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Background: Linear systems and preconditioning

Krylov methods are commonly used to solve large, sparse linear systems
Ax=Db, A eR""

The effectiveness of Krylov methods heavily depends on the conditioning of the
matrix A. Preconditioning amounts to using a matrix M ~ A~! (which we extend
to a neural network) to solve an easier problem AMu = b with the new unknown
u and recover the solution x = Mu.

In some cases (e.g., solving PDEs), the problem structure provides additional infor-
mation that aids the development of M. In other cases, little information is known
beyond the matrix A itself. In these cases, a general-purpose preconditioner Is
desirable; examples include ILU, approximate inverse, and AMG.

Related work: PINN, Neural Operator, etc

PINN/NO approaches use neural networks to approximate A ~!

= Drawback: They need PDEs and exploit additional information (e.g., spatial
coordinates, smoothness, decay of Green'’s function, etc).

Neural incomplete-factorization approaches use neural networks to parameterize
the nonzero entries of the incomplete factors of A

= Same drawback as incomplete factorization: nonzero factorization error.

We aim at a general-purpose preconditioner: No PDE; purely algebraic.

Nonlinear operator M needs flexible preconditioning

Algorithm 1 FGMRES(m) with M ~ A~! being a nonlinear operator

Main question

Can we design a neural network R” — R” to approximate A ~1?

Proposal: Graph neural preconditioner (GNP)

Treat A as the graph adjacency matrix. Use graph convolution (GCONYV) to prop-

agate graph signal b and obtain ~ A~'b.
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Normalize A by an upper bound of the spectral radius:

N

A =A/y where fy:min{maxi{zj\@\z‘j}amaxj{Zi‘a‘ij}}

GCONV

Use residual connections to stack a deeper network:
Res-GCONV(X) = ReLU(XU + AXW)

Ensure scale-equivariance M(ab) = aM(b):
s()=¥". and s7I(-)=

-, where 7 = ||b||5

S

How to generate training data?

Experiment setting

= \WWe compare preconditioners on 867 non-SPD matrices (50 application areas)
from the SuiteSparse collection. 1K < n < 100K, nnz < 2M.

= GNP has 8 layers and hidden dimension 16; trained by Adam for 2K epochs.
= \WWe use one Tesla V100(16GB) GPU.

Experiment findings

1: Let xq be given. Define H,, € R™+)*™ and initialize all its entries h;; to zero
2. loop until maxiters is reached
3; Compute rg =b — Axy, 8 = ||rg

|2, and Vi = I'()/ﬁ

4. forj=1,...,mdo

5: Compute z; = M(v;) and w = Az;

6: fortr=1,...,57do

7 Compute h;; = w'v; and w < w — hy;v;

8: end for

9: Compute hj+1,j = ||W”2 and Vil = W/h]qu’j
10: end for
11: Define Z,, = [z, . .., zy) and compute x,,, = Xg+Z,ym Where y,,, = argming, || Se; —H,,y||2
12: If ||b — Ax,,||» < tol, exit the loop; otherwise, set xj < x,;,
13: end loop

Flexible GMRES converges linearly

Theorem: Assume that FGMRES is run without restart and without breakdown.
On completion, let H,, be diagonalizable, as in Y 'H, )Y = X = diag(oy,..., 0,).
Then, the residual norm satisfies

[enll < #2(Y) €™(2) |Iroll,

where ko denotes the 2-norm condition number, P,, denotes the space of
degree-m polynomials, and

M) — i |
e"(3) ephin X p(oi).

Corollary: Assume that all the eigenvalues o; of ¥ are enclosed by an ellipse
E(c,d, a) which excludes the origin, where c is the center, d is the focal distance,
and a is major semi-axis. When m is large,

a+vVa>—d>\"
Irall € a0 (Y2 Z2) il

Option 1: x ~ N(0,1,). Drawback: Input space b ~ N (0, AA") misses data
along the bottom eigen-subspace of AA'. Easy to train but hard to generalize.

Option 2: b ~ N(0,I,). Drawback: Output space x ~ N(0,A'A~") is
skewed; hard to train.

Our proposal:

1. Run m-step Arnoldi without preconditioner AV,, = V,..H,,
2. Perform SVDH,, = W,,S,,Z
3. Define x = V,,Z,,S, e where e ~ N(0,1,,)

Consequence:

x ~ N(0,X7,),
b~ N(0,X?),

i, = (Vmﬁjn) (VmH:;)T,
2}7)1 — (Vm+1wm) (Vm—HWm)T-

In practice: Half the batch x ~ N(0, X*) and half the batch x ~ N (0,1,,).

How to evaluate a general-purpose preconditioner?

We evaluate GNP on many matrices (O(10°)). This is a
much broader coverage than usual PDE papers.

However, good evaluation metrics are hard to define!
= Comparing the iteration count is insufficient
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GNP performs the best for a substantial portion of the problems.

by #iterations

by solution time

Best preconditioner
B GNP
B LU
B AMG
B |acobi
B GMRES as precond
B No precond

The construction time of GNP is predictable, while that of [LU and AMG Is not.
GNP sometimes is much faster to construct than LU and AMG. GNP is faster in
execution than GMRES as a preconditioner.

GNP ILU AMG Jacobi GMRES as precond
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o Construction . Solution

GNP performs competitively for ill-conditioned problems. GNP is useful in some
areas: chemical process simulation, economics, and eigenvalue/model reduction.
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GNP is very robust, while ILU and AMG often fall.
GNP LU AMG Jacobi| GMRES as precond
Construction failure |0 (0.00%) 348 (40.14%)| 62 (7.15%) N/A N/A
Solution failure 1 (0.12%) 61 ( 7.04%) 5 (0.58%) 53 (6.11%) 2 (0.23%)

Example convergence histories:

GHS indef/bratu3d VanVelzen/stdl Jac3 Simon/venkat25

2D/3D problem chemical process simulation problem  subsequent cfd problem
cond = 5.92e+02 cond = 1.02e+27 cond = N/A
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cond = 6.79e+13
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What is next?

= Preconditioning SPD matrices
= Proving universal approximation theorems for GNNs

= Preconditioning a sequence of evolving matrices
= Scaling GNP implementation to real-life applications



