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Introduction: Graph coarsening

Graph coarsening is a remarkably useful and ubiquitous tool in scientific computing; it is now just
starting to have a similar impact in machine learning.

Main idea:

Given a graph G, find a smaller graph G(c) such that it is “a good approximation” of G

In some applications, directly obtain the solution by using G(c); in other applications, interpolate
the solution on G(c) back to G

Can do coarsening (and back-interpolation) recursively, resulting in multilevel methods

Related concepts and applications: graph partitioning; algebraic multigrid; ILU preconditioner

Synonyms: graph reduction; graph down-sampling; graph clustering; graph summarization; graph
compression; graph sketching; graph pooling
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Existing coarsening approaches

Two types:

Coarse node-based; e.g., independent-set coarsening, Kron reduction (1939)

Clustering-based; e.g., heavy edge matching, algebraic distance, spectral coarsening
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What is a good coarsening?

Many coarsening methods are heuristic (e.g., based on “strength of connection”) without an objective.

Spectral coarsening sets up an objective: Preserve the graph spectrum. See, e.g., Andreas Loukas’s blog
post “Demystifying graph coarsening”.

However, it is still mysterious ...

Unclear why spectrum but not other graph properties, such as the degree distribution. (Yes, I can
hear the shape of a drum; but ...)

Unclear if preserving the spectrum will benefit the downstream application

In this work, we propose a geometric objective, which is intuitive for machine learning.

This objective sets up a framework that includes, but is not limited to, preserving the graph spectrum.
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A geometric view of coarsening
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Notation

Graph G has N nodes. Node set V = {vi}Ni=1

Adjacency matrix A; Laplacian L = D−A; normalized Laplacian L = D−
1
2 LD−

1
2

Assume G is connected (hence smallest eigenvalue of L and L is zero and is simple)

The coarsened graph is denoted by G(c), which has n ≤ N nodes

Let {V1, . . . ,Vn} be a partitioning of V (hence each Vk represents a node of G(c))

Define membership matrix Cp ∈ {0, 1}n×N with entries Cp(k, i) = 1(vi ∈ Vk)
Define A(c) = CpAC>p to be the adjacency matrix of G(c) (note that the diagonal of

A(c) is not necessarily empty)

Define D(c) = diag(A(c)1). One can show that D(c) −A(c) is the Laplacian of G(c)

and (D(c))−
1
2 L(c)(D(c))−

1
2 is the normalized Laplacian
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Gromov–Wasserstein distance and the metric space

A measure network is a triple (X , µX , ωX):

X is a Polish space (a separable and completely metrizable topological space)

µX is a fully supported Borel probability measure

ωX is a bounded measurable function on X × X

A graph with a similarity matrix S ∈ RN×N is a (finite) measure network:

X is the set of graph nodes {v1, . . . , vN}
µX is the probably mass vector m = [m1, . . . ,mN ]> ∈ RN

+ with
∑

imi = 1

ωX is the similarity function ωX(vi, vj) = sij

Example: m and S can be node weights and edge weights (but not necessarily).
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Gromov–Wasserstein distance and the metric space
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Gromov–Wasserstein distance and the metric space

Let there be two graphs G1 and G2.

Let T = [tij ] ∈ RN1×N2 be a transport matrix such that T1 = m1 and T>1 = m2. Let Π1,2 be the set of

transport matrices.

Distance between G1 and G2:

GWp(G1, G2)p := min
T∈Π1,2

N1∑
i,j=1

N2∑
i′,j′=1

|s1
ij − s2

i′j′ |pTii′Tjj′ .

Rewrite:

GWp(G1, G2)p = min
T∈Π1,2

〈C,T〉 where Cjj′ :=
∑
i,i′

|s1
ij − s2

i′j′ |pTii′ .

Interpretation: Assign large transport mass Tjj′ to a node pair (v1
j , v

2
j′) with small dissimilarity Cjj′

One can show that GWp is indeed a metric, modulo weak isomorphism (Chowdhury & Mémoli, 2019; Theorem

18). Therefore, GWp induces a metric space.
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Coarsening matrices

Accumulation Cp Averaging Cw Projection Cw

Cp(k, i) = 1(vi ∈ Vk) Cw = diag(c−1
1 , · · · , c−1

n )CpM,
M = diag(m), ck =

∑
vi∈Vk mi

Cw = diag(c
− 1

2
1 , · · · , c−

1
2

n )CpM
1
2

Example:1 1 1
1

1


Example:m1

c1

m2
c1

m3
c1

1
1


Example:
√
m1
c1

√
m2
c1

√
m3
c1

1
1


Notes:

� Relation to Laplacian:
L(c) = CpLC>p

Notes:

� When m is uniform, C
+
w = C>p

� We use it to define coarsened
similarity matrix S(c) = CwSC

>
w

needed by GW (consistent with the
concept of semi-relaxed GW)

Notes:

� Cw is row orthonormal

� C>wCw = M
1
2 C>p CwM

− 1
2

� Relation to normalized Laplacian:
L(c) = CwLC>w if M = D/vol

� Later, we define U = M
1
2 SM

1
2

and U(c) = CwUC>w and use their
eigenvalues to bound GW
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Bounding GW2 for a single graph

Assume the similarity matrix S is PSD. Define for the coarse graph S(c) = CwSC
>
w and m(c) = Cpm.

Define U = M
1
2SM

1
2 and U(c) = CwUC>w .

Let λ1 ≥ · · · ≥ λN be the eigenvalues of U and λ
(c)
1 ≥ · · · ≥ λ(c)

n be the eigenvalues of U(c).

We have

GW2(G(c), G)2 ≤ λN−n+1

n∑
i=1

(
λi − λ(c)

i

)
︸ ︷︷ ︸

∆

+

n∑
i=1

λi(λi − λN−n+i) +
N∑

i=n+1

λ2
i︸ ︷︷ ︸

CU,n

Remarks: 1 the bound is tight when n = N ; 2 ∆ ≥ 0 due to the Poincaré separation theorem;

3 CU,n ≥ 0; 4 CU,n is independent of coarsening; 5 the choice of coarsening only affects ∆.
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Bounding GW2 for a pair of graphs

Given a pair of graphs G1 and G2, extend all previous notations by adding subscripts 1 and 2 respectively.

Denote by T∗ the optimal transport plan induced by GW2(G1, G2); and define P = M
− 1

2
1 T∗M

− 1
2

2 .

Define V1 = PM
1
2
2 S2M

1
2
2 P> and V2 = P>M

1
2
1 S1M

1
2
1 P, both independent of coarsening.

Let ν1,1 ≥ · · · ≥ ν1,N1 be the eigenvalues of V1 and ν2,1 ≥ · · · ≥ ν2,N2 be the eigenvalues of V2.

We have

|GW2(G
(c)
1 , G

(c)
2 )2 −GW2(G1, G2)2|

≤ max {λ1,N1−n1+1 ·∆1 + λ2,N2−n2+1 ·∆2 + CU1,n1 + CU2,n2 ,

2ν1,N1−n1+1 ·∆1 + 2ν2,N2−n2+1 ·∆2 + 2CU1,V1,n1 + 2CU2,V2,n2} ,
where CU,V,n =

∑n
i=1 λi(νi − νN−i+1) +

∑N
i=n+1 λiνi ≥ 0.

Remarks: 1 Even when G1 = G2, the bound can be nonzero if the coarsened graphs do not match.

2 ∆1 and ∆2 are decoupled; therefore, it suffices to optimize the coarsening for each graph independently.
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Interpretation: Optimizing coarsening ⇔ minimizing ∆

∆ +

N∑
i=n+1

λi︸ ︷︷ ︸
⊥coarsening

= Tr(U−C>w CwUC>w︸ ︷︷ ︸
U(c)

Cw)

=
∑
k

∑
vi∈Vk

mi‖φi − µk‖2 with µk =
∑

vi∈Vk

mi

ck
φi

where Sij = 〈φi,φj〉 is the inner produce of the RKHS

and ‖ · ‖ is induced by the inner product 〈·, ·〉.

This is nothing but the objective of weighted kernel K-means clustering!
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Coarsening algorithm

1: Given a kernel matrix S ∈ RN×N and a probability mass vector m ∈ RN

2: Start with an initial partitioning {V1, . . . ,Vn}
3: loop until convergence
4: for each node vi do
5: Update partition membership

argmin
k

dist(vi,Vk)2 =��mi ‖φi − µk‖2 = Sii − 2
∑

vj∈Vk

mj

ck
Sji +

∑
vj1 ,vj2

∈Vk

mj1mj2

c2k
Sj1j2

6: end for
7: Form a new partitioning based on the result of the above for-loop
8: // New centroids µk do not need to be explicitly computed
9: end loop

10: return the coarsened adjacency matrix A(c) = CpAC>p (can replace Cp with Cw or Cw if edge
weights do not matter)
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How to set S and m?

S must be PSD for the bounds to hold

When S is the normalized Laplacian and m is proportional to node degrees, U is proportional to
the Laplacian

There are two problems in this choice:
I First, S is sparse and the off-diagonal nonzero entries are negative. Is a “zero” node pair more similar

than a “negative” node pair?
I Second, it lures one to look for solutions toward the top eigenvectors of the Laplacian, which is

opposite to the intuition of spectral methods.

Hence, instead, we let S be the normalized signless Laplacian I + D−
1
2AD−

1
2 . Then, U is

proportional to the signless Laplacian D + A

Conceptually, either “top eigenvectors of A” or “bottom eigenvectors of L”
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Experiments

Eight datasets; average V is between 14 and 53; average E is between 17 and 199.

Compared coarsening methods (from Loukas (2019); Jin et al., (2020)):

1 Variation Neighborhood Graph Coarsening (VNGC); 2 Variation Edge Graph Coarsening (VEGC);

3 Multilevel Graph Coarsening (MGC); 4 Spectral Graph Coarsening (SGC).

Our method is called Kernel Graph Coarsening (KGC), initialized with K-means++.
Variant: KGC(A), which uses the best-performing baseline to initialize KGC.

c = n/N denotes coarsening ratio.
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Table: GW2(G(c), G)2, averaged over all graphs in PTC

Methods c = 0.3 c = 0.5 c = 0.7 c = 0.9

VNGC 0.05558 0.04880 0.03781 0.03326
VEGC 0.03064 0.02352 0.01614 0.00927
MGC 0.05290 0.04360 0.02635 0.00598
SGC 0.03886 0.03396 0.02309 0.00584
KGC 0.03332 0.02369 0.01255 0.00282

KGC(A) 0.03055 0.02346 0.01609 0.00392

Table: Bound gap, averaged over all graphs in PTC

Methods c = 0.3 c = 0.5 c = 0.7 c = 0.9

VNGC 0.06701 0.06671 0.05393 0.04669
VEGC 0.06246 0.06129 0.04424 0.02577
MGC 0.03203 0.03200 0.02167 0.00540
SGC 0.04599 0.04156 0.02488 0.00554
KGC 0.05145 0.05173 0.03530 0.00852

KGC(A) 0.06519 0.06402 0.04702 0.00372

Table: |GW2(G
(c)
s , G

(c)
t )2 −GW2(Gs, Gt)

2|,
averaged over all s, t pairs in PTC. c = 1

logNmax

Methods Dist. Diff. Time

VNGC 17.34 ± 0.01 6.55 ± 0.18
VEGC 9.22 ± 0.02 3.75 ± 0.01
MGC 5.31 ± 0.00 6.59 ± 0.02
SGC 6.06 ± 0.02 28.06 ± 0.10
KGC 4.45 ± 0.03 1.34 ± 0.33

KGC(A) 5.28 ± 0.00 0.27 ± 0.00

Figure: Coarsening time (left) and spectrum

difference 1
5

∑5
i=1

λi−λ
(c)
i

λi
(right) on Tumblr
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Table: Graph classification accuracy on six datasets. Method: NetLSD. c = 0.2

Methods MUTAG PTC PROTEINS MSRC IMDB Tumblr

VNGC 76.11 ± 2.25 56.69 ± 2.52 65.44 ± 1.57 14.92 ± 1.57 53.90 ± 0.50 50.43 ± 2.62
VEGC 84.59 ± 2.02 56.39 ± 2.03 64.08 ± 1.11 16.80 ± 2.15 64.20 ± 1.90 48.26 ± 1.71
MGC 84.15 ± 3.14 54.66 ± 3.59 66.16 ± 1.64 15.36 ± 1.80 69.50 ± 1.42 50.14 ± 2.67
SGC 84.44 ± 2.86 53.79 ± 2.28 63.91 ± 1.51 16.76 ± 2.50 66.00 ± 1.26 48.53 ± 2.35

KGC 81.90 ± 2.74 61.58 ± 2.49 63.45 ± 0.83 19.84 ± 2.23 67.80 ± 1.65 52.52 ± 2.81
KGC(A) 86.23 ± 2.69 57.25 ± 2.16 66.43 ± 0.92 17.17 ± 2.91 69.20 ± 1.37 52.57 ± 2.22

EIG 85.61 ± 1.69 56.08 ± 2.28 64.35 ± 1.43 12.19 ± 2.79 68.70 ± 1.71 49.57 ± 1.95
FULL 84.59 ± 2.51 54.37 ± 2.12 67.51 ± 0.82 23.58 ± 2.50 69.90 ± 1.40 52.57 ± 3.36

Table: Graph regression error on AQSOL (left) and ZINC (right). Method: GCN. c = 0.3

Methods Test MAE Train MAE Epochs

VNGC 1.403 ± 0.005 0.629 ± 0.018 135.75
VEGC 1.390 ± 0.005 0.702 ± 0.003 107.75
MGC 1.447 ± 0.005 0.628 ± 0.012 111.00
SGC 1.489 ± 0.010 0.676 ± 0.021 107.00
KGC 1.389 ± 0.015 0.678 ± 0.013 112.00

KGC(A) 1.383 ± 0.005 0.657 ± 0.013 124.75

FULL 1.372 ± 0.020 0.593 ± 0.030 119.50

Methods Test MAE Train MAE Epochs

VNGC 0.709 ± 0.005 0.432 ± 0.012 120.00
VEGC 0.646 ± 0.001 0.418 ± 0.008 138.25
MGC 0.677 ± 0.002 0.414 ± 0.006 112.50
SGC 0.649 ± 0.007 0.429 ± 0.008 111.75
KGC 0.737 ± 0.010 0.495 ± 0.012 113.50

KGC(A) 0.641 ± 0.003 0.433 ± 0.013 126.50

FULL 0.416 ± 0.006 0.313 ± 0.011 159.50
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Interesting research topics

Can we define a spectrum-preserving restriction operator (Cw) and prolongation operator for AMG?

Can we extend graph coarsening from graph classification/regression to node classification/regression?

Can we learn better graph coarsening (i.e., learn a dataset-dependent coarsening strategy)?

Can we use graph coarsening to produce a dictionary (i.e., motifs) for a collection of graphs?
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Further Reading

(This talk) Chen et al. A Gromov–Wasserstein Geometric View of Spectrum-Preserving Graph Coarsening. ICML,
2023.

Note: Change of notation from paper to this talk:

Partitioning: from {P1, . . . ,Pn} to {V1, . . . ,Vn}
GW distance: from 〈M,T〉 to 〈C,T〉
Diagonal mass matrix: from W to M

(Survey) Chen et al. Graph Coarsening: From Scientific Computing to Machine Learning. SeMA Journal, 2022.

(Learnable coarsening) Ma and Chen. Unsupervised Learning of Graph Hierarchical Abstractions with Differentiable
Coarsening and Optimal Transport. AAAI, 2021.

(Algebraic distance for coarsening) Chen and Safro. Algebraic Distance on Graphs. SISC, 2011.

(Broader context of kernel K-means) Kokiopoulou et al. Trace Optimization and Eigenproblems in Dimension
Reduction Methods. NLAA, 2011.

Check out papers at my homepage https://jiechenjiechen.github.io
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