
Graph Neural Preconditioners for Iterative Solutions of Sparse Linear Systems
Jie Chen

MIT-IBMWatson AI Lab, IBM Research. chenjie@us.ibm.com

Background: Linear systems and preconditioning

Krylov methods are commonly used to solve large, sparse linear systems

Ax = b, A ∈ Rn×n.

The effectiveness of Krylov methods heavily depends on the conditioning of the

matrix A. Preconditioning amounts to using a matrix M ≈ A−1 (which we extend

to a neural network) to solve an easier problem AMu = b with the new unknown

u and recover the solution x = Mu.

In some cases (e.g., solving PDEs), the problem structure provides additional infor-

mation that aids the development of M. In other cases, little information is known

beyond the matrix A itself. In these cases, a general-purpose preconditioner is

desirable; examples include ILU, approximate inverse, and AMG.

Relatedwork: PINN, Neural Operator, etc

PINN/NO approaches use neural networks to approximate A−1

Drawback: They need PDEs and exploit additional information (e.g., spatial

coordinates, smoothness, decay of Green’s function, etc).

Neural incomplete-factorization approaches use neural networks to parameterize

the nonzero entries of the incomplete factors of A

Same drawback as incomplete factorization: nonzero factorization error.

We aim at a general-purpose preconditioner: No PDE; purely algebraic.

Nonlinear operator M needs flexible preconditioning

Algorithm 1 FGMRES(m) with M ≈ A−1 being a nonlinear operator

1: Let x0 be given. Define Hm ∈ R(m+1)×m and initialize all its entries hij to zero

2: loop until maxiters is reached

3: Compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β
4: for j = 1, . . . , m do

5: Compute zj = M(vj) and w = Azj

6: for i = 1, . . . , j do
7: Compute hij = w>vi and w← w− hijvi

8: end for

9: Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j

10: end for

11: Define Zm = [z1, . . . , zm] and compute xm = x0+Zmym where ym = argminy ‖βe1−Hmy‖2

12: If ‖b−Axm‖2 < tol, exit the loop; otherwise, set x0← xm

13: end loop

Flexible GMRES converges linearly

Theorem: Assume that FGMRES is run without restart and without breakdown.

On completion, let Hn be diagonalizable, as in Y−1HnY = Σ = diag(σ1, . . . , σn).
Then, the residual norm satisfies

‖rm‖2 ≤ κ2(Y) ε(m)(Σ) ‖r0‖2,

where κ2 denotes the 2-norm condition number, Pm denotes the space of

degree-m polynomials, and

ε(m)(Σ) = min
p∈Pm, p(0)=1

max
i=1,...,n

|p(σi)|.

Corollary: Assume that all the eigenvalues σi of Σ are enclosed by an ellipse

E(c, d, a) which excludes the origin, where c is the center, d is the focal distance,

and a is major semi-axis. When m is large,

‖rm‖2 / κ2(Y)
(

a +
√

a2 − d2

c +
√

c2 − d2

)m

‖r0‖2.

Main question

Can we design a neural network Rn→ Rn to approximate A−1?

Proposal: Graph neural preconditioner (GNP)

Treat A as the graph adjacency matrix. Use graph convolution (GCONV) to prop-

agate graph signal b and obtain ≈ A−1b.

s MLP σ

𝑛×𝑑

𝐛

𝑛×1

GCONV MLP s-1 𝐱+ σ

×𝐿

𝑛×𝑑 𝑛×1

Lin

GCONV
Normalize A by an upper bound of the spectral radius:

Â = A/γ where γ = min
{

maxi

{∑
j |a|ij

}
, maxj

{∑
i |a|ij

}}

GCONV +

Lin Use residual connections to stack a deeper network:

Res-GCONV(X) = ReLU(XU + ÂXW)

s s-1 Ensure scale-equivariance M(αb) = αM(b):
s(·) =

√
n

τ · and s−1(·) = τ√
n
· , where τ = ‖b‖2

How to generate training data?

Option 1: x ∼ N (0, In). Drawback: Input space b ∼ N (0, AA>) misses data

along the bottom eigen-subspace of AA>. Easy to train but hard to generalize.

Option 2: b ∼ N (0, In). Drawback: Output space x ∼ N (0, A−1A−>) is

skewed; hard to train.

Our proposal:

1. Run m-step Arnoldi without preconditioner AVm = Vm+1Hm

2. Perform SVD Hm = WmSmZ>m
3. Define x = VmZmS−1

m ε where ε ∼ N (0, Im)

Consequence:

x ∼ N (0, Σx
m), Σx

m = (VmH+
m)(VmH+

m)>,

b ∼ N (0, Σb
m), Σb

m = (Vm+1Wm)(Vm+1Wm)>.

In practice: Half the batch x ∼ N (0, Σx
m) and half the batch x ∼ N (0, In).

How to evaluate a general-purpose preconditioner?

We evaluate GNP on many matrices (O(103)). This is a

much broader coverage than usual PDE papers.

However, good evaluation metrics are hard to define!

Comparing the iteration count is insufficient

(per-iteration time of each method is different)

Comparing time? If using rtol as a stopping criterion,

hard to set the same rtol for diverse problems

If using timeout as a stopping criterion, hard to

compare reaching maxiters with poor residual versus

reaching timeout with good residual

Proposed metrics: Area under residual curve.

Experiment setting

We compare preconditioners on 867 non-SPD matrices (50 application areas)

from the SuiteSparse collection. 1K ≤ n ≤ 100K, nnz ≤ 2M.

GNP has 8 layers and hidden dimension 16; trained by Adam for 2K epochs.

We use one Tesla V100(16GB) GPU.

Experiment findings

GNP performs the best for a substantial portion of the problems.

The construction time of GNP is predictable, while that of ILU and AMG is not.

GNP sometimes is much faster to construct than ILU and AMG. GNP is faster in

execution than GMRES as a preconditioner.

GNP performs competitively for ill-conditioned problems. GNP is useful in some

areas: chemical process simulation, economics, and eigenvalue/model reduction.

GNP is very robust, while ILU and AMG often fail.

GNP ILU AMG Jacobi GMRES as precond

Construction failure 0 (0.00%) 348 (40.14%) 62 (7.15%) N/A N/A

Solution failure 1 (0.12%) 61 (7.04%) 5 (0.58%) 53 (6.11%) 2 (0.23%)

Example convergence histories:

What is next?

Preconditioning SPD matrices

Proving universal approximation theorems for GNNs

Preconditioning a sequence of evolving matrices

Scaling GNP implementation to real-life applications

