
Approximating the Inverse of a Sparse Linear Operator
With Graph Neural Networks

Jie Chen

MIT-IBM Watson AI Lab, IBM Research

Presented at Preconditioning Conference, June 12, 2024
(Updated October 2, 2024)

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 1 / 20

Introduction

Preconditioning is at the heart of iterative solutions of large, sparse linear systems of equations.

Is the field dead? – No, ill-conditioned problems are still very challenging.

We aim at developing a new kind of algebraic preconditioner by using neural networks.

Why neural networks? – Time to exploit these universal function approximators.

We develop a neural network M that directly approximates A−1. Distinctions from existing methods:

No PDE. Purely algebraic.

Some neural network approaches exist to learn the nonzeros in ILU or approximate inverse.

We exploit nothing that neural operators heavily depend on (e.g., spatial coordinates, smoothness,
decay of Green’s function, etc).

We evaluate on over 800 matrices and 50 application areas – widest coverage seen in the literature.

Stay tuned and we’ll see the advantages of the proposed preconditioner!

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 2 / 20

Flexible Prconditioning

Algorithm 1 FGMRES(m) with M ≈ A−1 being a nonlinear operator

1: Let x0 be given. Define Hm ∈ R(m+1)×m and initialize all its entries hij to zero
2: loop until maxiters is reached
3: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
4: for j = 1, . . . ,m do
5: Compute zj = M(vj) and w = Azj
6: for i = 1, . . . , j do
7: Compute hij = w>vi and w← w − hijvi
8: end for
9: Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

10: end for
11: Define Zm = [z1, . . . , zm] and compute xm = x0 + Zmym where ym = argminy ‖βe1 −Hmy‖2
12: If ‖b−Axm‖2 < tol, exit the loop; otherwise, set x0 ← xm
13: end loop

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 3 / 20

AZm = Vm+1Hm

Some Theory

Theorem
Assume that FGMRES is run without restart and without breakdown. On completion, let Hn be
diagonalizable, as in Y−1HnY = Σ = diag(σ1, . . . , σn). Then, the residual norm satisfies

‖rm‖2 ≤ κ2(Y) ε(m)(Σ) ‖r0‖2,

where κ2 denotes the 2-norm condition number, Pm denotes the space of degree-m polynomials, and

ε(m)(Σ) = min
p∈Pm, p(0)=1

max
i=1,...,n

|p(σi)|.

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 4 / 20

Graph Neural Network / Graph Convolutional Network

A sparse matrix A admits a graph interpretation, similar to how AMG interprets the coefficient matrix.

Treating A as the graph adjacency matrix allows us to use GNNs to parameterize the preconditioner.

Graph convolutional networks

aggregate purple to blue

aggregate blue to red

Y = softmax(bA · ReLU(bAXW(0)) ·W(1))

<latexit sha1_base64="dklsGXh4A1b02powe62W66sqpgo=">AAATMnicfdhLb9tGEAdwJn2l6ctxj70INQokRRFYRYrmUiDxI3ISOZZtyZYTucaKWkmMuSRDDmUpBL9Vjz32S7S3tsfmQ3QlkpqV/2QESBryNxS5yxlopX7gOhFtbv554+YHH3708Se3Pr392edffPnV2p31k8iPQ1t2bN/1w25fRNJ1PNkhh1zZDUIpVN+Vp/3L7bmfTmQYOb7Xplkgz5UYec7QsQXpXRdrJz11Vvul1ov8ISkxvdu7cgZyLCjpqcdprWcPfKr1QunG10V19fP01+Tu5r30XpG42FHXOy7WNjbvby4eNQzqebBh5Y/WxZ07f/QGvh0r6ZHtiih6Vd8M6DwRITm2K9PbvTiSgbAvxUgmw9h1Ax2s7H2lQ08oGZ0ni2lJa9/pPYPa0A/106PaYu/K5wgVRTPV15lK0Di6bvOdZfYqpuHD88TxgpikZ2cn0tdUI782n+PawAmlTe5MB8IOHT2Cmj0WobBJ34mVs/TV6siEO/L1AWP1wzJy7Ol8I4hkrCfIH+hR3+7tSD1JodzXl3YQyFCQH+r7IoWXJrtpBfdlmCZb+qXCR7HqSzdNGtl7Rda8FtLkSDY7VRlultKU4nL2vrzIGSnfGaRJEZTmfZ/0RDhSjh5Z/v6+NDHN0vR71Szlla5PmwcVeVLPgr64xdvA8UaVw41I6dEet/crJzbU09E4qpwIXfKhH8z0ufKgIk/3bJps65cKj3Vjp0lHv/qhqkoKRJroZ4WSLhGqrBBdzqM0Wbzq2fXkle0rJbyB/lSpz6gPl1MiSoI0XWXfk5Hmvkrq6fVDJ/qCevMe6w8Tcf3ASZ+xD2gz2oADxgGgZJSAQ8Yh4IhxBDhmHAM6jA7ga8bXgJeMl4AuowuoGBWgx+gB+ow+YMAI93ryhvENYMgYAkaMESAxEmDMGANOGCeAV4xXgFPGKeCMcQb4lvEtlLz+Al3q4+uHqi3GLcBtxm3AHcYdwF3GXcAnjE8AG4wNwD3GPcCnjE8BnzE+A3zO+BywydgE3GfcB3zB+ALwgPEAsMXYAjxkPAQ8YjwCPGY8BmwztgE7jB3AE8YTwFPGU8AuYxfwjPEM8CXjSyh5KkreFi7WPG0ZCkVP24ZC1dOOoVD2tGso1D09MRQKnxqGQuXTnqFQ+vTUUKh9emYoFD89NxSqn5qGQvnTvqFQ//TCUGgAOjAUOoBahkIL0KGh0AN0ZCg0AR0bCl1AbUOhDahjKPQBnRgKjUCnhkInUNdQaAU6MxR6gV4ais0wEW4wFtmCqJfFsO6RVCQsQliGCB3lCVkM6x/pLj8ii2ERFESO63t5TrEF3556GbiSaOyAbz2+6rdlV81cpjRmz+KSazGTlpuw1PKXOYsQFlQiCIqELIZVlf4JPShS8g1YXMW5K1xzeIV5aFMntymuA4PCArRw7Oc4j0rmhhPyDVhg6V9axaCyGO6BKC58HsEya6UQ4ooqCMbLQYxxFPrSOCHfgIX9MsEuUX3a4vMjVF/JUTHGLIblV8NonkZZ86gdo3l2yppHtY06bJcVoWqaJdQsLSHVLUbShYGoVmEttGPjRh6X3UjVWblVnfJbpVrLiW7hRKvWcqJbONHqwJjog3yiL9Y26tf/5cHg5Mf79Qf3fzp8sPHoYf4P0C3rG+tb665Vt362Hll7VsvqWLb1u/WP9Z/1bv239b/W/17/N0u9eSM/5mtr5bH+7n8j2IjD</latexit>

A GCN layer is defined as GCONV(X) = ReLU(ÂXW), where Â ∈ Rn×n is some normalization of A,
X ∈ Rn×din is input data, and W ∈ Rdin×dout is a learnable parameter.

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 5 / 20

Graph Neural Preconditioner (GNP)

s MLP σ

𝑛×𝑑

𝐛

𝑛×1

GCONV MLP s-1 𝐱+ σ

×𝐿

𝑛×𝑑 𝑛×1

Lin

GCONV Normalize A by an upper bound of the spectral radius:

Â = A/γ where γ = min
{
maxi

{∑
j |a|ij

}
,maxj

{∑
i |a|ij

}}

GCONV +

Lin

Use residual connections to stack a deeper network:

Res-GCONV(X) = ReLU(XU + ÂXW)

s s-1 Ensure scale-equivariance M(αb) = αM(b):

s(·) =
√
n
τ · and s−1(·) = τ√

n
· , where τ = ‖b‖2

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 6 / 20

Training Data Generation

Want to sample (b,x) pairs to train M.

Option 1: x ∼ N (0, In). Drawback: Input space b ∼ N (0,AA>) misses data along the bottom
eigen-subspace of AA>. Easy to train but hard to generalize.

Option 2: b ∼ N (0, In). Drawback: Output space x ∼ N (0,A−1A−>) is skewed; hard to train.

Our proposal:

1 Run m-step Arnoldi without preconditioner AVm = Vm+1Hm

2 Perform SVD Hm = WmSmZ>m
3 Define x = VmZmS−1m ε where ε ∼ N (0, Im)

One sees that

x ∈ range(Vm), x ∼ N (0,Σx
m), Σx

m = (VmH
+

m)(VmH
+

m)>,

b ∈ range(Vm+1), b ∼ N (0,Σb
m), Σb

m = (Vm+1Wm)(Vm+1Wm)>.

In practice, we sample half the batch x ∼ N (0,Σx
m) and half the batch x ∼ N (0, In).

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 7 / 20

Training Data Generation

Want to sample (b,x) pairs to train M.

Option 1: x ∼ N (0, In). Drawback: Input space b ∼ N (0,AA>) misses data along the bottom
eigen-subspace of AA>. Easy to train but hard to generalize.

Option 2: b ∼ N (0, In). Drawback: Output space x ∼ N (0,A−1A−>) is skewed; hard to train.

Our proposal:

1 Run m-step Arnoldi without preconditioner AVm = Vm+1Hm

2 Perform SVD Hm = WmSmZ>m
3 Define x = VmZmS−1m ε where ε ∼ N (0, Im)

One sees that

x ∈ range(Vm), x ∼ N (0,Σx
m), Σx

m = (VmH
+

m)(VmH
+

m)>,

b ∈ range(Vm+1), b ∼ N (0,Σb
m), Σb

m = (Vm+1Wm)(Vm+1Wm)>.

In practice, we sample half the batch x ∼ N (0,Σx
m) and half the batch x ∼ N (0, In).

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 7 / 20

Experiment Setting: Problems

Widest coverage in the literature: 867 matrices from SuiteSparse

All square, real-valued, and non-SPD matrices ...

... whose number of rows falls between 1K and 100K and

... whose number of nonzeros is fewer than 2M

1 2D/3D problem

2 acoustics problem

3 chemical process simulation problem

(sequence)

4 combinatorial problem

5 (duplicate) model reduction problem

6 (duplicate) structural problem

(sequence)

7 electromagnetics problem

8 frequency-domain circuit simulation

problem

9 materials problem

10 (subsequent) circuit simulation

problem (sequence)

11 (subsequent) computational fluid

dynamics problem (sequence)

12 (subsequent) power network problem

(sequence)

13 (subsequent) semiconductor device

problem (sequence)

14 (subsequent) theoretical/quantum

chemistry problem (sequence)

15 thermal problem

16 directed (weighted) temporal

(multi)graph

17 (un)directed multigraph

18 (un)directed weighted graph

(sequence)

19 (un)directed weighted random graph

20 linear programming problem

21 optimal control problem

22 (subsequent) optimization problem

(sequence)

23 counter-example problem

24 economic problem

25 statistical/mathematical problem

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 8 / 20

Experiment Setting: Metrics

Area under the relative residual norm curve with respect to iterations

Iter-AUC =

iters∑
i=0

log10 ri − log10 rtol, ri = ‖b−Axi‖2/‖b‖2

Area under the relative residual norm curve with respect to time (using timeout to stop)

Time-AUC =

∫ T

0

[log10 r(t)− log10 rtol] dt ≈
iters∑
i=1

[log10 ri − log10 rtol](ti − ti−1)

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 9 / 20

Experiment Setting: Additional Details

Solver: FGMRES(10), x0 = 0

Stopping criteria: rtol = 1e-8, maxiters = 100, no timeout

Compared preconditioners (Python): 1 GMRES(10); 2 ILU scipy.sparse.linalg.spilu;

3 AMG pyamg.blackbox.solver().aspreconditioner (all parameters using default choices)

Neural network (no hyperparameter tuning):

Res-GCONV layers: 8

layer in/out dimension: 16

MLP layer: 2

MLP hidden dimension: 32

optimizer: Adam

learning rate: 1e-3

steps: 2000

batch size: 16

dropout: 0

weight decay: 0

model: best training

Arnoldi steps: 40

Training loss: `1 residual norm ‖AM(b)−Ax‖1

Compute: one Tesla V100(16GB) GPU, 96 Intel Xeon 2.40GHz cores, 386GB main memory

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 10 / 20

Results 1/5

Question 1: How does GNP perform compared with traditional preconditioners?

Figure: Percentage of problems on which each preconditioner is the best.

by #iter by time
25% 1.91e+00 1.18e+00

50% 6.74e+00 2.33e+00

75% 6.78e+03 8.16e+01

100% 1.89e+10 1.91e+10

Table: Distribution of the
residual-norm ratio between the
second best preconditioner and
GNP, when GNP performs the
best. Distribution is described by
using percentiles.

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 11 / 20

Results 1/5

Question 1: How does GNP perform compared with traditional preconditioners?

Figure: Preconditioner construction time and solution time (using maxiters to stop). The construction time of
Jacobi is negligible and not shown. GMRES does not require construction.

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 12 / 20

Results 2/5

Question 2: On what problems does GNP perform the best?

Figure: Breakdown of best preconditioners with respect to matrix sizes, condition numbers, and application
areas. Only the application areas with the top number of problems are shown. The last bar in the middle plot is
for condition number ≥ 1016.

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 13 / 20

Results 3/5

Question 3: How robust is GNP?

Table: Failures of preconditioners (count and proportion).

GNP ILU AMG Jacobi GMRES as precond

Construction failure 0 (0.00%) 348 (40.14%) 62 (7.15%) N/A N/A
Solution failure 1 (0.12%) 61 (7.04%) 5 (0.58%) 53 (6.11%) 2 (0.23%)

Common failures of ILU construction: “(f)actor is exactly singular” and “matrix is singular ... in
file ilu dpivotL.c”

Common failures of AMG construction: “array ... contain(s) infs or NaNs”.

Solution failures occur when the residual norm tracked by QR(Hm) fails to match the actual
residual norm.

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 14 / 20

Results 4/5

Question 4: What does the convergence history look like with GNP?

Figure: Example convergence histories.

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 15 / 20

Results 4/5
Question 4: What does the convergence history look like with GNP?

Figure: Convergence of the linear system solutions and training history of the preconditioners.

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 16 / 20

Results 4/5
Question 4: What does the convergence history look like with GNP?

Figure: Convergence of the linear system solutions and training history of the preconditioners.

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 17 / 20

Results 5/5

Question 5: Are the proposed training-data generation and the scale-equivariance design necessary?

Figure: Left: comparison of training data generation; right: comparison of scale-equivariance.

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 18 / 20

Conclusions

Graph neural network has a strong potential to serve as a general-purpose preconditioner

GNP performs competitively for ill-conditioned problems

GNP is robust with predictable construction costs (more predictable than ILU and AMG)

GNP is faster than GMRES (which may be bottlenecked by orthogonalization)

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 19 / 20

Future Directions

Preconditioning SPD matrices. (flexible CG + split preconditioner?)

Preconditioning a sequence of evolving matrices. (continual learning)

Scalability. (distributed and/or multi-GPU training of GNN)

Problem-specific hyperparameter tuning and architecture tuning. (applications!)

Jie Chen (IBM Research) Graph Neural Preconditioner Preconditioning 24 20 / 20

