [2023; [Munjal et al.| [2023;
Walker et al., [2023)) etc. Despite the breadth of topics covered, previous studies have predominantly
focused on named-entity recognition (NER) and relation extraction (RE) for molecules character-
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ized by precise chemical compositions and well-defined properties, often with synthetic data. The
clarity of compounds is seen as a prior condition for such literature-mining works (Krallinger et al.,
2017; \Gupta et al,, [2022). However, within the concrete realm and particularly in the quest for
sustainable strategies, the materials of interest encompass secondary and natural mineral materials,
which exhibit highly intricate and variable compositions. Consequently, the materials and their ap-
plications in the studies are typically delineated through explanatory descriptions rather than noun
phrases (NP), lacking universal standards in terminology usage, unlike most other scientific topics.
Such complexity inherent in the corpus renders direct NER and RE extremely challenging (Nasar
et al., 2021; |L1 et al.| 2022)), posing significant obstacles to effective academic communication and
comprehension.

This work presents a comprehensive methodology demonstrating how meticulous instruction
schemes and fine-tuning strategies can achieve state-of-the-art performances in complex scientific
information extraction. The extracted dataset cataloging the civil engineering applications of alter-
native materials, using normalized terms for summarization, is a first of its kind. The comprehensive
instruction-completion schemes were developed to handle complex text, including non-NP sources.
With small autoregressive language models (2.8B) achieving superior entity-level accuracy com-
pared to pre-trained GPT-3.5 (175B) in scientific tasks, our work offers a cost-efficient strategy for
extraction tasks in complex settings, unlike previous approaches that often lack entity-level accu-
racy report or rely on expensive large models (e.g., GPT-3/3.5) for higher accuracy. The dataset
is a foundational resource for further studies into alternative materials applications in sustainable
building materials. We also showcase the utility of the dataset through graph representation and
descriptive and predictive analyses of material-application links.

2 METHODS

2.1 DATASET

An initial collection of 51,295 papers on concrete studies was retrieved and subsequently refined to
6,995 papers related explicitly to alternative materials. To fine-tune LLMs, 102 papers were manu-
ally annotated, extracting information regarding three key entities: (1) the alternative raw materials
under investigation; (2) their respective applications; and (3) the laboratory products subject to en-
gineering testing. Notably, a single paper may encompass multiple alternative raw materials and
products, with each material potentially serving various applications. These 102 annotated papers
were divided into a training corpus of 82 papers and a testing corpus comprising 20 papers, with
examples then derived and augmented (see permutation in 2.2) to form the training and testing sets.

2.2 LLM LITERATURE MINING

Instruction-based Entity Inference Schemes:

Paper Text Paper Text

Fly ash (FA) is recently used as a source material to
produce geopolymer because of its suitable chemical
composition along with favorable size and shape [l
ash is a by-product of coal-fired electric power stations.
Literature survey specifies that fly ash is primarily
composed of SiO2, Al203 and Fe203. Since the quality
of fly ash depends on the type and the quality of coal
along with the performance of the power plant,
difficulties sometimes remain to control its chemical
composition.

Instruction 1:

‘
Application:

» geopolymer

Material: coal fly ash

+

Instruction 2:
Material —

The influence of including fly ash (FA) on the properties
of self-compacting concrete (SCC) is investigated.
Portland cement (PC) was partially replaced with 0-80%
FA. The water to binder ratio was maintained at 0.36 for
all mixes. Properties included workability, compressive
strength, ultrasonic pulse velocity (V), absorption and
shrinkage. The results indicate that high volume FA can
be used in SCC to produce high strength and low
shrinkage. Replacing 40% of PC with FA resulted in a
strength of more than 65N/mm2at 56days.

Instruction 1:
‘

Instruction 2: Application:
Material — | 'supplementary
Application ccementitious material

Material: coal fly ash

+

Figure 1: Information extraction examples, necessitating logical inference rather than conventional
named-entity recognition

As illustrated in Figure 1, the tasks of this study require complex logical inference from non-NP
source text to extract the desired information, making conventional named-entity recognition (NER)
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Multiple Choice

Instruction: Instruction:

Extract information of raw Extract information of raw
materials used in this research. materials used in this research.
Here is the research paper Here is the research paper
content: content:

Possible materials include: Possible materials include:

['Class C fly ash', 'Class F fly 015 soda ash

ash', 'Corex slag’,......] 02: Corex slag
['FeMn arc-furnace slag', 'Corex ['65', 02", '18]
slag', 'blast furnace slag']

- J - J

Figure 2: Comparison of two instruction-completion schemes.

unsuitable. Separate instructions were devised for extracting the three entities (material, application,
product), with application extraction dependent on material extraction.

To accommodate the logical inference in extraction, the tasks were structured as multiple-choice
problems, with provided choices in the instructions to guide model inference. A total of 75 material
options, 13 application options, and 15 product options have been predefined by domain experts,
covering potential studies comprehensively and an unknown” option for each category to address
potential model hallucination. Additionally, two distinct instruction-completion schemes were de-
veloped, with an example outlined in Figure 2.

* Item Instruction: the problem setting was multiple-choice, but possible choices were pro-
vided as a list of items without notations by any symbols.

* Multiple Choice: the choices were provided with double-digit notations.

Permutation of choice orders was performed for different examples to address the potential issue
of LLM sensitivity to option ordering (Pezeshkpour & Hruschkal 2023), with permutated examples
from a single paper being entirely in either training or testing set to avoid data leakage.

Models & Fine-tuning:

Two small, open-source LLMs, pythia-2.8B (Luo et al., 2023) and dolly-3B (Conver et al., |[2023),
were fine-tuned for the information extraction-inference tasks. In contrast to large models such as
GPT-3.5 (175B), these small models offered reduced computational expenses and decreased time
and memory usage. Furthermore, pythia and dolly were pertinent contrasts, sharing identical tok-
enizers, overall model architectures, and sizes (pythia-2.8B and dolly-3B differed only in naming
convention). The primary distinction was that dolly models undergo additional fine-tuning with
common sense instruction-following data after pre-training. In our work, supervised fine-tuning
was performed using the instruction-completion data with different schemes.

3 RESULTS

Table 1: Test set performance of fine-tuned models and the GPT-3.5 few-shot baseline.

Model Instruction Scheme F1 Score Precision Recall
pythia-2.8B Item Instruction 77.0 78.2 75.7
pythia-2.8B Multiple Choice 79.0 81.2 77.0
pythia-2.8B Without Options 30.5 333 28.1
dolly-3B Multiple Choice 69.9 71.0 68.9
dolly-3B Item Instruction 60.4 61.3 59.5
dolly-3B Without Options 20.3 20.8 19.8
gpt-3.5 @4-shot Item Instruction 57.2 62.8 52.6
gpt-3.5 @4-shot Multiple Choice 51.9 46.8 58.1

Table 1 presents a comparison of test set accuracy performances among the 2.8B models fine-tuned
with various instruction schemes and the GPT-3.5 few-shot baseline. The most notable performances
are observed in pythia fine-tuned with the Multiple Choice scheme, achieving a test F1 score of
79.0%, precision of 81.2%, and recall of 77.0%. This model-scheme combination outperforms
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(a) Frequencies of Applications for Selected Materials

(b) Frequencies of Materials for Selected Applications
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Figure 3: Normalized weights for selected material-application edges (values along each row add
up to 1.0). Cell values show (a) the frequencies of linked applications for selected materials; (b) the
frequencies of linked materials for selected applications

all others across all accuracy metrics. Furthermore, the best accuracies for both pythia and dolly
following supervised fine-tuning surpass those of the pre-trained GPT-3.5 with few-shot learning,
underscoring the potential of small, free models to attain state-of-the-art performances in scientific
tasks requiring domain expertise.

The comparison of different instruction schemes reveals that including choices within the instruc-
tions enhances model performance for the complex information extraction tasks requiring logical
inference. Specifically, the Multiple Choice scheme, utilizing double-digit notations, notably boosts
accuracies. These results underscore the impact of tokenization simplicity on information extraction
effectiveness. In supervised fine-tuning, straightforward tokenized representations associated with
the options reduce uncertainties in answer generation, while for pre-trained large models, the Item
Instruction scheme may be preferable for its clarity, given the limitations of the few-shot setting.
Despite that the instruction tuning of dolly typically enhances its performance in common sense
instruction-following tasks, pythia consistently outperforms dolly post-fine-tuning, highlighting the
importance of considering knowledge domains and NLP task types in model selection.

The fine-tuned model extracts information from an extensive corpus of unannotated papers, which is
subsequently utilized to construct a knowledge graph. Figure 3 illustrates edge weights normalized
by material and application, highlighting promising applications and the frequently studied mate-
rials. Across various ash residues, supplementary cementitious materials (SCMs) predominate as
the most studied application, with frequencies exceeding 60%, except for coal bottom ash (46.3%).
Geopolymer emerges prominently for coal fly ash, clinker feedstock is notable for MSWI fly ash,
and fine aggregate is significant for coal and MSWI bottom ash. Alongside industry-adopted SCMs
coal fly ash, silica fume, and blast furnace slag (Young et al.,[2019; DeRousseau et al.,|2019), whose
supplies are expected to decline (Juenger et al., 2019), commonly studied materials for SCMs also
include promising alternatives like limestone powder, rice husk ash, and waste glass. Metakaolin and
coal fly ash emerge as promising raw materials in the geopolymer realm. The studies on waste glass
and recycled concrete aggregate for fine and coarse aggregate purposes, respectively, surpass those
on industrial residues. Most of these links point to less developed applications in industrial practice,
providing valuable insights into priority areas for deploying alternative materials. The knowledge
graph representation facilitates graph analysis, offering deeper insights for future studies. For in-
stance, link prediction can be employed to guide further research towards previously overlooked
potential applications of alternative materials. Appendix B illustrates one approach to achieve this,
utilizing node similarity analysis in conjunction with existing material-application edge weights.

4 CONCLUSIONS

This work demonstrates a novel methodology showcasing how precise instruction-completion
schemes and fine-tuning strategies yield cutting-edge performance using small LLMs in scientific
information extraction. It introduces a pioneering dataset cataloging civil engineering applications
of alternative materials, serving as a foundational resource for further studies to facilitate the sus-
tainable transition of the concrete industry. It offers a cost-efficient strategy for extraction tasks in
complex settings. The Multiple Choice scheme, with more straightforward notations and result-
ing tokenized representations, substantially enhances model accuracies for complex entity inference
from non-NP sources. The knowledge graphs were enabled to construct from unannotated papers in-
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formation extraction, revealing valuable insights into the most promising applications of alternative
materials, providing directions for industrial practice and further researches.
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A  KNOWLEDGE GRAPH REPRESENTATION

With the construction of the knowledge graph from extracted information, the summary of com-
monly studied material-application links shown in Figure 3 can also be analyzed in forms including
subgraph representations (Figure A.1) and un-normalized edge weights (Figure A.2).
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material similarity based on knowledge graph local structural simi-

Figure B.1 shows one way to quantify material similarity using Jaccard coefficients calculated
through local graph structural similarity of the material nodes.

With the adjacency matrix containing edge weights of the existing material-application links, as well
as the Jaccard matrix containing node similarity of materials, likelihood of potential new links can
be calculated. Figure B.2 illustrates the results, with all non-zero entries indicating the likelihood of
new link between material-application pairs that don’t exhibit existing edges.
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